-
Notifications
You must be signed in to change notification settings - Fork 3.8k
/
flow.go
713 lines (636 loc) · 22.8 KB
/
flow.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
// Copyright 2016 The Cockroach Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
// implied. See the License for the specific language governing
// permissions and limitations under the License.
package distsqlrun
import (
"context"
"sync"
"github.com/cockroachdb/cockroach/pkg/gossip"
"github.com/cockroachdb/cockroach/pkg/internal/client"
"github.com/cockroachdb/cockroach/pkg/jobs"
"github.com/cockroachdb/cockroach/pkg/roachpb"
"github.com/cockroachdb/cockroach/pkg/rpc/nodedialer"
"github.com/cockroachdb/cockroach/pkg/settings/cluster"
"github.com/cockroachdb/cockroach/pkg/sql/distsqlpb"
"github.com/cockroachdb/cockroach/pkg/sql/pgwire/pgerror"
"github.com/cockroachdb/cockroach/pkg/sql/sem/tree"
"github.com/cockroachdb/cockroach/pkg/sql/sessiondata"
"github.com/cockroachdb/cockroach/pkg/sql/sqlbase"
"github.com/cockroachdb/cockroach/pkg/sql/sqlutil"
"github.com/cockroachdb/cockroach/pkg/storage/diskmap"
"github.com/cockroachdb/cockroach/pkg/storage/storagebase"
"github.com/cockroachdb/cockroach/pkg/util/contextutil"
"github.com/cockroachdb/cockroach/pkg/util/log"
"github.com/cockroachdb/cockroach/pkg/util/mon"
"github.com/cockroachdb/cockroach/pkg/util/stop"
"github.com/opentracing/opentracing-go"
"github.com/pkg/errors"
)
// FlowCtx encompasses the contexts needed for various flow components.
type FlowCtx struct {
log.AmbientContext
// TODO(radu): FlowCtx should store a pointer to the server's ServerConfig
// instead of having copies of most of its fields.
Settings *cluster.Settings
RuntimeStats RuntimeStats
stopper *stop.Stopper
// id is a unique identifier for a remote flow. It is mainly used as a key
// into the flowRegistry. Since local flows do not need to exist in the flow
// registry (no inbound stream connections need to be performed), they are not
// assigned ids. This is done for performance reasons, as local flows are
// more likely to be dominated by setup time.
id distsqlpb.FlowID
// EvalCtx is used by all the processors in the flow to evaluate expressions.
// Processors that intend to evaluate expressions with this EvalCtx should
// get a copy with NewEvalCtx instead of storing a pointer to this one
// directly (since some processor mutate the EvalContext they use).
//
// TODO(andrei): Get rid of this field and pass a non-shared EvalContext to
// cores of the processors that need it.
EvalCtx *tree.EvalContext
// nodeDialer is used by the Outboxes that may be present in the
// flow for connecting to other nodes.
nodeDialer *nodedialer.Dialer
// Gossip is used by the sample aggregator to notify nodes of a new statistic.
Gossip *gossip.Gossip
// The transaction in which kv operations performed by processors in the flow
// must be performed. Processors in the Flow will use this txn concurrently.
// This field is generally not nil, except for flows that don't run in a
// higher-level txn (like backfills).
txn *client.Txn
// ClientDB is a handle to the cluster. Used for performing requests outside
// of the transaction in which the flow's query is running.
ClientDB *client.DB
// Executor can be used to run "internal queries". Note that Flows also have
// access to an executor in the EvalContext. That one is "session bound"
// whereas this one isn't.
executor sqlutil.InternalExecutor
// LeaseManager is a *sql.LeaseManager. It's returned as an `interface{}`
// due to package dependency cycles
LeaseManager interface{}
// nodeID is the ID of the node on which the processors using this FlowCtx
// run.
nodeID roachpb.NodeID
testingKnobs TestingKnobs
// TempStorage is used by some DistSQL processors to store Rows when the
// working set is larger than can be stored in memory.
// This is not supposed to be used as a general engine.Engine and thus
// one should sparingly use the set of features offered by it.
TempStorage diskmap.Factory
// BulkAdder is used by backfill/bulk-ingestion processors to ingest large
// amounts of data in bulk as SSTs.
BulkAdder storagebase.BulkAdderFactory
// diskMonitor is used to monitor temporary storage disk usage.
diskMonitor *mon.BytesMonitor
// JobRegistry is used during backfill to load jobs which keep state.
JobRegistry *jobs.Registry
// traceKV is true if KV tracing was requested by the session.
traceKV bool
// local is true if this flow is being run as part of a local-only query.
local bool
}
// NewEvalCtx returns a modifiable copy of the FlowCtx's EvalContext.
// Processors should use this method any time they need to store a pointer to
// the EvalContext, since processors may mutate the EvalContext. Specifically,
// every processor that runs ProcOutputHelper.Init must pass in a modifiable
// EvalContext, since it stores that EvalContext in its exprHelpers and mutates
// them at runtime to ensure expressions are evaluated with the correct indexed
// var context.
func (ctx *FlowCtx) NewEvalCtx() *tree.EvalContext {
return ctx.EvalCtx.Copy()
}
// TestingKnobs returns the distsql testing knobs for this flow context.
func (ctx *FlowCtx) TestingKnobs() TestingKnobs {
return ctx.testingKnobs
}
// Stopper returns the stopper for this flowCtx.
func (ctx *FlowCtx) Stopper() *stop.Stopper {
return ctx.stopper
}
type flowStatus int
// Flow status indicators.
const (
FlowNotStarted flowStatus = iota
FlowRunning
FlowFinished
)
type startable interface {
start(ctx context.Context, wg *sync.WaitGroup, ctxCancel context.CancelFunc)
}
// Flow represents a flow which consists of processors and streams.
type Flow struct {
FlowCtx
flowRegistry *flowRegistry
// processors contains a subset of the processors in the flow - the ones that
// run in their own goroutines. Some processors that implement RowSource are
// scheduled to run in their consumer's goroutine; those are not present here.
processors []Processor
// startables are entities that must be started when the flow starts;
// currently these are outboxes and routers.
startables []startable
// syncFlowConsumer is a special outbox which instead of sending rows to
// another host, returns them directly (as a result to a SetupSyncFlow RPC,
// or to the local host).
syncFlowConsumer RowReceiver
localProcessors []LocalProcessor
// startedGoroutines specifies whether this flow started any goroutines. This
// is used in Wait() to avoid the overhead of waiting for non-existent
// goroutines.
startedGoroutines bool
localStreams map[distsqlpb.StreamID]RowReceiver
// inboundStreams are streams that receive data from other hosts; this map
// is to be passed to flowRegistry.RegisterFlow.
inboundStreams map[distsqlpb.StreamID]*inboundStreamInfo
// waitGroup is used to wait for async components of the flow:
// - processors
// - inbound streams
// - outboxes
waitGroup sync.WaitGroup
doneFn func()
status flowStatus
// Cancel function for ctx. Call this to cancel the flow (safe to be called
// multiple times).
ctxCancel context.CancelFunc
ctxDone <-chan struct{}
// spec is the request that produced this flow. Only used for debugging.
spec *distsqlpb.FlowSpec
}
func newFlow(
flowCtx FlowCtx,
flowReg *flowRegistry,
syncFlowConsumer RowReceiver,
localProcessors []LocalProcessor,
) *Flow {
f := &Flow{
FlowCtx: flowCtx,
flowRegistry: flowReg,
syncFlowConsumer: syncFlowConsumer,
localProcessors: localProcessors,
}
f.status = FlowNotStarted
return f
}
// setupInboundStream adds a stream to the stream map (inboundStreams or
// localStreams).
func (f *Flow) setupInboundStream(
ctx context.Context, spec distsqlpb.StreamEndpointSpec, receiver RowReceiver,
) error {
sid := spec.StreamID
switch spec.Type {
case distsqlpb.StreamEndpointSpec_SYNC_RESPONSE:
return errors.Errorf("inbound stream of type SYNC_RESPONSE")
case distsqlpb.StreamEndpointSpec_REMOTE:
if _, found := f.inboundStreams[sid]; found {
return errors.Errorf("inbound stream %d has multiple consumers", sid)
}
if f.inboundStreams == nil {
f.inboundStreams = make(map[distsqlpb.StreamID]*inboundStreamInfo)
}
if log.V(2) {
log.Infof(ctx, "set up inbound stream %d", sid)
}
f.inboundStreams[sid] = &inboundStreamInfo{receiver: receiver, waitGroup: &f.waitGroup}
case distsqlpb.StreamEndpointSpec_LOCAL:
if _, found := f.localStreams[sid]; found {
return errors.Errorf("local stream %d has multiple consumers", sid)
}
if f.localStreams == nil {
f.localStreams = make(map[distsqlpb.StreamID]RowReceiver)
}
f.localStreams[sid] = receiver
default:
return errors.Errorf("invalid stream type %d", spec.Type)
}
return nil
}
// setupOutboundStream sets up an output stream; if the stream is local, the
// RowChannel is looked up in the localStreams map; otherwise an outgoing
// mailbox is created.
func (f *Flow) setupOutboundStream(spec distsqlpb.StreamEndpointSpec) (RowReceiver, error) {
sid := spec.StreamID
switch spec.Type {
case distsqlpb.StreamEndpointSpec_SYNC_RESPONSE:
return f.syncFlowConsumer, nil
case distsqlpb.StreamEndpointSpec_REMOTE:
outbox := newOutbox(&f.FlowCtx, spec.TargetNodeID, f.id, sid)
f.startables = append(f.startables, outbox)
return outbox, nil
case distsqlpb.StreamEndpointSpec_LOCAL:
rowChan, found := f.localStreams[sid]
if !found {
return nil, errors.Errorf("unconnected inbound stream %d", sid)
}
// Once we "connect" a stream, we set the value in the map to nil.
if rowChan == nil {
return nil, errors.Errorf("stream %d has multiple connections", sid)
}
f.localStreams[sid] = nil
return rowChan, nil
default:
return nil, errors.Errorf("invalid stream type %d", spec.Type)
}
}
// setupRouter initializes a router and the outbound streams.
//
// Pass-through routers are not supported; they should be handled separately.
func (f *Flow) setupRouter(spec *distsqlpb.OutputRouterSpec) (router, error) {
streams := make([]RowReceiver, len(spec.Streams))
for i := range spec.Streams {
var err error
streams[i], err = f.setupOutboundStream(spec.Streams[i])
if err != nil {
return nil, err
}
}
return makeRouter(spec, streams)
}
func checkNumInOut(inputs []RowSource, outputs []RowReceiver, numIn, numOut int) error {
if len(inputs) != numIn {
return errors.Errorf("expected %d input(s), got %d", numIn, len(inputs))
}
if len(outputs) != numOut {
return errors.Errorf("expected %d output(s), got %d", numOut, len(outputs))
}
return nil
}
func (f *Flow) makeProcessor(
ctx context.Context, ps *distsqlpb.ProcessorSpec, inputs []RowSource,
) (Processor, error) {
if len(ps.Output) != 1 {
return nil, errors.Errorf("only single-output processors supported")
}
var output RowReceiver
spec := &ps.Output[0]
if spec.Type == distsqlpb.OutputRouterSpec_PASS_THROUGH {
// There is no entity that corresponds to a pass-through router - we just
// use its output stream directly.
if len(spec.Streams) != 1 {
return nil, errors.Errorf("expected one stream for passthrough router")
}
var err error
output, err = f.setupOutboundStream(spec.Streams[0])
if err != nil {
return nil, err
}
} else {
r, err := f.setupRouter(spec)
if err != nil {
return nil, err
}
output = r
f.startables = append(f.startables, r)
}
// No output router or channel is safe to push rows to, unless the row won't
// be modified later by the thing that created it. No processor creates safe
// rows, either. So, we always wrap our outputs in copyingRowReceivers. These
// outputs aren't used at all if they are processors that get fused to their
// upstreams, though, which means that copyingRowReceivers are only used on
// non-fused processors like the output routers.
output = ©ingRowReceiver{RowReceiver: output}
outputs := []RowReceiver{output}
proc, err := newProcessor(ctx, &f.FlowCtx, ps.ProcessorID, &ps.Core, &ps.Post, inputs, outputs, f.localProcessors)
if err != nil {
return nil, err
}
// Initialize any routers (the setupRouter case above) and outboxes.
types := proc.OutputTypes()
rowRecv := output.(*copyingRowReceiver).RowReceiver
switch o := rowRecv.(type) {
case router:
o.init(ctx, &f.FlowCtx, types)
case *outbox:
o.init(types)
}
return proc, nil
}
// setupInputSyncs populates a slice of input syncs, one for each Processor in
// f.Spec, each containing one RowSource for each input to that Processor.
func (f *Flow) setupInputSyncs(ctx context.Context) ([][]RowSource, error) {
inputSyncs := make([][]RowSource, len(f.spec.Processors))
for pIdx, ps := range f.spec.Processors {
for _, is := range ps.Input {
if len(is.Streams) == 0 {
return nil, errors.Errorf("input sync with no streams")
}
var sync RowSource
switch is.Type {
case distsqlpb.InputSyncSpec_UNORDERED:
mrc := &RowChannel{}
mrc.InitWithNumSenders(is.ColumnTypes, len(is.Streams))
for _, s := range is.Streams {
if err := f.setupInboundStream(ctx, s, mrc); err != nil {
return nil, err
}
}
sync = mrc
case distsqlpb.InputSyncSpec_ORDERED:
// Ordered synchronizer: create a RowChannel for each input.
streams := make([]RowSource, len(is.Streams))
for i, s := range is.Streams {
rowChan := &RowChannel{}
rowChan.InitWithNumSenders(is.ColumnTypes, 1)
if err := f.setupInboundStream(ctx, s, rowChan); err != nil {
return nil, err
}
streams[i] = rowChan
}
var err error
sync, err = makeOrderedSync(distsqlpb.ConvertToColumnOrdering(is.Ordering), f.EvalCtx, streams)
if err != nil {
return nil, err
}
default:
return nil, errors.Errorf("unsupported input sync type %s", is.Type)
}
inputSyncs[pIdx] = append(inputSyncs[pIdx], sync)
}
}
return inputSyncs, nil
}
// setupProcessors creates processors for each spec in f.spec, fusing processors
// together when possible (when an upstream processor implements RowSource, only
// has one output, and that output is a simple PASS_THROUGH output), and
// populates f.processors with all created processors that weren't fused to and
// thus need their own goroutine.
func (f *Flow) setupProcessors(ctx context.Context, inputSyncs [][]RowSource) error {
f.processors = make([]Processor, 0, len(f.spec.Processors))
// Populate f.processors: see which processors need their own goroutine and
// which are fused with their consumer.
for i := range f.spec.Processors {
pspec := &f.spec.Processors[i]
p, err := f.makeProcessor(ctx, pspec, inputSyncs[i])
if err != nil {
return err
}
// fuse will return true if we managed to fuse p, false otherwise.
fuse := func() bool {
// If the processor implements RowSource try to hook it up directly to the
// input of a later processor.
source, ok := p.(RowSource)
if !ok {
return false
}
if len(pspec.Output) != 1 {
// The processor has more than one output, use the normal routing
// machinery.
return false
}
ospec := &pspec.Output[0]
if ospec.Type != distsqlpb.OutputRouterSpec_PASS_THROUGH {
// The output is not pass-through and thus is being sent through a
// router.
return false
}
if len(ospec.Streams) != 1 {
// The output contains more than one stream.
return false
}
for pIdx, ps := range f.spec.Processors {
if pIdx <= i {
// Skip processors which have already been created.
continue
}
for inIdx, in := range ps.Input {
// Look for "simple" inputs: an unordered input (which, by definition,
// doesn't require an ordered synchronizer), with a single input stream
// (which doesn't require a multiplexed RowChannel).
if in.Type != distsqlpb.InputSyncSpec_UNORDERED {
continue
}
if len(in.Streams) != 1 {
continue
}
if in.Streams[0].StreamID != ospec.Streams[0].StreamID {
continue
}
// We found a consumer to fuse our proc to.
inputSyncs[pIdx][inIdx] = source
return true
}
}
return false
}
if !fuse() {
f.processors = append(f.processors, p)
}
}
return nil
}
func (f *Flow) setup(ctx context.Context, spec *distsqlpb.FlowSpec) error {
f.spec = spec
// First step: setup the input synchronizers for all processors.
inputSyncs, err := f.setupInputSyncs(ctx)
if err != nil {
return err
}
if f.EvalCtx.SessionData.Vectorize != sessiondata.VectorizeOff {
err := f.setupVectorized(ctx)
if err == nil {
log.VEventf(ctx, 1, "vectorized flow.")
return nil
}
// Vectorization attempt failed with an error.
if f.EvalCtx.SessionData.Vectorize == sessiondata.VectorizeAlways {
// Only return the error if we are running a local planNode that is an
// exception to the rule that failures to set up a vectorized flow when
// experimental_vectorize=always should return an error.
var isException bool
if len(spec.Processors) == 1 &&
spec.Processors[0].Core.LocalPlanNode != nil {
rsidx := spec.Processors[0].Core.LocalPlanNode.RowSourceIdx
if rsidx != nil {
lp := f.localProcessors[*rsidx]
if z, ok := lp.(vectorizeAlwaysException); ok {
isException = z.IsException()
}
}
}
if !isException {
return err
}
}
log.VEventf(ctx, 1, "failed to vectorize: %s", err)
}
// Then, populate f.processors.
return f.setupProcessors(ctx, inputSyncs)
}
// startInternal starts the flow. All processors are started, each in their own
// goroutine. The caller must forward any returned error to syncFlowConsumer if
// set.
func (f *Flow) startInternal(ctx context.Context, doneFn func()) error {
f.doneFn = doneFn
log.VEventf(
ctx, 1, "starting (%d processors, %d startables)", len(f.processors), len(f.startables),
)
ctx, f.ctxCancel = contextutil.WithCancel(ctx)
f.ctxDone = ctx.Done()
// Only register the flow if there will be inbound stream connections that
// need to look up this flow in the flow registry.
if !f.isLocal() {
// Once we call RegisterFlow, the inbound streams become accessible; we must
// set up the WaitGroup counter before.
// The counter will be further incremented below to account for the
// processors.
f.waitGroup.Add(len(f.inboundStreams))
if err := f.flowRegistry.RegisterFlow(
ctx, f.id, f, f.inboundStreams, settingFlowStreamTimeout.Get(&f.FlowCtx.Settings.SV),
); err != nil {
return err
}
}
f.status = FlowRunning
if log.V(1) {
log.Infof(ctx, "registered flow %s", f.id.Short())
}
for _, s := range f.startables {
s.start(ctx, &f.waitGroup, f.ctxCancel)
}
for i := 0; i < len(f.processors); i++ {
f.waitGroup.Add(1)
go func(i int) {
f.processors[i].Run(ctx)
f.waitGroup.Done()
}(i)
}
f.startedGoroutines = len(f.startables) > 0 || len(f.processors) > 0 || !f.isLocal()
return nil
}
// isLocal returns whether this flow does not have any remote execution.
func (f *Flow) isLocal() bool {
return len(f.inboundStreams) == 0
}
// Start starts the flow. Processors run asynchronously in their own goroutines.
// Wait() needs to be called to wait for the flow to finish.
// See Run() for a synchronous version.
//
// Generally if errors are encountered during the setup part, they're returned.
// But if the flow is a synchronous one, then no error is returned; instead the
// setup error is pushed to the syncFlowConsumer. In this case, a subsequent
// call to f.Wait() will not block.
func (f *Flow) Start(ctx context.Context, doneFn func()) error {
if err := f.startInternal(ctx, doneFn); err != nil {
// For sync flows, the error goes to the consumer.
if f.syncFlowConsumer != nil {
f.syncFlowConsumer.Push(nil /* row */, &ProducerMetadata{Err: err})
f.syncFlowConsumer.ProducerDone()
return nil
}
return err
}
return nil
}
// Run runs the flow to completion. The last processor is run in the current
// goroutine; others may run in different goroutines depending on how the flow
// was configured.
// f.Wait() is called internally, so the call blocks until all the flow's
// goroutines are done.
// The caller needs to call f.Cleanup().
func (f *Flow) Run(ctx context.Context, doneFn func()) error {
defer f.Wait()
// We'll take care of the last processor in particular.
var headProc Processor
if len(f.processors) == 0 {
return pgerror.NewAssertionErrorf("no processors in flow")
}
headProc = f.processors[len(f.processors)-1]
f.processors = f.processors[:len(f.processors)-1]
if err := f.startInternal(ctx, doneFn); err != nil {
// For sync flows, the error goes to the consumer.
if f.syncFlowConsumer != nil {
f.syncFlowConsumer.Push(nil /* row */, &ProducerMetadata{Err: err})
f.syncFlowConsumer.ProducerDone()
return nil
}
return err
}
headProc.Run(ctx)
return nil
}
// Wait waits for all the goroutines for this flow to exit. If the context gets
// canceled before all goroutines exit, it calls f.cancel().
func (f *Flow) Wait() {
if !f.startedGoroutines {
return
}
waitChan := make(chan struct{})
go func() {
f.waitGroup.Wait()
close(waitChan)
}()
select {
case <-f.ctxDone:
f.cancel()
<-waitChan
case <-waitChan:
// Exit normally
}
}
// Releasable is an interface for objects than can be Released back into a
// memory pool when finished.
type Releasable interface {
// Release allows this object to be returned to a memory pool. Objects must
// not be used after Release is called.
Release()
}
// Cleanup should be called when the flow completes (after all processors and
// mailboxes exited).
func (f *Flow) Cleanup(ctx context.Context) {
if f.status == FlowFinished {
panic("flow cleanup called twice")
}
// This closes the monitor opened in ServerImpl.setupFlow.
f.EvalCtx.Stop(ctx)
for _, p := range f.processors {
if d, ok := p.(Releasable); ok {
d.Release()
}
}
if log.V(1) {
log.Infof(ctx, "cleaning up")
}
sp := opentracing.SpanFromContext(ctx)
// Local flows do not get registered.
if !f.isLocal() && f.status != FlowNotStarted {
f.flowRegistry.UnregisterFlow(f.id)
}
f.status = FlowFinished
f.ctxCancel()
f.doneFn()
f.doneFn = nil
sp.Finish()
}
// cancel iterates through all unconnected streams of this flow and marks them canceled.
// This function is called in Wait() after the associated context has been canceled.
// In order to cancel a flow, call f.ctxCancel() instead of this function.
//
// For a detailed description of the distsql query cancellation mechanism,
// read docs/RFCS/query_cancellation.md.
func (f *Flow) cancel() {
// If the flow is local, there are no inbound streams to cancel.
if f.isLocal() {
return
}
f.flowRegistry.Lock()
timedOutReceivers := f.flowRegistry.cancelPendingStreamsLocked(f.id)
f.flowRegistry.Unlock()
for _, receiver := range timedOutReceivers {
go func(receiver RowReceiver) {
// Stream has yet to be started; send an error to its
// receiver and prevent it from being connected.
receiver.Push(
nil, /* row */
&ProducerMetadata{Err: sqlbase.QueryCanceledError})
receiver.ProducerDone()
}(receiver)
}
}