-
Notifications
You must be signed in to change notification settings - Fork 3.8k
/
inverted_expr_evaluator.go
557 lines (515 loc) · 18.4 KB
/
inverted_expr_evaluator.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
// Copyright 2020 The Cockroach Authors.
//
// Use of this software is governed by the Business Source License
// included in the file licenses/BSL.txt.
//
// As of the Change Date specified in that file, in accordance with
// the Business Source License, use of this software will be governed
// by the Apache License, Version 2.0, included in the file
// licenses/APL.txt.
package rowexec
import (
"bytes"
"sort"
"github.com/cockroachdb/cockroach/pkg/sql/opt/invertedexpr"
"github.com/cockroachdb/errors"
)
// The abstractions in this file help with evaluating (batches of)
// invertedexpr.SpanExpression. The spans in a SpanExpression represent spans
// of an inverted index, which consists of an inverted column followed by the
// primary key of the table. The set expressions involve union and
// intersection over operands. The operands are sets of primary keys contained
// in the corresponding span. Callers should use batchedInvertedExprEvaluator.
// This evaluator does not do the actual scan -- it is fed the set elements as
// the inverted index is scanned, and routes a set element to all the sets to
// which it belongs (since spans can be overlapping). Once the scan is
// complete, the expressions are evaluated.
// KeyIndex is used as a set element. It is already de-duped.
type KeyIndex = int
// setContainer is a set of key indexes in increasing order.
type setContainer []KeyIndex
func (s setContainer) Len() int {
return len(s)
}
func (s setContainer) Less(i, j int) bool {
return s[i] < s[j]
}
func (s setContainer) Swap(i, j int) {
s[i], s[j] = s[j], s[i]
}
func unionSetContainers(a, b setContainer) setContainer {
if len(a) == 0 {
return b
}
if len(b) == 0 {
return a
}
var out setContainer
var i, j int
for i < len(a) && j < len(b) {
if a[i] < b[j] {
out = append(out, a[i])
i++
} else if a[i] > b[j] {
out = append(out, b[j])
j++
} else {
out = append(out, a[i])
i++
j++
}
}
for ; i < len(a); i++ {
out = append(out, a[i])
}
for ; j < len(b); j++ {
out = append(out, b[j])
}
return out
}
func intersectSetContainers(a, b setContainer) setContainer {
var out setContainer
var i, j int
// TODO(sumeer): when one set is much larger than the other
// it is more efficient to iterate over the smaller set
// and seek into the larger set.
for i < len(a) && j < len(b) {
if a[i] < b[j] {
i++
} else if a[i] > b[j] {
j++
} else {
out = append(out, a[i])
i++
j++
}
}
return out
}
// setExpression follows the structure of SpanExpression.
type setExpression struct {
op invertedexpr.SetOperator
// The index in invertedExprEvaluator.sets
unionSetIndex int
left *setExpression
right *setExpression
}
type invertedSpan = invertedexpr.SpanExpressionProto_Span
type spanExpression = invertedexpr.SpanExpressionProto_Node
// The spans in a SpanExpression.FactoredUnionSpans and the corresponding index
// in invertedExprEvaluator.sets. Only populated when FactoredUnionsSpans is
// non-empty.
type spansAndSetIndex struct {
spans []invertedSpan
setIndex int
}
// invertedExprEvaluator evaluates a single expression. It should not be directly
// used -- see batchedInvertedExprEvaluator.
type invertedExprEvaluator struct {
setExpr *setExpression
// These are initially populated by calls to addIndexRow() as
// the inverted index is scanned.
sets []setContainer
spansIndex []spansAndSetIndex
}
func newInvertedExprEvaluator(expr *spanExpression) *invertedExprEvaluator {
eval := &invertedExprEvaluator{}
eval.setExpr = eval.initSetExpr(expr)
return eval
}
func (ev *invertedExprEvaluator) initSetExpr(expr *spanExpression) *setExpression {
// Assign it an index even if FactoredUnionSpans is empty, since we will
// need it when evaluating.
i := len(ev.sets)
ev.sets = append(ev.sets, nil)
sx := &setExpression{op: expr.Operator, unionSetIndex: i}
if len(expr.FactoredUnionSpans) > 0 {
ev.spansIndex = append(ev.spansIndex,
spansAndSetIndex{spans: expr.FactoredUnionSpans, setIndex: i})
}
if expr.Left != nil {
sx.left = ev.initSetExpr(expr.Left)
}
if expr.Right != nil {
sx.right = ev.initSetExpr(expr.Right)
}
return sx
}
// getSpansAndSetIndex returns the spans and corresponding set indexes for
// this expression. The spans are not in sorted order and can be overlapping.
func (ev *invertedExprEvaluator) getSpansAndSetIndex() []spansAndSetIndex {
return ev.spansIndex
}
// Adds a row to the given set. KeyIndexes are not added in increasing order,
// nor do they represent any ordering of the primary key of the table whose
// inverted index is being read. Also, the same KeyIndex could be added
// repeatedly to a set.
func (ev *invertedExprEvaluator) addIndexRow(setIndex int, keyIndex KeyIndex) {
// If duplicates in a set become a memory problem in this build phase, we
// could do periodic de-duplication as we go. For now, we simply append to
// the slice and de-dup at the start of evaluate().
ev.sets[setIndex] = append(ev.sets[setIndex], keyIndex)
}
// Evaluates the expression. The return value is in increasing order
// of KeyIndex.
func (ev *invertedExprEvaluator) evaluate() []KeyIndex {
// Sort and de-dup the sets so that we can efficiently do set operations.
for i, c := range ev.sets {
if len(c) == 0 {
continue
}
sort.Sort(c)
// De-duplicate
set := c[:0]
for j := range c {
if len(set) > 0 && c[j] == set[len(set)-1] {
continue
}
set = append(set, c[j])
}
ev.sets[i] = set
}
return ev.evaluateSetExpr(ev.setExpr)
}
func (ev *invertedExprEvaluator) evaluateSetExpr(sx *setExpression) setContainer {
var left, right setContainer
if sx.left != nil {
left = ev.evaluateSetExpr(sx.left)
}
if sx.right != nil {
right = ev.evaluateSetExpr(sx.right)
}
var childrenSet setContainer
switch sx.op {
case invertedexpr.SetUnion:
childrenSet = unionSetContainers(left, right)
case invertedexpr.SetIntersection:
childrenSet = intersectSetContainers(left, right)
}
return unionSetContainers(ev.sets[sx.unionSetIndex], childrenSet)
}
// Supporting struct for invertedSpanRoutingInfo.
type exprAndSetIndex struct {
// An index into batchedInvertedExprEvaluator.exprEvals.
exprIndex int
// An index into batchedInvertedExprEvaluator.exprEvals[exprIndex].sets.
setIndex int
}
type exprAndSetIndexSorter []exprAndSetIndex
// Implement sort.Interface. Sorts in increasing order of exprIndex.
func (esis exprAndSetIndexSorter) Len() int { return len(esis) }
func (esis exprAndSetIndexSorter) Swap(i, j int) { esis[i], esis[j] = esis[j], esis[i] }
func (esis exprAndSetIndexSorter) Less(i, j int) bool {
return esis[i].exprIndex < esis[j].exprIndex
}
// invertedSpanRoutingInfo contains the list of exprAndSetIndex pairs that
// need rows from the inverted index span. A []invertedSpanRoutingInfo with
// spans that are sorted and non-overlapping is used to route an added row to
// all the expressions and sets that need that row.
type invertedSpanRoutingInfo struct {
span invertedSpan
// Sorted in increasing order of exprIndex.
exprAndSetIndexList []exprAndSetIndex
// A de-duped and sorted list of exprIndex values from exprAndSetIndexList.
// Used for pre-filtering, since the pre-filter is applied on a per
// exprIndex basis.
exprIndexList []int
}
// invertedSpanRoutingInfosByEndKey is a slice of invertedSpanRoutingInfo that
// implements the sort.Interface interface by sorting infos by their span's end
// key. The (unchecked) assumption is that spans in a slice all have the same
// start key.
type invertedSpanRoutingInfosByEndKey []invertedSpanRoutingInfo
// Implement sort.Interface.
func (s invertedSpanRoutingInfosByEndKey) Len() int { return len(s) }
func (s invertedSpanRoutingInfosByEndKey) Swap(i, j int) { s[i], s[j] = s[j], s[i] }
func (s invertedSpanRoutingInfosByEndKey) Less(i, j int) bool {
return bytes.Compare(s[i].span.End, s[j].span.End) < 0
}
// preFilterer is the single method from DatumsToInvertedExpr that is relevant here.
type preFilterer interface {
PreFilter(enc invertedexpr.EncInvertedVal, preFilters []interface{}, result []bool) (bool, error)
}
// batchedInvertedExprEvaluator is for evaluating one or more expressions. The
// batched evaluator can be reused by calling reset(). In the build phase,
// append expressions directly to exprs. A nil expression is permitted, and is
// just a placeholder that will result in a nil []KeyIndex in evaluate().
// init() must be called before calls to addIndexRow() -- it builds the
// fragmentedSpans used for routing the added rows.
type batchedInvertedExprEvaluator struct {
filterer preFilterer
exprs []*invertedexpr.SpanExpressionProto
// The pre-filtering state for each expression. When pre-filtering, this
// is the same length as exprs.
preFilterState []interface{}
// The parameters and result of pre-filtering for an inverted row are
// kept in this temporary state.
tempPreFilters []interface{}
tempPreFilterResult []bool
// The evaluators for all the exprs.
exprEvals []*invertedExprEvaluator
// Spans here are in sorted order and non-overlapping.
fragmentedSpans []invertedSpanRoutingInfo
// The routing index computed by prepareAddIndexRow
routingIndex int
// Temporary state used during initialization.
routingSpans []invertedSpanRoutingInfo
coveringSpans []invertedSpan
pendingSpansToSort invertedSpanRoutingInfosByEndKey
}
// Helper used in building fragmentedSpans using pendingSpans. pendingSpans
// contains spans with the same start key. This fragments and removes all
// spans up to end key fragmentUntil (or all spans if fragmentUntil == nil).
// It then returns the remaining pendingSpans.
//
// Example 1:
// pendingSpans contains
// c---g
// c-----i
// c--e
//
// And fragmentUntil = i. Since end keys are exclusive we can fragment and
// remove all spans in pendingSpans. These will be:
// c-e-g
// c-e-g-i
// c-e
//
// For the c-e span, all the exprAndSetIndexList slices for these spans are
// appended since any row in that span needs to be routed to all these
// expressions and sets. For the e-g span only the exprAndSetIndexList slices
// for the top two spans are unioned.
//
// Example 2:
//
// Same pendingSpans, and fragmentUntil = f. The fragments that are generated
// for fragmentedSpans and the remaining spans in pendingSpans are:
//
// fragments remaining
// c-e-f f-g
// c-e-f f-i
// c-e
func (b *batchedInvertedExprEvaluator) fragmentPendingSpans(
pendingSpans []invertedSpanRoutingInfo, fragmentUntil invertedexpr.EncInvertedVal,
) []invertedSpanRoutingInfo {
// The start keys are the same, so this only sorts in increasing order of
// end keys. Assign slice to a field on the receiver before sorting to avoid
// a heap allocation when the slice header passes through an interface.
b.pendingSpansToSort = invertedSpanRoutingInfosByEndKey(pendingSpans)
sort.Sort(&b.pendingSpansToSort)
for len(pendingSpans) > 0 {
if fragmentUntil != nil && bytes.Compare(fragmentUntil, pendingSpans[0].span.Start) <= 0 {
break
}
// The prefix of pendingSpans that will be completely consumed when
// the next fragment is constructed.
var removeSize int
// The end of the next fragment.
var end invertedexpr.EncInvertedVal
// The start of the fragment after the next fragment.
var nextStart invertedexpr.EncInvertedVal
if fragmentUntil != nil && bytes.Compare(fragmentUntil, pendingSpans[0].span.End) < 0 {
// Can't completely remove any spans from pendingSpans, but a prefix
// of these spans will be removed
removeSize = 0
end = fragmentUntil
nextStart = end
} else {
// We can remove all spans whose end key is the same as span[0].
// The end of span[0] is also the end key of this fragment.
removeSize = b.pendingLenWithSameEnd(pendingSpans)
end = pendingSpans[0].span.End
nextStart = end
}
// The next span to be added to fragmentedSpans.
nextSpan := invertedSpanRoutingInfo{
span: invertedSpan{
Start: pendingSpans[0].span.Start,
End: end,
},
}
for i := 0; i < len(pendingSpans); i++ {
if i >= removeSize {
// This span is not completely removed so adjust its start.
pendingSpans[i].span.Start = nextStart
}
// All spans in pendingSpans contribute to exprAndSetIndexList.
nextSpan.exprAndSetIndexList =
append(nextSpan.exprAndSetIndexList, pendingSpans[i].exprAndSetIndexList...)
}
sort.Sort(exprAndSetIndexSorter(nextSpan.exprAndSetIndexList))
nextSpan.exprIndexList = make([]int, 0, len(nextSpan.exprAndSetIndexList))
for i := range nextSpan.exprAndSetIndexList {
length := len(nextSpan.exprIndexList)
exprIndex := nextSpan.exprAndSetIndexList[i].exprIndex
if length == 0 || nextSpan.exprIndexList[length-1] != exprIndex {
nextSpan.exprIndexList = append(nextSpan.exprIndexList, exprIndex)
}
}
b.fragmentedSpans = append(b.fragmentedSpans, nextSpan)
pendingSpans = pendingSpans[removeSize:]
if removeSize == 0 {
// fragmentUntil was earlier than the smallest End key in the pending
// spans, so cannot fragment any more.
break
}
}
return pendingSpans
}
func (b *batchedInvertedExprEvaluator) pendingLenWithSameEnd(
pendingSpans []invertedSpanRoutingInfo,
) int {
length := 1
for i := 1; i < len(pendingSpans); i++ {
if !bytes.Equal(pendingSpans[0].span.End, pendingSpans[i].span.End) {
break
}
length++
}
return length
}
// init fragments the spans for later routing of rows and returns spans
// representing a union of all the spans (for executing the scan). The
// returned slice is only valid until the next call to reset.
func (b *batchedInvertedExprEvaluator) init() []invertedSpan {
if cap(b.exprEvals) < len(b.exprs) {
b.exprEvals = make([]*invertedExprEvaluator, len(b.exprs))
} else {
b.exprEvals = b.exprEvals[:len(b.exprs)]
}
// Initial spans fetched from all expressions.
for i, expr := range b.exprs {
if expr == nil {
b.exprEvals[i] = nil
continue
}
b.exprEvals[i] = newInvertedExprEvaluator(&expr.Node)
exprSpans := b.exprEvals[i].getSpansAndSetIndex()
for _, spans := range exprSpans {
for _, span := range spans.spans {
b.routingSpans = append(b.routingSpans,
invertedSpanRoutingInfo{
span: span,
exprAndSetIndexList: []exprAndSetIndex{{exprIndex: i, setIndex: spans.setIndex}},
},
)
}
}
}
if len(b.routingSpans) == 0 {
return nil
}
// Sort the routingSpans in increasing order of start key, and for equal
// start keys in increasing order of end key.
sort.Slice(b.routingSpans, func(i, j int) bool {
cmp := bytes.Compare(b.routingSpans[i].span.Start, b.routingSpans[j].span.Start)
if cmp == 0 {
cmp = bytes.Compare(b.routingSpans[i].span.End, b.routingSpans[j].span.End)
}
return cmp < 0
})
// The union of the spans, which is returned from this function.
currentCoveringSpan := b.routingSpans[0].span
// Create a slice of pendingSpans to be fragmented by windowing over the
// full collection of routingSpans. All spans in a given window have the
// same start key. They are not sorted by end key.
pendingSpans := b.routingSpans[:1]
// This loop does both the union of the routingSpans and fragments the
// routingSpans. The pendingSpans slice contains a subsequence of the
// routingSpans slice, that when passed to fragmentPendingSpans will be
// mutated by it.
for i := 1; i < len(b.routingSpans); i++ {
span := b.routingSpans[i]
if bytes.Compare(pendingSpans[0].span.Start, span.span.Start) < 0 {
pendingSpans = b.fragmentPendingSpans(pendingSpans, span.span.Start)
if bytes.Compare(currentCoveringSpan.End, span.span.Start) < 0 {
b.coveringSpans = append(b.coveringSpans, currentCoveringSpan)
currentCoveringSpan = span.span
} else if bytes.Compare(currentCoveringSpan.End, span.span.End) < 0 {
currentCoveringSpan.End = span.span.End
}
} else if bytes.Compare(currentCoveringSpan.End, span.span.End) < 0 {
currentCoveringSpan.End = span.span.End
}
// Add this span to the pending list by expanding the window over
// b.routingSpans.
pendingSpans = pendingSpans[:len(pendingSpans)+1]
}
b.fragmentPendingSpans(pendingSpans, nil)
b.coveringSpans = append(b.coveringSpans, currentCoveringSpan)
return b.coveringSpans
}
// TODO(sumeer): if this will be called in non-decreasing order of enc,
// use that to optimize the binary search.
func (b *batchedInvertedExprEvaluator) prepareAddIndexRow(
enc invertedexpr.EncInvertedVal,
) (bool, error) {
i := sort.Search(len(b.fragmentedSpans), func(i int) bool {
return bytes.Compare(b.fragmentedSpans[i].span.Start, enc) > 0
})
i--
b.routingIndex = i
if b.filterer != nil {
exprIndexList := b.fragmentedSpans[i].exprIndexList
if len(exprIndexList) > cap(b.tempPreFilters) {
b.tempPreFilters = make([]interface{}, len(exprIndexList))
b.tempPreFilterResult = make([]bool, len(exprIndexList))
} else {
b.tempPreFilters = b.tempPreFilters[:len(exprIndexList)]
b.tempPreFilterResult = b.tempPreFilterResult[:len(exprIndexList)]
}
for j := range exprIndexList {
b.tempPreFilters[j] = b.preFilterState[exprIndexList[j]]
}
return b.filterer.PreFilter(enc, b.tempPreFilters, b.tempPreFilterResult)
}
return true, nil
}
func (b *batchedInvertedExprEvaluator) addIndexRow(
_ invertedexpr.EncInvertedVal, keyIndex KeyIndex,
) error {
i := b.routingIndex
if b.filterer != nil {
exprIndexes := b.fragmentedSpans[i].exprIndexList
exprSetIndexes := b.fragmentedSpans[i].exprAndSetIndexList
if len(exprIndexes) != len(b.tempPreFilterResult) {
return errors.Errorf("non-matching lengths of tempPreFilterResult and exprIndexes")
}
// Coordinated iteration over exprIndexes and exprSetIndexes.
j := 0
for k := range exprSetIndexes {
elem := exprSetIndexes[k]
if elem.exprIndex > exprIndexes[j] {
j++
if exprIndexes[j] != elem.exprIndex {
return errors.Errorf("non-matching expr indexes")
}
}
if b.tempPreFilterResult[j] {
b.exprEvals[elem.exprIndex].addIndexRow(elem.setIndex, keyIndex)
}
}
} else {
for _, elem := range b.fragmentedSpans[i].exprAndSetIndexList {
b.exprEvals[elem.exprIndex].addIndexRow(elem.setIndex, keyIndex)
}
}
return nil
}
func (b *batchedInvertedExprEvaluator) evaluate() [][]KeyIndex {
result := make([][]KeyIndex, len(b.exprs))
for i := range b.exprEvals {
if b.exprEvals[i] == nil {
continue
}
result[i] = b.exprEvals[i].evaluate()
}
return result
}
func (b *batchedInvertedExprEvaluator) reset() {
b.exprs = b.exprs[:0]
b.preFilterState = b.preFilterState[:0]
b.exprEvals = b.exprEvals[:0]
b.fragmentedSpans = b.fragmentedSpans[:0]
b.routingSpans = b.routingSpans[:0]
b.coveringSpans = b.coveringSpans[:0]
}