-
Notifications
You must be signed in to change notification settings - Fork 3.8k
/
replica_proposal.go
794 lines (706 loc) · 28.5 KB
/
replica_proposal.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
// Copyright 2016 The Cockroach Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
// implied. See the License for the specific language governing
// permissions and limitations under the License.
package storage
import (
"context"
"fmt"
"os"
"path/filepath"
"strings"
"time"
"unsafe"
"github.com/kr/pretty"
"github.com/opentracing/opentracing-go"
"github.com/pkg/errors"
"golang.org/x/time/rate"
"github.com/cockroachdb/cockroach/pkg/keys"
"github.com/cockroachdb/cockroach/pkg/roachpb"
"github.com/cockroachdb/cockroach/pkg/settings/cluster"
"github.com/cockroachdb/cockroach/pkg/storage/batcheval/result"
"github.com/cockroachdb/cockroach/pkg/storage/engine"
"github.com/cockroachdb/cockroach/pkg/storage/engine/enginepb"
"github.com/cockroachdb/cockroach/pkg/storage/rditer"
"github.com/cockroachdb/cockroach/pkg/storage/storagebase"
"github.com/cockroachdb/cockroach/pkg/storage/storagepb"
"github.com/cockroachdb/cockroach/pkg/util"
"github.com/cockroachdb/cockroach/pkg/util/hlc"
"github.com/cockroachdb/cockroach/pkg/util/log"
"github.com/cockroachdb/cockroach/pkg/util/timeutil"
"github.com/cockroachdb/cockroach/pkg/util/tracing"
)
// ProposalData is data about a command which allows it to be
// evaluated, proposed to raft, and for the result of the command to
// be returned to the caller.
type ProposalData struct {
// The caller's context, used for logging proposals and reproposals.
ctx context.Context
// An optional tracing span bound to the proposal. Will be cleaned
// up when the proposal finishes.
sp opentracing.Span
// idKey uniquely identifies this proposal.
// TODO(andreimatei): idKey is legacy at this point: We could easily key
// commands by their MaxLeaseIndex, and doing so should be ok with a stop-
// the-world migration. However, various test facilities depend on the
// command ID for e.g. replay protection.
idKey storagebase.CmdIDKey
// proposedAtTicks is the (logical) time at which this command was
// last (re-)proposed.
proposedAtTicks int
// command is serialized and proposed to raft. In the event of
// reproposals its MaxLeaseIndex field is mutated.
command *storagepb.RaftCommand
// endCmds.finish is called after command execution to update the timestamp cache &
// command queue.
endCmds *endCmds
// doneCh is used to signal the waiting RPC handler (the contents of
// proposalResult come from LocalEvalResult).
//
// Attention: this channel is not to be signaled directly downstream of Raft.
// Always use ProposalData.finishApplication().
doneCh chan proposalResult
// Local contains the results of evaluating the request
// tying the upstream evaluation of the request to the
// downstream application of the command.
Local *result.LocalResult
// Request is the client's original BatchRequest.
// TODO(tschottdorf): tests which use TestingCommandFilter use this.
// Decide how that will work in the future, presumably the
// CommandFilter would run at proposal time or we allow an opaque
// struct to be attached to a proposal which is then available as it
// applies. Other than tests, we only need a few bits of the request
// here; this could be replaced with isLease and isChangeReplicas
// booleans.
Request *roachpb.BatchRequest
}
// finishApplication is called when a command application has finished. The
// method will be called downstream of Raft if the command required consensus,
// but can be called upstream of Raft if the command did not and was never
// proposed.
//
// It first invokes the endCmds function and then sends the specified
// proposalResult on the proposal's done channel. endCmds is invoked here in
// order to allow the original client to be canceled. (When the original client
// is canceled, it won't be listening to this done channel, and so it can't be
// counted on to invoke endCmds itself.)
func (proposal *ProposalData) finishApplication(pr proposalResult) {
if proposal.endCmds != nil {
proposal.endCmds.done(pr.Reply, pr.Err, pr.ProposalRetry)
proposal.endCmds = nil
}
if proposal.sp != nil {
tracing.FinishSpan(proposal.sp)
}
proposal.signalProposalResult(pr)
}
// returnProposalResult signals proposal.doneCh with the proposal result if it
// has not already been signaled. The method can be called even before the
// proposal has finished replication and command application, and does not
// release the command from the command queue.
func (proposal *ProposalData) signalProposalResult(pr proposalResult) {
if proposal.doneCh != nil {
proposal.doneCh <- pr
proposal.doneCh = nil
}
}
// TODO(tschottdorf): we should find new homes for the checksum, lease
// code, and various others below to leave here only the core logic.
// Not moving anything right now to avoid awkward diffs.
func (r *Replica) gcOldChecksumEntriesLocked(now time.Time) {
for id, val := range r.mu.checksums {
// The timestamp is valid only if set.
if !val.gcTimestamp.IsZero() && now.After(val.gcTimestamp) {
delete(r.mu.checksums, id)
}
}
}
func (r *Replica) computeChecksumPostApply(ctx context.Context, cc storagepb.ComputeChecksum) {
stopper := r.store.Stopper()
now := timeutil.Now()
r.mu.Lock()
var notify chan struct{}
if c, ok := r.mu.checksums[cc.ChecksumID]; !ok {
// There is no record of this ID. Make a new notification.
notify = make(chan struct{})
} else if !c.started {
// A CollectChecksumRequest is waiting on the existing notification.
notify = c.notify
} else {
log.Fatalf(ctx, "attempted to apply ComputeChecksum command with duplicated checksum ID %s",
cc.ChecksumID)
}
r.gcOldChecksumEntriesLocked(now)
// Create an entry with checksum == nil and gcTimestamp unset.
r.mu.checksums[cc.ChecksumID] = ReplicaChecksum{started: true, notify: notify}
desc := *r.mu.state.Desc
r.mu.Unlock()
// Caller is holding raftMu, so an engine snapshot is automatically
// Raft-consistent (i.e. not in the middle of an AddSSTable).
snap := r.store.engine.NewSnapshot()
// Compute SHA asynchronously and store it in a map by UUID.
if err := stopper.RunAsyncTask(ctx, "storage.Replica: computing checksum", func(ctx context.Context) {
defer snap.Close()
var snapshot *roachpb.RaftSnapshotData
if cc.SaveSnapshot {
snapshot = &roachpb.RaftSnapshotData{}
}
result, err := r.sha512(ctx, desc, snap, snapshot)
if err != nil {
log.Errorf(ctx, "%v", err)
result = nil
}
r.computeChecksumDone(ctx, cc.ChecksumID, result, snapshot)
}); err != nil {
defer snap.Close()
log.Error(ctx, errors.Wrapf(err, "could not run async checksum computation (ID = %s)", cc.ChecksumID))
// Set checksum to nil.
r.computeChecksumDone(ctx, cc.ChecksumID, nil, nil)
}
}
// leasePostApply is called when a RequestLease or TransferLease
// request is executed for a range.
func (r *Replica) leasePostApply(ctx context.Context, newLease roachpb.Lease) {
r.mu.Lock()
replicaID := r.mu.replicaID
prevLease := *r.mu.state.Lease
r.mu.Unlock()
iAmTheLeaseHolder := newLease.Replica.ReplicaID == replicaID
// NB: in the case in which a node restarts, minLeaseProposedTS forces it to
// get a new lease and we make sure it gets a new sequence number, thus
// causing the right half of the disjunction to fire so that we update the
// timestamp cache.
leaseChangingHands := prevLease.Replica.StoreID != newLease.Replica.StoreID || prevLease.Sequence != newLease.Sequence
if iAmTheLeaseHolder {
// Log lease acquisition whenever an Epoch-based lease changes hands (or verbose
// logging is enabled).
if newLease.Type() == roachpb.LeaseEpoch && leaseChangingHands || log.V(1) {
log.VEventf(ctx, 1, "new range lease %s following %s", newLease, prevLease)
}
}
if leaseChangingHands && iAmTheLeaseHolder {
// When taking over the lease, we need to check whether a merge is in
// progress, as only the old leaseholder would have been explicitly notified
// of the merge. If there is a merge in progress, maybeWatchForMerge will
// arrange to block all traffic to this replica unless the merge aborts.
if err := r.maybeWatchForMerge(ctx); err != nil {
// We were unable to determine whether a merge was in progress. We cannot
// safely proceed.
log.Fatalf(ctx, "failed checking for in-progress merge while installing new lease %s: %s",
newLease, err)
}
// If this replica is a new holder of the lease, update the low water
// mark of the timestamp cache. Note that clock offset scenarios are
// handled via a stasis period inherent in the lease which is documented
// in the Lease struct.
//
// The introduction of lease transfers implies that the previous lease
// may have been shortened and we are now applying a formally overlapping
// lease (since the old lease holder has promised not to serve any more
// requests, this is kosher). This means that we don't use the old
// lease's expiration but instead use the new lease's start to initialize
// the timestamp cache low water.
desc := r.Desc()
for _, keyRange := range rditer.MakeReplicatedKeyRanges(desc) {
r.store.tsCache.SetLowWater(keyRange.Start.Key, keyRange.End.Key, newLease.Start)
}
// Reset the request counts used to make lease placement decisions whenever
// starting a new lease.
if r.leaseholderStats != nil {
r.leaseholderStats.resetRequestCounts()
}
}
// Sanity check to make sure that the lease sequence is moving in the right
// direction.
if s1, s2 := prevLease.Sequence, newLease.Sequence; s1 != 0 {
// We're at a version that supports lease sequence numbers.
switch {
case s2 < s1:
log.Fatalf(ctx, "lease sequence inversion, prevLease=%s, newLease=%s",
log.Safe(prevLease), log.Safe(newLease))
case s2 == s1:
// If the sequence numbers are the same, make sure they're actually
// the same lease. This can happen when callers are using
// leasePostApply for some of its side effects, like with
// splitPostApply. It can also happen during lease extensions.
if !prevLease.Equivalent(newLease) {
log.Fatalf(ctx, "sequence identical for different leases, prevLease=%s, newLease=%s",
log.Safe(prevLease), log.Safe(newLease))
}
case s2 == s1+1:
// Lease sequence incremented by 1. Expected case.
case s2 > s1+1:
// Snapshots will never call leasePostApply, so we always expect
// leases to increment one at a time here.
log.Fatalf(ctx, "lease sequence jump, prevLease=%s, newLease=%s",
log.Safe(prevLease), log.Safe(newLease))
}
}
// Ordering is critical here. We only install the new lease after we've
// checked for an in-progress merge and updated the timestamp cache. If the
// ordering were reversed, it would be possible for requests to see the new
// lease but not the updated merge or timestamp cache state, which can result
// in serializability violations.
r.mu.Lock()
r.mu.state.Lease = &newLease
expirationBasedLease := r.requiresExpiringLeaseRLocked()
r.mu.Unlock()
// Gossip the first range whenever its lease is acquired. We check to make
// sure the lease is active so that a trailing replica won't process an old
// lease request and attempt to gossip the first range.
if leaseChangingHands && iAmTheLeaseHolder && r.IsFirstRange() && r.IsLeaseValid(newLease, r.store.Clock().Now()) {
r.gossipFirstRange(ctx)
}
// Whenever we first acquire an expiration-based lease, notify the lease
// renewer worker that we want it to keep proactively renewing the lease
// before it expires.
if leaseChangingHands && iAmTheLeaseHolder && expirationBasedLease && r.IsLeaseValid(newLease, r.store.Clock().Now()) {
r.store.renewableLeases.Store(int64(r.RangeID), unsafe.Pointer(r))
select {
case r.store.renewableLeasesSignal <- struct{}{}:
default:
}
}
if leaseChangingHands && !iAmTheLeaseHolder {
// Also clear and disable the push transaction queue. Any waiters
// must be redirected to the new lease holder.
r.txnWaitQueue.Clear(true /* disable */)
}
// If we're the current raft leader, may want to transfer the leadership to
// the new leaseholder. Note that this condition is also checked periodically
// when ticking the replica.
r.maybeTransferRaftLeadership(ctx)
// Notify the store that a lease change occurred and it may need to
// gossip the updated store descriptor (with updated capacity).
prevOwner := prevLease.OwnedBy(r.store.StoreID())
currentOwner := newLease.OwnedBy(r.store.StoreID())
if leaseChangingHands && (prevOwner || currentOwner) {
if currentOwner {
r.store.maybeGossipOnCapacityChange(ctx, leaseAddEvent)
} else if prevOwner {
r.store.maybeGossipOnCapacityChange(ctx, leaseRemoveEvent)
}
if r.leaseholderStats != nil {
r.leaseholderStats.resetRequestCounts()
}
}
// Potentially re-gossip if the range contains system data (e.g. system
// config or node liveness). We need to perform this gossip at startup as
// soon as possible. Trying to minimize how often we gossip is a fool's
// errand. The node liveness info will be gossiped frequently (every few
// seconds) in any case due to the liveness heartbeats. And the system config
// will be gossiped rarely because it falls on a range with an epoch-based
// range lease that is only reacquired extremely infrequently.
if iAmTheLeaseHolder {
if err := r.MaybeGossipSystemConfig(ctx); err != nil {
log.Error(ctx, err)
}
if err := r.MaybeGossipNodeLiveness(ctx, keys.NodeLivenessSpan); err != nil {
log.Error(ctx, err)
}
// Make sure the push transaction queue is enabled.
r.txnWaitQueue.Enable()
// Emit an MLAI on the leaseholder replica, as follower will be looking
// for one and if we went on to quiesce, they wouldn't necessarily get
// one otherwise (unless they ask for it, which adds latency).
r.EmitMLAI()
}
// Mark the new lease in the replica's lease history.
if r.leaseHistory != nil {
r.leaseHistory.add(newLease)
}
}
func addSSTablePreApply(
ctx context.Context,
st *cluster.Settings,
eng engine.Engine,
sideloaded sideloadStorage,
term, index uint64,
sst storagepb.ReplicatedEvalResult_AddSSTable,
limiter *rate.Limiter,
) bool {
checksum := util.CRC32(sst.Data)
if checksum != sst.CRC32 {
log.Fatalf(
ctx,
"checksum for AddSSTable at index term %d, index %d does not match; at proposal time %x (%d), now %x (%d)",
term, index, sst.CRC32, sst.CRC32, checksum, checksum,
)
}
const modify, noModify = true, false
path, err := sideloaded.Filename(ctx, index, term)
if err != nil {
log.Fatalf(ctx, "sideloaded SSTable at term %d, index %d is missing", term, index)
}
copied := false
if inmem, ok := eng.(engine.InMem); ok {
path = fmt.Sprintf("%x", checksum)
if err := inmem.WriteFile(path, sst.Data); err != nil {
panic(err)
}
} else {
ingestPath := path + ".ingested"
// The SST may already be on disk, thanks to the sideloading mechanism. If
// so we can try to add that file directly, via a new hardlink if the file-
// system support it, rather than writing a new copy of it. However, this is
// only safe if we can do so without modifying the file since it is still
// part of an immutable raft log message, but in some cases, described in
// DBIngestExternalFile, RocksDB would modify the file. Fortunately we can
// tell Rocks that it is not allowed to modify the file, in which case it
// will return and error if it would have tried to do so, at which point we
// can fall back to writing a new copy for Rocks to ingest.
if _, err := os.Stat(path); err == nil {
// If the fs supports it, make a hard-link for rocks to ingest. We cannot
// pass it the path in the sideload store as it deletes the passed path on
// success.
if linkErr := eng.LinkFile(path, ingestPath); linkErr == nil {
ingestErr := eng.IngestExternalFiles(ctx, []string{ingestPath}, noModify)
if ingestErr == nil {
// Adding without modification succeeded, no copy necessary.
log.Eventf(ctx, "ingested SSTable at index %d, term %d: %s", index, term, ingestPath)
return false
}
if rmErr := eng.DeleteFile(ingestPath); rmErr != nil {
log.Fatalf(ctx, "failed to move ingest sst: %v", rmErr)
}
const seqNoMsg = "Global seqno is required, but disabled"
if err, ok := ingestErr.(*engine.RocksDBError); ok && !strings.Contains(ingestErr.Error(), seqNoMsg) {
log.Fatalf(ctx, "while ingesting %s: %s", ingestPath, err)
}
}
}
path = ingestPath
log.Eventf(ctx, "copying SSTable for ingestion at index %d, term %d: %s", index, term, path)
// TODO(tschottdorf): remove this once sideloaded storage guarantees its
// existence.
if err := os.MkdirAll(filepath.Dir(path), 0700); err != nil {
panic(err)
}
if _, err := os.Stat(path); err == nil {
// The file we want to ingest exists. This can happen since the
// ingestion may apply twice (we ingest before we mark the Raft
// command as committed). Just unlink the file (RocksDB created a
// hard link); after that we're free to write it again.
if err := os.Remove(path); err != nil {
log.Fatalf(ctx, "while removing existing file during ingestion of %s: %s", path, err)
}
}
if err := writeFileSyncing(ctx, path, sst.Data, eng, 0600, st, limiter); err != nil {
log.Fatalf(ctx, "while ingesting %s: %s", path, err)
}
copied = true
}
if err := eng.IngestExternalFiles(ctx, []string{path}, modify); err != nil {
log.Fatalf(ctx, "while ingesting %s: %s", path, err)
}
log.Eventf(ctx, "ingested SSTable at index %d, term %d: %s", index, term, path)
return copied
}
func (r *Replica) handleReplicatedEvalResult(
ctx context.Context,
rResult storagepb.ReplicatedEvalResult,
raftAppliedIndex, leaseAppliedIndex uint64,
) (shouldAssert bool) {
// Fields for which no action is taken in this method are zeroed so that
// they don't trigger an assertion at the end of the method (which checks
// that all fields were handled).
{
rResult.IsLeaseRequest = false
rResult.Timestamp = hlc.Timestamp{}
rResult.DeprecatedStartKey = nil
rResult.DeprecatedEndKey = nil
rResult.PrevLeaseProposal = nil
}
if rResult.BlockReads {
r.readOnlyCmdMu.Lock()
defer r.readOnlyCmdMu.Unlock()
rResult.BlockReads = false
}
// Update MVCC stats and Raft portion of ReplicaState.
deltaStats := rResult.Delta.ToStats()
r.mu.Lock()
r.mu.state.Stats.Add(deltaStats)
if raftAppliedIndex != 0 {
r.mu.state.RaftAppliedIndex = raftAppliedIndex
}
if leaseAppliedIndex != 0 {
r.mu.state.LeaseAppliedIndex = leaseAppliedIndex
}
needsSplitBySize := r.needsSplitBySizeRLocked()
needsMergeBySize := r.needsMergeBySizeRLocked()
r.mu.Unlock()
r.store.metrics.addMVCCStats(deltaStats)
rResult.Delta = enginepb.MVCCStatsDelta{}
if r.store.splitQueue != nil && needsSplitBySize { // the bootstrap store has a nil split queue
r.store.splitQueue.MaybeAdd(r, r.store.Clock().Now())
}
if r.store.mergeQueue != nil && needsMergeBySize { // the bootstrap store has a nil merge queue
r.store.mergeQueue.MaybeAdd(r, r.store.Clock().Now())
}
// The above are always present. The following are not always present but
// should not trigger a ReplicaState assertion because they are either too
// frequent to do so or because they do not change the ReplicaState.
if rResult.State != nil {
// Raft log truncation is too frequent to justify a replica state
// assertion.
if newTruncState := rResult.State.TruncatedState; newTruncState != nil {
rResult.State.TruncatedState = nil // for assertion
r.mu.Lock()
r.mu.state.TruncatedState = newTruncState
r.mu.Unlock()
// Clear any entries in the Raft log entry cache for this range up
// to and including the most recently truncated index.
r.store.raftEntryCache.clearTo(r.RangeID, newTruncState.Index+1)
// Truncate the sideloaded storage. Note that this is safe only if the new truncated state
// is durably on disk (i.e.) synced. This is true at the time of writing but unfortunately
// could rot.
{
log.Eventf(ctx, "truncating sideloaded storage up to (and including) index %d", newTruncState.Index)
if size, err := r.raftMu.sideloaded.TruncateTo(ctx, newTruncState.Index+1); err != nil {
// We don't *have* to remove these entries for correctness. Log a
// loud error, but keep humming along.
log.Errorf(ctx, "while removing sideloaded files during log truncation: %s", err)
} else {
rResult.RaftLogDelta -= size
}
}
}
// ReplicaState.Stats was previously non-nullable which caused nodes to
// send a zero-value MVCCStats structure. If the proposal was generated by
// an old node, we'll have decoded that zero-value structure setting
// ReplicaState.Stats to a non-nil value which would trigger the "unhandled
// field in ReplicatedEvalResult" assertion to fire if we didn't clear it.
if rResult.State.Stats != nil && (*rResult.State.Stats == enginepb.MVCCStats{}) {
rResult.State.Stats = nil
}
if rResult.State.UsingAppliedStateKey {
r.mu.Lock()
// If we're already using the AppliedStateKey then there's nothing
// to do. This flag is idempotent so it's ok that we see this flag
// multiple times, but we want to make sure it doesn't cause us to
// perform repeated state assertions, so clear it before the
// shouldAssert determination.
if r.mu.state.UsingAppliedStateKey {
rResult.State.UsingAppliedStateKey = false
}
r.mu.Unlock()
}
if (*rResult.State == storagepb.ReplicaState{}) {
rResult.State = nil
}
}
if rResult.RaftLogDelta != 0 {
r.mu.Lock()
r.mu.raftLogSize += rResult.RaftLogDelta
r.mu.raftLogLastCheckSize += rResult.RaftLogDelta
// Ensure raftLog{,LastCheck}Size is not negative since it isn't persisted
// between server restarts.
if r.mu.raftLogSize < 0 {
r.mu.raftLogSize = 0
}
if r.mu.raftLogLastCheckSize < 0 {
r.mu.raftLogLastCheckSize = 0
}
r.mu.Unlock()
rResult.RaftLogDelta = 0
} else {
// Check for whether to queue the range for Raft log truncation if this is
// not a Raft log truncation command itself. We don't want to check the
// Raft log for truncation on every write operation or even every operation
// which occurs after the Raft log exceeds RaftLogQueueStaleSize. The logic
// below queues the replica for possible Raft log truncation whenever an
// additional RaftLogQueueStaleSize bytes have been written to the Raft
// log.
r.mu.Lock()
checkRaftLog := r.mu.raftLogSize-r.mu.raftLogLastCheckSize >= RaftLogQueueStaleSize
if checkRaftLog {
r.mu.raftLogLastCheckSize = r.mu.raftLogSize
}
r.mu.Unlock()
if checkRaftLog {
r.store.raftLogQueue.MaybeAdd(r, r.store.Clock().Now())
}
}
for _, sc := range rResult.SuggestedCompactions {
r.store.compactor.Suggest(ctx, sc)
}
rResult.SuggestedCompactions = nil
// The rest of the actions are "nontrivial" and may have large effects on the
// in-memory and on-disk ReplicaStates. If any of these actions are present,
// we want to assert that these two states do not diverge.
shouldAssert = !rResult.Equal(storagepb.ReplicatedEvalResult{})
// Process Split or Merge. This needs to happen after stats update because
// of the ContainsEstimates hack.
if rResult.Split != nil {
splitPostApply(
r.AnnotateCtx(ctx),
rResult.Split.RHSDelta,
&rResult.Split.SplitTrigger,
r,
)
rResult.Split = nil
}
if rResult.Merge != nil {
if err := r.store.MergeRange(
ctx, r, rResult.Merge.LeftDesc, rResult.Merge.RightDesc, rResult.Merge.FreezeStart,
); err != nil {
// Our in-memory state has diverged from the on-disk state.
log.Fatalf(ctx, "failed to update store after merging range: %s", err)
}
rResult.Merge = nil
}
// Update the remaining ReplicaState.
if rResult.State != nil {
if newDesc := rResult.State.Desc; newDesc != nil {
r.setDesc(ctx, newDesc)
rResult.State.Desc = nil
}
if newLease := rResult.State.Lease; newLease != nil {
r.leasePostApply(ctx, *newLease)
rResult.State.Lease = nil
}
if newThresh := rResult.State.GCThreshold; newThresh != nil {
if (*newThresh != hlc.Timestamp{}) {
r.mu.Lock()
r.mu.state.GCThreshold = newThresh
r.mu.Unlock()
}
rResult.State.GCThreshold = nil
}
if newThresh := rResult.State.TxnSpanGCThreshold; newThresh != nil {
if (*newThresh != hlc.Timestamp{}) {
r.mu.Lock()
r.mu.state.TxnSpanGCThreshold = newThresh
r.mu.Unlock()
}
rResult.State.TxnSpanGCThreshold = nil
}
if rResult.State.UsingAppliedStateKey {
r.mu.Lock()
r.mu.state.UsingAppliedStateKey = true
r.mu.Unlock()
rResult.State.UsingAppliedStateKey = false
}
if (*rResult.State == storagepb.ReplicaState{}) {
rResult.State = nil
}
}
if change := rResult.ChangeReplicas; change != nil {
if change.ChangeType == roachpb.REMOVE_REPLICA &&
r.store.StoreID() == change.Replica.StoreID {
// This wants to run as late as possible, maximizing the chances
// that the other nodes have finished this command as well (since
// processing the removal from the queue looks up the Range at the
// lease holder, being too early here turns this into a no-op).
if _, err := r.store.replicaGCQueue.Add(r, replicaGCPriorityRemoved); err != nil {
// Log the error; the range should still be GC'd eventually.
log.Errorf(ctx, "unable to add to replica GC queue: %s", err)
}
}
rResult.ChangeReplicas = nil
}
if rResult.ComputeChecksum != nil {
r.computeChecksumPostApply(ctx, *rResult.ComputeChecksum)
rResult.ComputeChecksum = nil
}
if !rResult.Equal(storagepb.ReplicatedEvalResult{}) {
log.Fatalf(ctx, "unhandled field in ReplicatedEvalResult: %s", pretty.Diff(rResult, storagepb.ReplicatedEvalResult{}))
}
return shouldAssert
}
func (r *Replica) handleLocalEvalResult(ctx context.Context, lResult result.LocalResult) {
// Fields for which no action is taken in this method are zeroed so that
// they don't trigger an assertion at the end of the method (which checks
// that all fields were handled).
{
lResult.Reply = nil
}
// ======================
// Non-state updates and actions.
// ======================
// The caller is required to detach and handle intents.
if lResult.Intents != nil {
log.Fatalf(ctx, "LocalEvalResult.Intents should be nil: %+v", lResult.Intents)
}
if lResult.EndTxns != nil {
log.Fatalf(ctx, "LocalEvalResult.EndTxns should be nil: %+v", lResult.EndTxns)
}
if lResult.GossipFirstRange {
// We need to run the gossip in an async task because gossiping requires
// the range lease and we'll deadlock if we try to acquire it while
// holding processRaftMu. Specifically, Replica.redirectOnOrAcquireLease
// blocks waiting for the lease acquisition to finish but it can't finish
// because we're not processing raft messages due to holding
// processRaftMu (and running on the processRaft goroutine).
if err := r.store.Stopper().RunAsyncTask(
ctx, "storage.Replica: gossipping first range",
func(ctx context.Context) {
hasLease, pErr := r.getLeaseForGossip(ctx)
if pErr != nil {
log.Infof(ctx, "unable to gossip first range; hasLease=%t, err=%s", hasLease, pErr)
} else if !hasLease {
return
}
r.gossipFirstRange(ctx)
}); err != nil {
log.Infof(ctx, "unable to gossip first range: %s", err)
}
lResult.GossipFirstRange = false
}
if lResult.MaybeAddToSplitQueue {
r.store.splitQueue.MaybeAdd(r, r.store.Clock().Now())
lResult.MaybeAddToSplitQueue = false
}
if lResult.MaybeGossipSystemConfig {
if err := r.MaybeGossipSystemConfig(ctx); err != nil {
log.Error(ctx, err)
}
lResult.MaybeGossipSystemConfig = false
}
if lResult.MaybeGossipNodeLiveness != nil {
if err := r.MaybeGossipNodeLiveness(ctx, *lResult.MaybeGossipNodeLiveness); err != nil {
log.Error(ctx, err)
}
lResult.MaybeGossipNodeLiveness = nil
}
if lResult.Metrics != nil {
r.store.metrics.handleMetricsResult(ctx, *lResult.Metrics)
lResult.Metrics = nil
}
if lResult.UpdatedTxns != nil {
for _, txn := range *lResult.UpdatedTxns {
r.txnWaitQueue.UpdateTxn(ctx, txn)
lResult.UpdatedTxns = nil
}
}
if (lResult != result.LocalResult{}) {
log.Fatalf(ctx, "unhandled field in LocalEvalResult: %s", pretty.Diff(lResult, result.LocalResult{}))
}
}
func (r *Replica) handleEvalResultRaftMuLocked(
ctx context.Context,
lResult *result.LocalResult,
rResult storagepb.ReplicatedEvalResult,
raftAppliedIndex, leaseAppliedIndex uint64,
) {
shouldAssert := r.handleReplicatedEvalResult(ctx, rResult, raftAppliedIndex, leaseAppliedIndex)
if lResult != nil {
r.handleLocalEvalResult(ctx, *lResult)
}
if shouldAssert {
// Assert that the on-disk state doesn't diverge from the in-memory
// state as a result of the side effects.
r.mu.Lock()
r.assertStateLocked(ctx, r.store.Engine())
r.mu.Unlock()
}
}