-
Notifications
You must be signed in to change notification settings - Fork 3.8k
/
builder.go
573 lines (496 loc) · 19.9 KB
/
builder.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
// Copyright 2018 The Cockroach Authors.
//
// Use of this software is governed by the Business Source License
// included in the file licenses/BSL.txt.
//
// As of the Change Date specified in that file, in accordance with
// the Business Source License, use of this software will be governed
// by the Apache License, Version 2.0, included in the file
// licenses/APL.txt.
package optbuilder
import (
"context"
"strconv"
"github.com/cockroachdb/cockroach/pkg/clusterversion"
"github.com/cockroachdb/cockroach/pkg/sql/catalog/descpb"
"github.com/cockroachdb/cockroach/pkg/sql/catalog/typedesc"
"github.com/cockroachdb/cockroach/pkg/sql/delegate"
"github.com/cockroachdb/cockroach/pkg/sql/opt"
"github.com/cockroachdb/cockroach/pkg/sql/opt/cat"
"github.com/cockroachdb/cockroach/pkg/sql/opt/norm"
"github.com/cockroachdb/cockroach/pkg/sql/opt/optgen/exprgen"
"github.com/cockroachdb/cockroach/pkg/sql/pgwire/pgcode"
"github.com/cockroachdb/cockroach/pkg/sql/pgwire/pgerror"
"github.com/cockroachdb/cockroach/pkg/sql/privilege"
"github.com/cockroachdb/cockroach/pkg/sql/sem/eval"
"github.com/cockroachdb/cockroach/pkg/sql/sem/tree"
"github.com/cockroachdb/cockroach/pkg/sql/types"
"github.com/cockroachdb/cockroach/pkg/util/errorutil"
"github.com/cockroachdb/cockroach/pkg/util/errorutil/unimplemented"
"github.com/cockroachdb/cockroach/pkg/util/log"
"github.com/cockroachdb/errors"
"github.com/lib/pq/oid"
)
// Builder holds the context needed for building a memo structure from a SQL
// statement. Builder.Build() is the top-level function to perform this build
// process. As part of the build process, it performs name resolution and
// type checking on the expressions within Builder.stmt.
//
// The memo structure is the primary data structure used for query optimization,
// so building the memo is the first step required to optimize a query. The memo
// is maintained inside Builder.factory, which exposes methods to construct
// expression groups inside the memo. Once the expression tree has been built,
// the builder calls SetRoot on the memo to indicate the root memo group, as
// well as the set of physical properties (e.g., row and column ordering) that
// at least one expression in the root group must satisfy.
//
// A memo is essentially a compact representation of a forest of logically-
// equivalent query trees. Each tree is either a logical or a physical plan
// for executing the SQL query. After the build process is complete, the memo
// forest will contain exactly one tree: the logical query plan corresponding
// to the AST of the original SQL statement with some number of "normalization"
// transformations applied. Normalization transformations include heuristics
// such as predicate push-down that should always be applied. They do not
// include "exploration" transformations whose benefit must be evaluated with
// the optimizer's cost model (e.g., join reordering).
//
// See factory.go and memo.go inside the opt/xform package for more details
// about the memo structure.
type Builder struct {
// -- Control knobs --
//
// These fields can be set before calling Build to control various aspects of
// the building process.
// KeepPlaceholders is a control knob: if set, optbuilder will never replace
// a placeholder operator with its assigned value, even when it is available.
// This is used when re-preparing invalidated queries.
KeepPlaceholders bool
// SkipAOST is a control knob: if set, optbuilder will not attempt to
// validate AS OF SYSTEM TIME clauses. This is used when re-preparing
// a statement during session migration.
SkipAOST bool
// -- Results --
//
// These fields are set during the building process and can be used after
// Build is called.
// HadPlaceholders is set to true if we replaced any placeholders with their
// values.
HadPlaceholders bool
// DisableMemoReuse is set to true if we encountered a statement that is not
// safe to cache the memo for. This is the case for various DDL and SHOW
// statements.
DisableMemoReuse bool
factory *norm.Factory
stmt tree.Statement
ctx context.Context
// verboseTracing is set if expensive logging is enabled on ctx. If false,
// then some work can be omitted.
verboseTracing bool
semaCtx *tree.SemaContext
evalCtx *eval.Context
catalog cat.Catalog
scopeAlloc []scope
// stmtTree tracks the hierarchy of statements to ensure that multiple
// modifications to the same table cannot corrupt indexes (see #70731).
stmtTree statementTree
// ctes stores CTEs which may need to be built at the top-level.
ctes cteSources
// cteRefMap stores information about CTE-to-CTE references.
//
// For each WithID, the map stores a list of CTEs that refer to that WithID.
// Together, they form a directed acyclic graph.
cteRefMap map[opt.WithID]cteSources
// If set, the planner will skip checking for the SELECT privilege when
// resolving data sources (tables, views, etc). This is used when compiling
// views and the view SELECT privilege has already been checked. This should
// be used with care.
skipSelectPrivilegeChecks bool
// views contains a cache of views that have already been parsed, in case they
// are referenced multiple times in the same query.
views map[cat.View]*tree.Select
// sourceViews contains a map with all the views in the current data source
// chain. It is used to detect circular dependencies.
sourceViews map[string]struct{}
// subquery contains a pointer to the subquery which is currently being built
// (if any).
subquery *subquery
// If set, we are processing a view definition; in this case, catalog caches
// are disabled and certain statements (like mutations) are disallowed.
insideViewDef bool
// If set, we are processing a function definition; in this case catalog caches
// are disabled and only statements whitelisted are allowed.
insideFuncDef bool
// insideUDF is true when the current expressions are being built within a
// UDF.
insideUDF bool
// insideDataSource is true when we are processing a data source.
insideDataSource bool
// If set, we are collecting view dependencies in schemaDeps. This can only
// happen inside view/function definitions.
//
// When a view/function depends on another view/function, we only want to
// track the dependency on the inner view/function itself, and not the
// transitive dependencies (so trackSchemaDeps would be false inside that
// inner view/function).
trackSchemaDeps bool
schemaDeps opt.SchemaDeps
schemaFunctionDeps opt.SchemaFunctionDeps
schemaTypeDeps opt.SchemaTypeDeps
// If set, the data source names in the AST are rewritten to the fully
// qualified version (after resolution). Used to construct the strings for
// CREATE VIEW and CREATE TABLE AS queries.
// TODO(radu): modifying the AST in-place is hacky; we will need to switch to
// using AST annotations.
qualifyDataSourceNamesInAST bool
// isCorrelated is set to true if we already reported to telemetry that the
// query contains a correlated subquery.
isCorrelated bool
// subqueryNameIdx helps generate unique subquery names during star
// expansion.
subqueryNameIdx int
}
// New creates a new Builder structure initialized with the given
// parsed SQL statement.
func New(
ctx context.Context,
semaCtx *tree.SemaContext,
evalCtx *eval.Context,
catalog cat.Catalog,
factory *norm.Factory,
stmt tree.Statement,
) *Builder {
return &Builder{
factory: factory,
stmt: stmt,
ctx: ctx,
verboseTracing: log.ExpensiveLogEnabled(ctx, 2),
semaCtx: semaCtx,
evalCtx: evalCtx,
catalog: catalog,
}
}
// Build is the top-level function to build the memo structure inside
// Builder.factory from the parsed SQL statement in Builder.stmt. See the
// comment above the Builder type declaration for details.
//
// If any subroutines panic with a non-runtime error as part of the build
// process, the panic is caught here and returned as an error.
func (b *Builder) Build() (err error) {
log.VEventf(b.ctx, 1, "optbuilder start")
defer log.VEventf(b.ctx, 1, "optbuilder finish")
defer func() {
if r := recover(); r != nil {
// This code allows us to propagate errors without adding lots of checks
// for `if err != nil` throughout the construction code. This is only
// possible because the code does not update shared state and does not
// manipulate locks.
if ok, e := errorutil.ShouldCatch(r); ok {
err = e
log.VEventf(b.ctx, 1, "%v", err)
} else {
panic(r)
}
}
}()
// TODO (rohany): We shouldn't be modifying the semaCtx passed to the builder
// but we unfortunately rely on mutation to the semaCtx. We modify the input
// semaCtx during building of opaque statements, and then expect that those
// mutations are visible on the planner's semaCtx.
// Hijack the input TypeResolver in the semaCtx to record all of the user
// defined types that we resolve while building this query.
existingResolver := b.semaCtx.TypeResolver
// Ensure that the original TypeResolver is reset after.
defer func() { b.semaCtx.TypeResolver = existingResolver }()
typeTracker := &optTrackingTypeResolver{
res: b.semaCtx.TypeResolver,
metadata: b.factory.Metadata(),
}
b.semaCtx.TypeResolver = typeTracker
// Special case for CannedOptPlan.
if canned, ok := b.stmt.(*tree.CannedOptPlan); ok {
b.factory.DisableOptimizations()
_, err := exprgen.Build(b.ctx, b.catalog, b.factory, canned.Plan)
return err
}
// Build the memo, and call SetRoot on the memo to indicate the root group
// and physical properties.
outScope := b.buildStmtAtRoot(b.stmt, nil /* desiredTypes */)
physical := outScope.makePhysicalProps()
b.factory.Memo().SetRoot(outScope.expr, physical)
return nil
}
// unimplementedWithIssueDetailf formats according to a format
// specifier and returns a Postgres error with the
// pg code FeatureNotSupported.
func unimplementedWithIssueDetailf(issue int, detail, format string, args ...interface{}) error {
return unimplemented.NewWithIssueDetailf(issue, detail, format, args...)
}
// buildStmtAtRoot builds a statement, beginning a new conceptual query
// "context". This is used at the top-level of every statement, and inside
// EXPLAIN, CREATE VIEW, CREATE TABLE AS.
func (b *Builder) buildStmtAtRoot(stmt tree.Statement, desiredTypes []*types.T) (outScope *scope) {
// A "root" statement cannot refer to anything from an enclosing query, so
// we always start with an empty scope.
inScope := b.allocScope()
return b.buildStmtAtRootWithScope(stmt, desiredTypes, inScope)
}
// buildStmtAtRootWithScope is similar to buildStmtAtRoot, but allows a scope to
// be provided. This is used at the top-level of a statement, that has a new
// context but can refer to variables that are declared outside the statement,
// like a statement within a UDF body that can reference UDF parameters.
func (b *Builder) buildStmtAtRootWithScope(
stmt tree.Statement, desiredTypes []*types.T, inScope *scope,
) (outScope *scope) {
inScope.atRoot = true
// Push a new statement onto the statement tree.
b.stmtTree.Push()
defer b.stmtTree.Pop()
// Save any CTEs above the boundary.
prevCTEs := b.ctes
b.ctes = nil
outScope = b.buildStmt(stmt, desiredTypes, inScope)
// Build With operators for any CTEs hoisted to the top level.
outScope.expr = b.buildWiths(outScope.expr, b.ctes)
b.ctes = prevCTEs
return outScope
}
// buildStmt builds a set of memo groups that represent the given SQL
// statement.
//
// NOTE: The following descriptions of the inScope parameter and outScope
//
// return value apply for all buildXXX() functions in this directory.
// Note that some buildXXX() functions pass outScope as a parameter
// rather than a return value so its scopeColumns can be built up
// incrementally across several function calls.
//
// inScope - This parameter contains the name bindings that are visible for this
// statement/expression (e.g., passed in from an enclosing statement).
//
// outScope - This return value contains the newly bound variables that will be
// visible to enclosing statements, as well as a pointer to any
// "parent" scope that is still visible. The top-level memo expression
// for the built statement/expression is returned in outScope.expr.
func (b *Builder) buildStmt(
stmt tree.Statement, desiredTypes []*types.T, inScope *scope,
) (outScope *scope) {
if b.insideViewDef {
// A blocklist of statements that can't be used from inside a view.
switch stmt := stmt.(type) {
case *tree.Delete, *tree.Insert, *tree.Update, *tree.CreateTable, *tree.CreateView,
*tree.Split, *tree.Unsplit, *tree.Relocate, *tree.RelocateRange,
*tree.ControlJobs, *tree.ControlSchedules, *tree.CancelQueries, *tree.CancelSessions,
*tree.CreateRoutine:
panic(pgerror.Newf(
pgcode.Syntax, "%s cannot be used inside a view definition", stmt.StatementTag(),
))
}
}
// An allowlist of statements supported for user defined function.
if b.insideFuncDef {
switch stmt := stmt.(type) {
case *tree.Select, tree.SelectStatement:
case *tree.Insert, *tree.Update, *tree.Delete:
activeVersion := b.evalCtx.Settings.Version.ActiveVersion(b.ctx)
if !activeVersion.IsActive(clusterversion.V23_2) {
panic(unimplemented.Newf("user-defined functions", "%s usage inside a function definition is not supported until version 23.2", stmt.StatementTag()))
}
case *tree.Call:
activeVersion := b.evalCtx.Settings.Version.ActiveVersion(b.ctx)
if !activeVersion.IsActive(clusterversion.V24_1) {
panic(unimplemented.Newf("user-defined functions", "%s usage inside a function definition is not supported until version 23.2", stmt.StatementTag()))
}
default:
panic(unimplemented.Newf("user-defined functions", "%s usage inside a function definition", stmt.StatementTag()))
}
}
switch stmt := stmt.(type) {
case *tree.Select:
return b.buildSelect(stmt, noLocking, desiredTypes, inScope)
case *tree.ParenSelect:
return b.buildSelect(stmt.Select, noLocking, desiredTypes, inScope)
case *tree.Delete:
return b.processWiths(stmt.With, inScope, func(inScope *scope) *scope {
return b.buildDelete(stmt, inScope)
})
case *tree.Insert:
return b.processWiths(stmt.With, inScope, func(inScope *scope) *scope {
return b.buildInsert(stmt, inScope)
})
case *tree.Update:
return b.processWiths(stmt.With, inScope, func(inScope *scope) *scope {
return b.buildUpdate(stmt, inScope)
})
case *tree.CreateTable:
return b.buildCreateTable(stmt, inScope)
case *tree.CreateView:
return b.buildCreateView(stmt, inScope)
case *tree.CreateRoutine:
return b.buildCreateFunction(stmt, inScope)
case *tree.Call:
return b.buildProcedure(stmt, inScope)
case *tree.Explain:
return b.buildExplain(stmt, inScope)
case *tree.ExplainAnalyze:
// This statement should have been handled by the executor.
panic(pgerror.Newf(pgcode.Syntax, "EXPLAIN ANALYZE can only be used as a top-level statement"))
case *tree.ShowTraceForSession:
return b.buildShowTrace(stmt, inScope)
case *tree.Split:
return b.buildAlterTableSplit(stmt, inScope)
case *tree.Unsplit:
return b.buildAlterTableUnsplit(stmt, inScope)
case *tree.Relocate:
return b.buildAlterTableRelocate(stmt, inScope)
case *tree.RelocateRange:
return b.buildAlterRangeRelocate(stmt, inScope)
case *tree.ControlJobs:
return b.buildControlJobs(stmt, inScope)
case *tree.ControlSchedules:
return b.buildControlSchedules(stmt, inScope)
case *tree.ShowCompletions:
return b.buildShowCompletions(stmt, inScope)
case *tree.CancelQueries:
return b.buildCancelQueries(stmt, inScope)
case *tree.CancelSessions:
return b.buildCancelSessions(stmt, inScope)
case *tree.CreateStats:
return b.buildCreateStatistics(stmt, inScope)
case *tree.Analyze:
// ANALYZE is syntactic sugar for CREATE STATISTICS. We add AS OF SYSTEM
// TIME '-0.001ms' to trigger use of inconsistent scans. This prevents
// GC TTL errors during ANALYZE. See the sql.stats.max_timestamp_age
// setting.
return b.buildCreateStatistics(&tree.CreateStats{
Table: stmt.Table,
Options: tree.CreateStatsOptions{
AsOf: tree.AsOfClause{
Expr: tree.NewStrVal("-0.001ms"),
},
},
}, inScope)
case *tree.Export:
return b.buildExport(stmt, inScope)
default:
// See if this statement can be rewritten to another statement using the
// delegate functionality.
newStmt, err := delegate.TryDelegate(
b.ctx,
b.catalog,
b.evalCtx,
stmt,
b.qualifyDataSourceNamesInAST,
)
if err != nil {
panic(err)
}
if newStmt != nil {
// Many delegate implementations resolve objects. It would be tedious to
// register all those dependencies with the metadata (for cache
// invalidation). We don't care about caching plans for these statements.
b.DisableMemoReuse = true
return b.buildStmt(newStmt, desiredTypes, inScope)
}
// See if we have an opaque handler registered for this statement type.
if outScope := b.tryBuildOpaque(stmt, inScope); outScope != nil {
// The opaque handler may resolve objects; we don't care about caching
// plans for these statements.
b.DisableMemoReuse = true
return outScope
}
panic(errors.AssertionFailedf("unexpected statement: %T", stmt))
}
}
func (b *Builder) allocScope() *scope {
if len(b.scopeAlloc) == 0 {
// scope is relatively large (~250 bytes), so only allocate in small
// chunks.
b.scopeAlloc = make([]scope, 4)
}
r := &b.scopeAlloc[0]
b.scopeAlloc = b.scopeAlloc[1:]
r.builder = b
return r
}
// trackReferencedColumnForViews is used to add a column to the view's
// dependencies. This should be called whenever a column reference is made in a
// view query.
func (b *Builder) trackReferencedColumnForViews(col *scopeColumn) {
if b.trackSchemaDeps {
for i := range b.schemaDeps {
dep := b.schemaDeps[i]
if ord, ok := dep.ColumnIDToOrd[col.id]; ok {
dep.ColumnOrdinals.Add(ord)
}
b.schemaDeps[i] = dep
}
}
}
func (b *Builder) maybeTrackRegclassDependenciesForViews(texpr tree.TypedExpr) {
if b.trackSchemaDeps {
if texpr != nil && texpr.ResolvedType().Identical(types.RegClass) {
// We do not add a dependency if the RegClass Expr contains variables,
// we cannot resolve the variables in this context. This matches Postgres
// behavior.
if !tree.ContainsVars(texpr) {
regclass, err := eval.Expr(b.ctx, b.evalCtx, texpr)
if err != nil {
panic(err)
}
var ds cat.DataSource
// Regclass can contain an ID or a string.
// Ex. nextval('s'::regclass) and nextval(59::regclass) are both valid.
id, err := strconv.Atoi(regclass.String())
if err == nil {
ds, _, err = b.catalog.ResolveDataSourceByID(b.ctx, cat.Flags{}, cat.StableID(id))
if err != nil {
panic(err)
}
} else {
tn := tree.MakeUnqualifiedTableName(tree.Name(regclass.String()))
ds, _, _ = b.resolveDataSource(&tn, privilege.SELECT)
}
b.schemaDeps = append(b.schemaDeps, opt.SchemaDep{
DataSource: ds,
})
}
}
}
}
func (b *Builder) maybeTrackUserDefinedTypeDepsForViews(texpr tree.TypedExpr) {
if b.trackSchemaDeps {
if texpr != nil && texpr.ResolvedType().UserDefined() {
typedesc.GetTypeDescriptorClosure(texpr.ResolvedType()).ForEach(func(id descpb.ID) {
b.schemaTypeDeps.Add(int(id))
})
}
}
}
// optTrackingTypeResolver is a wrapper around a TypeReferenceResolver that
// remembers all of the resolved types in the provided Metadata.
type optTrackingTypeResolver struct {
res tree.TypeReferenceResolver
metadata *opt.Metadata
}
// ResolveType implements the TypeReferenceResolver interface.
func (o *optTrackingTypeResolver) ResolveType(
ctx context.Context, name *tree.UnresolvedObjectName,
) (*types.T, error) {
typ, err := o.res.ResolveType(ctx, name)
if err != nil {
return nil, err
}
o.metadata.AddUserDefinedType(typ, name)
return typ, nil
}
// ResolveTypeByOID implements the tree.TypeResolver interface.
func (o *optTrackingTypeResolver) ResolveTypeByOID(
ctx context.Context, oid oid.Oid,
) (*types.T, error) {
typ, err := o.res.ResolveTypeByOID(ctx, oid)
if err != nil {
return nil, err
}
o.metadata.AddUserDefinedType(typ, nil /* name */)
return typ, nil
}