-
Notifications
You must be signed in to change notification settings - Fork 3.8k
/
optimizer.go
975 lines (874 loc) · 36.8 KB
/
optimizer.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
// Copyright 2018 The Cockroach Authors.
//
// Use of this software is governed by the Business Source License
// included in the file licenses/BSL.txt.
//
// As of the Change Date specified in that file, in accordance with
// the Business Source License, use of this software will be governed
// by the Apache License, Version 2.0, included in the file
// licenses/APL.txt.
package xform
import (
"math/rand"
"github.com/cockroachdb/cockroach/pkg/sql/opt"
"github.com/cockroachdb/cockroach/pkg/sql/opt/memo"
"github.com/cockroachdb/cockroach/pkg/sql/opt/norm"
"github.com/cockroachdb/cockroach/pkg/sql/opt/ordering"
"github.com/cockroachdb/cockroach/pkg/sql/opt/props/physical"
"github.com/cockroachdb/cockroach/pkg/sql/sem/tree"
"github.com/cockroachdb/cockroach/pkg/util"
"github.com/cockroachdb/cockroach/pkg/util/errorutil"
"github.com/cockroachdb/cockroach/pkg/util/log"
"github.com/cockroachdb/errors"
)
// MatchedRuleFunc defines the callback function for the NotifyOnMatchedRule
// event supported by the optimizer. See the comment in factory.go for more
// details.
type MatchedRuleFunc = norm.MatchedRuleFunc
// AppliedRuleFunc defines the callback function for the NotifyOnAppliedRule
// event supported by the optimizer. See the comment in factory.go for more
// details.
type AppliedRuleFunc = norm.AppliedRuleFunc
// RuleSet efficiently stores an unordered set of RuleNames.
type RuleSet = util.FastIntSet
// Optimizer transforms an input expression tree into the logically equivalent
// output expression tree with the lowest possible execution cost.
//
// To use the optimizer, construct an input expression tree by invoking
// construction methods on the Optimizer.Factory instance. The factory
// transforms the input expression into its canonical form as part of
// construction. Pass the root of the tree constructed by the factory to the
// Optimize method, along with a set of required physical properties that the
// expression must provide. The optimizer will return an Expr over the output
// expression tree with the lowest cost.
type Optimizer struct {
evalCtx *tree.EvalContext
// f is the factory that creates the normalized expressions during the first
// optimization phase.
f norm.Factory
// mem is the Memo data structure containing the forest of query plans that
// are generated by the optimizer.
mem *memo.Memo
// explorer generates alternate, equivalent expressions and stores them in
// the memo.
explorer explorer
// defaultCoster implements the default cost model. If SetCoster is not
// called, this coster will be used.
defaultCoster coster
// coster is set by default to reference defaultCoster, but can be overridden
// by calling SetCoster.
coster Coster
// stateMap allocates temporary storage that's used to speed up optimization.
// This state could be discarded once optimization is complete.
stateMap map[groupStateKey]*groupState
stateAlloc groupStateAlloc
// matchedRule is the callback function that is invoked each time an
// optimization rule (Normalize or Explore) has been matched by the optimizer.
// It can be set via a call to the NotifyOnMatchedRule method.
matchedRule MatchedRuleFunc
// appliedRule is the callback function which is invoked each time an
// optimization rule (Normalize or Explore) has been applied by the optimizer.
// It can be set via a call to the NotifyOnAppliedRule method.
appliedRule AppliedRuleFunc
// disabledRules is a set of rules that are not allowed to run, used for
// testing.
disabledRules RuleSet
}
// Init initializes the Optimizer with a new, blank memo structure inside. This
// must be called before the optimizer can be used (or reused).
func (o *Optimizer) Init(evalCtx *tree.EvalContext) {
o.evalCtx = evalCtx
o.f.Init(evalCtx)
o.mem = o.f.Memo()
o.explorer.init(o)
o.defaultCoster.Init(evalCtx, o.mem, evalCtx.TestingKnobs.OptimizerCostPerturbation)
o.coster = &o.defaultCoster
o.stateMap = make(map[groupStateKey]*groupState)
o.matchedRule = nil
o.appliedRule = nil
if evalCtx.TestingKnobs.DisableOptimizerRuleProbability > 0 {
o.disableRules(evalCtx.TestingKnobs.DisableOptimizerRuleProbability)
}
}
// DetachMemo extracts the memo from the optimizer, and then re-initializes the
// optimizer so that its reuse will not impact the detached memo. This method is
// used to extract a read-only memo during the PREPARE phase.
func (o *Optimizer) DetachMemo() *memo.Memo {
detach := o.f.DetachMemo()
o.Init(o.evalCtx)
return detach
}
// Factory returns a factory interface that the caller uses to construct an
// input expression tree. The root of the resulting tree can be passed to the
// Optimize method in order to find the lowest cost plan.
func (o *Optimizer) Factory() *norm.Factory {
return &o.f
}
// Coster returns the coster instance that the optimizer is currently using to
// estimate the cost of executing portions of the expression tree. When a new
// optimizer is constructed, it creates a default coster that will be used
// unless it is overridden with a call to SetCoster.
func (o *Optimizer) Coster() Coster {
return o.coster
}
// SetCoster overrides the default coster. The optimizer will now use the given
// coster to estimate the cost of expression execution.
func (o *Optimizer) SetCoster(coster Coster) {
o.coster = coster
}
// DisableOptimizations disables all transformation rules, including normalize
// and explore rules. The unaltered input expression tree becomes the output
// expression tree (because no transforms are applied).
func (o *Optimizer) DisableOptimizations() {
o.NotifyOnMatchedRule(func(opt.RuleName) bool { return false })
}
// NotifyOnMatchedRule sets a callback function which is invoked each time an
// optimization rule (Normalize or Explore) has been matched by the optimizer.
// If matchedRule is nil, then no notifications are sent, and all rules are
// applied by default. In addition, callers can invoke the DisableOptimizations
// convenience method to disable all rules.
func (o *Optimizer) NotifyOnMatchedRule(matchedRule MatchedRuleFunc) {
o.matchedRule = matchedRule
// Also pass through the call to the factory so that normalization rules
// make same callback.
o.f.NotifyOnMatchedRule(matchedRule)
}
// NotifyOnAppliedRule sets a callback function which is invoked each time an
// optimization rule (Normalize or Explore) has been applied by the optimizer.
// If appliedRule is nil, then no further notifications are sent.
func (o *Optimizer) NotifyOnAppliedRule(appliedRule AppliedRuleFunc) {
o.appliedRule = appliedRule
// Also pass through the call to the factory so that normalization rules
// make same callback.
o.f.NotifyOnAppliedRule(appliedRule)
}
// Memo returns the memo structure that the optimizer is using to optimize.
func (o *Optimizer) Memo() *memo.Memo {
return o.mem
}
// Optimize returns the expression which satisfies the required physical
// properties at the lowest possible execution cost, but is still logically
// equivalent to the given expression. If there is a cost "tie", then any one
// of the qualifying lowest cost expressions may be selected by the optimizer.
func (o *Optimizer) Optimize() (_ opt.Expr, err error) {
defer func() {
if r := recover(); r != nil {
// This code allows us to propagate internal errors without having to add
// error checks everywhere throughout the code. This is only possible
// because the code does not update shared state and does not manipulate
// locks.
if ok, e := errorutil.ShouldCatch(r); ok {
err = e
} else {
// Other panic objects can't be considered "safe" and thus are
// propagated as crashes that terminate the session.
panic(r)
}
}
}()
if o.mem.IsOptimized() {
return nil, errors.AssertionFailedf("cannot optimize a memo multiple times")
}
// Optimize the root expression according to the properties required of it.
o.optimizeRootWithProps()
// Now optimize the entire expression tree.
root := o.mem.RootExpr().(memo.RelExpr)
rootProps := o.mem.RootProps()
o.optimizeGroup(root, rootProps)
// Walk the tree from the root, updating child pointers so that the memo
// root points to the lowest cost tree by default (rather than the normalized
// tree by default.
root = o.setLowestCostTree(root, rootProps).(memo.RelExpr)
o.mem.SetRoot(root, rootProps)
// Validate there are no dangling references.
if !root.Relational().OuterCols.Empty() {
return nil, errors.AssertionFailedf(
"top-level relational expression cannot have outer columns: %s",
errors.Safe(root.Relational().OuterCols),
)
}
return root, nil
}
// optimizeExpr calls either optimizeGroup or optimizeScalarExpr depending on
// the type of the expression (relational or scalar).
func (o *Optimizer) optimizeExpr(
e opt.Expr, required *physical.Required,
) (cost memo.Cost, fullyOptimized bool) {
switch t := e.(type) {
case memo.RelExpr:
state := o.optimizeGroup(t, required)
return state.cost, state.fullyOptimized
case memo.ScalarPropsExpr:
// Short-circuit traversal of scalar expressions with no nested subquery,
// since there's only one possible tree.
if !t.ScalarProps(o.mem).HasSubquery {
return 0, true
}
return o.optimizeScalarExpr(t)
case opt.ScalarExpr:
return o.optimizeScalarExpr(t)
default:
panic(errors.AssertionFailedf("unhandled child: %+v", e))
}
}
// optimizeGroup enumerates expression trees rooted in the given memo group and
// finds the expression tree with the lowest cost (i.e. the "best") that
// provides the given required physical properties. Enforcers are added as
// needed to provide the required properties.
//
// The following is a simplified walkthrough of how the optimizer might handle
// the following SQL query:
//
// SELECT * FROM a WHERE x=1 ORDER BY y
//
// Before the optimizer is invoked, the memo group contains a single normalized
// expression:
//
// memo
// ├── G1: (select G2 G3)
// ├── G2: (scan a)
// ├── G3: (eq 3 2)
// ├── G4: (variable x)
// └── G5: (const 1)
//
// Optimization begins at the root of the memo (group #1), and calls
// optimizeGroup with the properties required of that group ("ordering:y").
// optimizeGroup then calls optimizeGroupMember for the Select expression, which
// checks whether the expression can provide the required properties. Since
// Select is a pass-through operator, it can provide the properties by passing
// through the requirement to its input. Accordingly, optimizeGroupMember
// recursively invokes optimizeGroup on select's input child (group #2), with
// the same set of required properties.
//
// Now the same set of steps are applied to group #2. However, the Scan
// expression cannot provide the required ordering (say because it's ordered on
// x rather than y). The optimizer must add a Sort enforcer. It does this by
// recursively invoking optimizeGroup on the same group #2, but this time
// without the ordering requirement. The Scan operator is capable of meeting
// these reduced requirements, so it is costed and added as the current lowest
// cost expression for that group for that set of properties (i.e. the empty
// set).
//
// memo
// ├── G1: (select G2 G3)
// ├── G2: (scan a)
// │ └── []
// │ ├── best: (scan a)
// │ └── cost: 100.00
// ├── G3: (eq 3 2)
// ├── G4: (variable x)
// └── G5: (const 1)
//
// The recursion pops up a level, and now the Sort enforcer knows its input,
// and so it too can be costed (cost of input + extra cost of sort) and added
// as the best expression for the property set with the ordering requirement.
//
// memo
// ├── G1: (select G2 G3)
// ├── G2: (scan a)
// │ ├── [ordering: y]
// │ │ ├── best: (sort G2)
// │ │ └── cost: 150.00
// │ └── []
// │ ├── best: (scan a)
// │ └── cost: 100.00
// ├── G3: (eq 3 2)
// ├── G4: (variable x)
// └── G5: (const 1)
//
// Recursion pops up another level, and the Select operator now knows its input
// (the Sort of the Scan). It then moves on to its scalar filter child and
// optimizes it and its descendants, which is relatively uninteresting since
// there are no subqueries to consider (in fact, the optimizer recognizes this
// and skips traversal altogether). Once all children have been optimized, the
// Select operator can now be costed and added as the best expression for the
// ordering requirement. It requires the same ordering requirement from its
// input child (i.e. the scan).
//
// memo
// ├── G1: (select G2 G3)
// │ └── [ordering: y]
// │ ├── best: (select G2="ordering: y" G3)
// │ └── cost: 160.00
// ├── G2: (scan a)
// │ ├── [ordering: y]
// │ │ ├── best: (sort G2)
// │ │ └── cost: 150.00
// │ └── []
// │ ├── best: (scan a)
// │ └── cost: 100.00
// ├── G3: (eq 3 2)
// ├── G4: (variable x)
// └── G5: (const 1)
//
// But the process is not yet complete. After traversing the Select child
// groups, optimizeExpr generates an alternate plan that satisfies the ordering
// property by using a top-level enforcer. It does this by recursively invoking
// optimizeGroup for group #1, but without the ordering requirement, analogous
// to what it did for group #2. This triggers optimization for each child group
// of the Select operator. But this time, the memo already has fully-costed
// best expressions available for both the Input and Filter children, and so
// returns them immediately with no extra work. The Select expression is now
// costed and added as the best expression without an ordering requirement.
//
// memo
// ├── G1: (select G2 G3)
// │ ├── [ordering: y]
// │ │ ├── best: (select G2="ordering: y" G3)
// │ │ └── cost: 160.00
// │ └── []
// │ ├── best: (select G2 G3)
// │ └── cost: 110.00
// ├── G2: (scan a)
// │ ├── [ordering: y]
// │ │ ├── best: (sort G2)
// │ │ └── cost: 150.00
// │ └── []
// │ ├── best: (scan a)
// │ └── cost: 100.00
// ├── G3: (eq 3 2)
// ├── G4: (variable x)
// └── G5: (const 1)
//
// Finally, the Sort enforcer for group #1 has its input and can be costed. But
// rather than costing 50.0 like the other Sort enforcer, this one only costs
// 1.0, because it's sorting a tiny set of filtered rows. That means its total
// cost is only 111.0, which makes it the new best expression for group #1 with
// an ordering requirement:
//
// memo
// ├── G1: (select G2 G3)
// │ ├── [ordering: y]
// │ │ ├── best: (sort G1)
// │ │ └── cost: 111.00
// │ └── []
// │ ├── best: (select G2 G3)
// │ └── cost: 110.00
// ├── G2: (scan a)
// │ ├── [ordering: y]
// │ │ ├── best: (sort G2)
// │ │ └── cost: 150.00
// │ └── []
// │ ├── best: (scan a)
// │ └── cost: 100.00
// ├── G3: (eq 3 2)
// ├── G4: (variable x)
// └── G5: (const 1)
//
// Now the memo has been fully optimized, and the best expression for group #1
// and "ordering:y" can be set as the root of the tree by setLowestCostTree:
//
// sort
// ├── columns: x:1(int) y:2(int)
// ├── ordering: +2
// └── select
// ├── columns: x:1(int) y:2(int)
// ├── scan
// │ └── columns: x:1(int) y:2(int)
// └── eq [type=bool]
// ├── variable: a.x [type=int]
// └── const: 1 [type=int]
//
func (o *Optimizer) optimizeGroup(grp memo.RelExpr, required *physical.Required) *groupState {
// Always start with the first expression in the group.
grp = grp.FirstExpr()
// If this group is already fully optimized, then return the already prepared
// best expression (won't ever get better than this).
state := o.ensureOptState(grp, required)
if state.fullyOptimized {
return state
}
// Iterate until the group has been fully optimized.
for {
fullyOptimized := true
for i, member := 0, grp; member != nil; i, member = i+1, member.NextExpr() {
// If this group member has already been fully optimized for the given
// required properties, then skip it, since it won't get better.
if state.isMemberFullyOptimized(i) {
continue
}
// Optimize the group member with respect to the required properties.
memberOptimized := o.optimizeGroupMember(state, member, required)
// If any of the group members have not yet been fully optimized, then
// the group is not yet fully optimized.
if memberOptimized {
state.markMemberAsFullyOptimized(i)
} else {
fullyOptimized = false
}
}
// Now try to generate new expressions that are logically equivalent to
// other expressions in this group.
if o.shouldExplore(required) && !o.explorer.exploreGroup(grp).fullyExplored {
fullyOptimized = false
}
if fullyOptimized {
state.fullyOptimized = true
break
}
}
return state
}
// optimizeGroupMember determines whether the group member expression can
// provide the required properties. If so, it recursively optimizes the
// expression's child groups and computes the cost of the expression. In
// addition, optimizeGroupMember calls enforceProps to check whether enforcers
// can provide the required properties at a lower cost. The lowest cost
// expression is saved to groupState.
func (o *Optimizer) optimizeGroupMember(
state *groupState, member memo.RelExpr, required *physical.Required,
) (fullyOptimized bool) {
// Compute the cost for enforcers to provide the required properties. This
// may be lower than the expression providing the properties itself. For
// example, it might be better to sort the results of a hash join than to
// use the results of a merge join that are already sorted, but at the cost
// of requiring one of the merge join children to be sorted.
fullyOptimized = o.enforceProps(state, member, required)
// If the expression cannot provide the required properties, then don't
// continue. But what if the expression is able to provide a subset of the
// properties? That case is taken care of by enforceProps, which will
// recursively optimize the group with property subsets and then add
// enforcers to provide the remainder.
if CanProvidePhysicalProps(member, required) {
var cost memo.Cost
for i, n := 0, member.ChildCount(); i < n; i++ {
// Given required parent properties, get the properties required from
// the nth child.
childRequired := BuildChildPhysicalProps(o.mem, member, i, required)
// Optimize the child with respect to those properties.
childCost, childOptimized := o.optimizeExpr(member.Child(i), childRequired)
// Accumulate cost of children.
cost += childCost
// If any child expression is not fully optimized, then the parent
// expression is also not fully optimized.
if !childOptimized {
fullyOptimized = false
}
}
// Check whether this is the new lowest cost expression.
cost += o.coster.ComputeCost(member, required)
o.ratchetCost(state, member, cost)
}
return fullyOptimized
}
// optimizeScalarExpr recursively optimizes the children of a scalar expression.
// This is only necessary when the scalar expression contains a subquery, since
// scalar expressions otherwise always have zero cost and only one possible
// plan.
func (o *Optimizer) optimizeScalarExpr(
scalar opt.ScalarExpr,
) (cost memo.Cost, fullyOptimized bool) {
fullyOptimized = true
for i, n := 0, scalar.ChildCount(); i < n; i++ {
childProps := BuildChildPhysicalPropsScalar(o.mem, scalar, i)
childCost, childOptimized := o.optimizeExpr(scalar.Child(i), childProps)
// Accumulate cost of children.
cost += childCost
// If any child expression is not fully optimized, then the parent
// expression is also not fully optimized.
if !childOptimized {
fullyOptimized = false
}
}
return cost, fullyOptimized
}
// enforceProps costs an expression where one of the physical properties has
// been provided by an enforcer rather than by the expression itself. There are
// two reasons why this is necessary/desirable:
//
// 1. The expression may not be able to provide the property on its own. For
// example, a hash join cannot provide ordered results.
// 2. The enforcer might be able to provide the property at lower overall
// cost. For example, an enforced sort on top of a hash join might be
// lower cost than a merge join that is already sorted, but at the cost of
// requiring one of its children to be sorted.
//
// Note that enforceProps will recursively optimize this same group, but with
// one less required physical property. The recursive call will eventually make
// its way back here, at which point another physical property will be stripped
// off, and so on. Afterwards, the group will have computed a lowest cost
// expression for each sublist of physical properties, from all down to none.
//
// Right now, the only physical property that can be provided by an enforcer is
// physical.Required.Ordering. When adding another enforceable property, also
// update shouldExplore, which should return true if enforceProps will explore
// the group by recursively calling optimizeGroup (by way of optimizeEnforcer).
func (o *Optimizer) enforceProps(
state *groupState, member memo.RelExpr, required *physical.Required,
) (fullyOptimized bool) {
// Strip off one property that can be enforced. Other properties will be
// stripped by recursively optimizing the group with successively fewer
// properties. The properties are stripped off in a heuristic order, from
// least likely to be expensive to enforce to most likely.
if !required.Ordering.Any() {
// Try Sort enforcer that requires no ordering from its input.
enforcer := &memo.SortExpr{Input: member}
memberProps := BuildChildPhysicalProps(o.mem, enforcer, 0, required)
fullyOptimized = o.optimizeEnforcer(state, enforcer, required, member, memberProps)
// Try Sort enforcer that requires a partial ordering from its input.
longestCommonPrefix := deriveInterestingOrderingPrefix(member, required.Ordering)
if len(longestCommonPrefix) > 0 && len(longestCommonPrefix) < len(required.Ordering.Columns) {
enforcer := &memo.SortExpr{Input: state.best}
enforcer.InputOrdering.FromOrdering(longestCommonPrefix)
memberProps := BuildChildPhysicalProps(o.mem, enforcer, 0, required)
if o.optimizeEnforcer(state, enforcer, required, member, memberProps) {
fullyOptimized = true
}
}
return fullyOptimized
}
return true
}
// deriveInterestingOrderingPrefix finds the longest prefix of the required ordering
// that is "interesting" as defined in Relational.Rule.InterestingOrderings.
func deriveInterestingOrderingPrefix(
member memo.RelExpr, requiredOrdering physical.OrderingChoice,
) opt.Ordering {
// Find the interesting orderings of the member expression.
interestingOrderings := DeriveInterestingOrderings(member)
// Find the longest interesting ordering that is a prefix of the required ordering.
var longestCommonPrefix opt.Ordering
for _, ordering := range interestingOrderings {
var commonPrefix opt.Ordering
for i, orderingCol := range ordering {
if i < len(requiredOrdering.Columns) &&
requiredOrdering.Columns[i].Group.Contains(orderingCol.ID()) &&
requiredOrdering.Columns[i].Descending == orderingCol.Descending() {
commonPrefix = append(commonPrefix, orderingCol)
} else {
break
}
}
if len(commonPrefix) > len(longestCommonPrefix) {
longestCommonPrefix = commonPrefix
}
}
return longestCommonPrefix
}
// optimizeEnforcer optimizes and costs the enforcer.
func (o *Optimizer) optimizeEnforcer(
state *groupState,
enforcer memo.RelExpr,
enforcerProps *physical.Required,
member memo.RelExpr,
memberProps *physical.Required,
) (fullyOptimized bool) {
// Recursively optimize the member group with respect to a subset of the
// enforcer properties.
innerState := o.optimizeGroup(member, memberProps)
fullyOptimized = innerState.fullyOptimized
// Check whether this is the new lowest cost expression with the enforcer
// added.
cost := innerState.cost + o.coster.ComputeCost(enforcer, enforcerProps)
o.ratchetCost(state, enforcer, cost)
// Enforcer expression is fully optimized if its input expression is fully
// optimized.
return fullyOptimized
}
// shouldExplore ensures that exploration is only triggered for optimizeGroup
// calls that will not recurse via a call from enforceProps.
func (o *Optimizer) shouldExplore(required *physical.Required) bool {
return required.Ordering.Any()
}
// setLowestCostTree traverses the memo and recursively updates child pointers
// so that they point to the lowest cost expression tree rather than to the
// normalized expression tree. Each participating memo group is updated to store
// the physical properties required of it, as well as the estimated cost of
// executing the lowest cost expression in the group. As an example, say this is
// the memo, with a normalized tree containing the first expression in each of
// the groups:
//
// memo
// ├── G1: (inner-join G2 G3 G4) (inner-join G3 G2 G4)
// ├── G2: (scan a)
// ├── G3: (select G5 G6) (scan b,constrained)
// ├── G4: (true)
// ├── G5: (scan b)
// ├── G6: (eq G7 G8)
// ├── G7: (variable b.x)
// └── G8: (const 1)
//
// setLowestCostTree is called after exploration is complete, and after each
// group member has been costed. If the second expression in groups G1 and G3
// have lower cost than the first expressions, then setLowestCostTree will
// update pointers so that the root expression tree includes those expressions
// instead.
//
// Note that a memo group can have multiple lowest cost expressions, each for a
// different set of physical properties. During optimization, these are retained
// in the groupState map. However, only one of those lowest cost expressions
// will be used in the final tree; the others are simply discarded. This is
// because there is never a case where a relational expression is referenced
// multiple times in the final tree, but with different physical properties
// required by each of those references.
func (o *Optimizer) setLowestCostTree(parent opt.Expr, parentProps *physical.Required) opt.Expr {
var relParent memo.RelExpr
var relCost memo.Cost
switch t := parent.(type) {
case memo.RelExpr:
state := o.lookupOptState(t.FirstExpr(), parentProps)
relParent, relCost = state.best, state.cost
parent = relParent
case memo.ScalarPropsExpr:
// Short-circuit traversal of scalar expressions with no nested subquery,
// since there's only one possible tree.
if !t.ScalarProps(o.mem).HasSubquery {
return parent
}
}
// Iterate over the expression's children, replacing any that have a lower
// cost alternative.
var mutable opt.MutableExpr
var childProps *physical.Required
for i, n := 0, parent.ChildCount(); i < n; i++ {
before := parent.Child(i)
if relParent != nil {
childProps = BuildChildPhysicalProps(o.mem, relParent, i, parentProps)
} else {
childProps = BuildChildPhysicalPropsScalar(o.mem, parent, i)
}
after := o.setLowestCostTree(before, childProps)
if after != before {
if mutable == nil {
mutable = parent.(opt.MutableExpr)
}
mutable.SetChild(i, after)
}
}
if relParent != nil {
var provided physical.Provided
// BuildProvided relies on ProvidedPhysical() being set in the children, so
// it must run after the recursive calls on the children.
provided.Ordering = ordering.BuildProvided(relParent, &parentProps.Ordering)
o.mem.SetBestProps(relParent, parentProps, &provided, relCost)
}
return parent
}
// ratchetCost computes the cost of the candidate expression, and then checks
// whether it's lower than the cost of the existing best expression in the
// group. If so, then the candidate becomes the new lowest cost expression.
func (o *Optimizer) ratchetCost(state *groupState, candidate memo.RelExpr, cost memo.Cost) {
if state.best == nil || cost.Less(state.cost) {
state.best = candidate
state.cost = cost
}
}
// lookupOptState looks up the state associated with the given group and
// properties. If no state exists yet, then lookupOptState returns nil.
func (o *Optimizer) lookupOptState(grp memo.RelExpr, required *physical.Required) *groupState {
return o.stateMap[groupStateKey{group: grp, required: required}]
}
// ensureOptState looks up the state associated with the given group and
// properties. If none is associated yet, then ensureOptState allocates new
// state and returns it.
func (o *Optimizer) ensureOptState(grp memo.RelExpr, required *physical.Required) *groupState {
key := groupStateKey{group: grp, required: required}
state, ok := o.stateMap[key]
if !ok {
state = o.stateAlloc.allocate()
state.required = required
o.stateMap[key] = state
}
return state
}
// optimizeRootWithProps tries to simplify the root operator based on the
// properties required of it. This may trigger the creation of a new root and
// new properties.
func (o *Optimizer) optimizeRootWithProps() {
root, ok := o.mem.RootExpr().(memo.RelExpr)
if !ok {
panic(errors.AssertionFailedf("Optimize can only be called on relational root expressions"))
}
rootProps := o.mem.RootProps()
// [SimplifyRootOrdering]
// SimplifyRootOrdering removes redundant columns from the root properties,
// based on the operator's functional dependencies.
if rootProps.Ordering.CanSimplify(&root.Relational().FuncDeps) {
if o.matchedRule == nil || o.matchedRule(opt.SimplifyRootOrdering) {
simplified := *rootProps
simplified.Ordering = rootProps.Ordering.Copy()
simplified.Ordering.Simplify(&root.Relational().FuncDeps)
o.mem.SetRoot(root, &simplified)
rootProps = o.mem.RootProps()
if o.appliedRule != nil {
o.appliedRule(opt.SimplifyRootOrdering, nil, root)
}
}
}
// [PruneRootCols]
// PruneRootCols discards columns that are not needed by the root's ordering
// or presentation properties.
neededCols := rootProps.ColSet()
if !neededCols.SubsetOf(root.Relational().OutputCols) {
panic(errors.AssertionFailedf(
"columns required of root %s must be subset of output columns %s",
neededCols,
root.Relational().OutputCols,
))
}
if o.f.CustomFuncs().CanPruneCols(root, neededCols) {
if o.matchedRule == nil || o.matchedRule(opt.PruneRootCols) {
root = o.f.CustomFuncs().PruneCols(root, neededCols)
// We may have pruned a column that appears in the required ordering.
rootCols := root.Relational().OutputCols
if !rootProps.Ordering.SubsetOfCols(rootCols) {
newProps := *rootProps
newProps.Ordering = rootProps.Ordering.Copy()
newProps.Ordering.ProjectCols(rootCols)
o.mem.SetRoot(root, &newProps)
//lint:ignore SA4006 set rootProps in case another rule is added below.
rootProps = o.mem.RootProps()
} else {
o.mem.SetRoot(root, rootProps)
}
if o.appliedRule != nil {
o.appliedRule(opt.PruneRootCols, nil, root)
}
}
}
}
// groupStateKey associates groupState with a group that is being optimized with
// respect to a set of physical properties.
type groupStateKey struct {
group memo.RelExpr
required *physical.Required
}
// groupState is temporary storage that's associated with each group that's
// optimized (or same group with different sets of physical properties). The
// optimizer stores various flags and other state here that allows it to do
// quicker lookups and short-circuit already traversed parts of the expression
// tree.
type groupState struct {
// best identifies the lowest cost expression in the memo group for a given
// set of physical properties.
best memo.RelExpr
// required is the set of physical properties that must be provided by this
// lowest cost expression. An expression that cannot provide these properties
// cannot be the best expression, no matter how low its cost.
required *physical.Required
// cost is the estimated execution cost for this expression. The best
// expression for a given group and set of physical properties is the
// expression with the lowest cost.
cost memo.Cost
// fullyOptimized is set to true once the lowest cost expression has been
// found for a memo group, with respect to the required properties. A lower
// cost expression will never be found, no matter how many additional
// optimization passes are made.
fullyOptimized bool
// fullyOptimizedExprs contains the set of ordinal positions of each member
// expression in the group that has been fully optimized for the required
// properties. These never need to be recosted, no matter how many additional
// optimization passes are made.
fullyOptimizedExprs util.FastIntSet
// explore is used by the explorer to store intermediate state so that
// redundant work is minimized.
explore exploreState
}
// isMemberFullyOptimized returns true if the group member at the given ordinal
// position has been fully optimized for the required properties. The expression
// never needs to be recosted, no matter how many additional optimization passes
// are made.
func (os *groupState) isMemberFullyOptimized(ord int) bool {
return os.fullyOptimizedExprs.Contains(ord)
}
// markMemberAsFullyOptimized marks the group member at the given ordinal
// position as fully optimized for the required properties. The expression never
// needs to be recosted, no matter how many additional optimization passes are
// made.
func (os *groupState) markMemberAsFullyOptimized(ord int) {
if os.fullyOptimized {
panic(errors.AssertionFailedf("best expression is already fully optimized"))
}
if os.isMemberFullyOptimized(ord) {
panic(errors.AssertionFailedf("memo expression is already fully optimized for required physical properties"))
}
os.fullyOptimizedExprs.Add(ord)
}
// groupStateAlloc allocates pages of groupState structs. This is preferable to
// a slice of groupState structs because pointers are not invalidated when a
// resize occurs, and because there's no need to retain a stable index.
type groupStateAlloc struct {
page []groupState
}
// allocate returns a pointer to a new, empty groupState struct. The pointer is
// stable, meaning that its location won't change as other groupState structs
// are allocated.
func (a *groupStateAlloc) allocate() *groupState {
if len(a.page) == 0 {
a.page = make([]groupState, 8)
}
state := &a.page[0]
a.page = a.page[1:]
return state
}
// disableRules disables rules with the given probability for testing.
func (o *Optimizer) disableRules(probability float64) {
essentialRules := util.MakeFastIntSet(
// Needed to prevent constraint building from failing.
int(opt.NormalizeInConst),
// Needed when an index is forced.
int(opt.GenerateIndexScans),
// Needed to prevent "same fingerprint cannot map to different groups."
int(opt.PruneJoinLeftCols),
int(opt.PruneJoinRightCols),
// Needed to prevent stack overflow.
int(opt.PushFilterIntoJoinLeftAndRight),
int(opt.PruneSelectCols),
// Needed to prevent execbuilder error.
// TODO(radu): the DistinctOn execution path should be fixed up so it
// supports distinct on an empty column set.
int(opt.EliminateDistinctOnNoColumns),
)
for i := opt.RuleName(1); i < opt.NumRuleNames; i++ {
if rand.Float64() < probability && !essentialRules.Contains(int(i)) {
o.disabledRules.Add(int(i))
}
}
o.NotifyOnMatchedRule(func(ruleName opt.RuleName) bool {
if o.disabledRules.Contains(int(ruleName)) {
log.Infof(o.evalCtx.Context, "disabled rule matched: %s", ruleName.String())
return false
}
return true
})
}
func (o *Optimizer) String() string {
return o.FormatMemo(FmtPretty)
}
// FormatMemo returns a string representation of the memo for testing
// and debugging. The given flags control which properties are shown.
func (o *Optimizer) FormatMemo(flags FmtFlags) string {
mf := makeMemoFormatter(o, flags)
return mf.format()
}
// RecomputeCost recomputes the cost of each expression in the lowest cost
// tree. It should be used in combination with the perturb-cost OptTester flag
// in order to update the query plan tree after optimization is complete with
// the real computed cost, not the perturbed cost.
func (o *Optimizer) RecomputeCost() {
var c coster
c.Init(o.evalCtx, o.mem, 0 /* perturbation */)
root := o.mem.RootExpr()
rootProps := o.mem.RootProps()
o.recomputeCostImpl(root, rootProps, &c)
}
func (o *Optimizer) recomputeCostImpl(
parent opt.Expr, parentProps *physical.Required, c Coster,
) memo.Cost {
cost := memo.Cost(0)
for i, n := 0, parent.ChildCount(); i < n; i++ {
child := parent.Child(i)
childProps := physical.MinRequired
switch t := child.(type) {
case memo.RelExpr:
childProps = t.RequiredPhysical()
}
cost += o.recomputeCostImpl(child, childProps, c)
}
switch t := parent.(type) {
case memo.RelExpr:
cost += c.ComputeCost(t, parentProps)
o.mem.ResetCost(t, cost)
}
return cost
}