-
Notifications
You must be signed in to change notification settings - Fork 3.8k
/
geo.go
1071 lines (965 loc) · 32.8 KB
/
geo.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
// Copyright 2020 The Cockroach Authors.
//
// Use of this software is governed by the Business Source License
// included in the file licenses/BSL.txt.
//
// As of the Change Date specified in that file, in accordance with
// the Business Source License, use of this software will be governed
// by the Apache License, Version 2.0, included in the file
// licenses/APL.txt.
package invertedidx
import (
"context"
"fmt"
"github.com/cockroachdb/cockroach/pkg/geo"
"github.com/cockroachdb/cockroach/pkg/geo/geogfn"
"github.com/cockroachdb/cockroach/pkg/geo/geoindex"
"github.com/cockroachdb/cockroach/pkg/geo/geopb"
"github.com/cockroachdb/cockroach/pkg/geo/geoprojbase"
"github.com/cockroachdb/cockroach/pkg/sql/opt"
"github.com/cockroachdb/cockroach/pkg/sql/opt/cat"
"github.com/cockroachdb/cockroach/pkg/sql/opt/invertedexpr"
"github.com/cockroachdb/cockroach/pkg/sql/opt/memo"
"github.com/cockroachdb/cockroach/pkg/sql/opt/norm"
"github.com/cockroachdb/cockroach/pkg/sql/opt/props"
"github.com/cockroachdb/cockroach/pkg/sql/rowenc"
"github.com/cockroachdb/cockroach/pkg/sql/sem/tree"
"github.com/cockroachdb/cockroach/pkg/sql/types"
"github.com/cockroachdb/cockroach/pkg/util/encoding"
"github.com/cockroachdb/errors"
"github.com/golang/geo/r1"
"github.com/golang/geo/s1"
"github.com/golang/geo/s2"
)
// This file contains functions for building geospatial inverted index scans
// and joins that are used throughout the xform package.
// GetGeoIndexRelationship returns the corresponding geospatial relationship
// and ok=true if the given expression is either a geospatial function or
// bounding box comparison operator that can be index-accelerated. Otherwise
// returns ok=false.
func GetGeoIndexRelationship(expr opt.ScalarExpr) (_ geoindex.RelationshipType, ok bool) {
if function, ok := expr.(*memo.FunctionExpr); ok {
rel, ok := geoindex.RelationshipMap[function.Name]
return rel, ok
}
if _, ok := expr.(*memo.BBoxCoversExpr); ok {
return geoindex.Covers, true
}
if _, ok := expr.(*memo.BBoxIntersectsExpr); ok {
return geoindex.Intersects, true
}
return 0, false
}
// getSpanExprForGeoIndexFn is a function that returns a SpanExpression that
// constrains the given geo index according to the given constant and
// geospatial relationship. It is implemented by getSpanExprForGeographyIndex
// and getSpanExprForGeometryIndex and used in constrainGeoIndex.
type getSpanExprForGeoIndexFn func(
context.Context, tree.Datum, []tree.Datum, geoindex.RelationshipType, *geoindex.Config,
) *invertedexpr.SpanExpression
// TryJoinGeoIndex tries to create an inverted join with the given input and
// geospatial index from the specified filters. If a join is created, the
// inverted join condition is returned. If no join can be created, then
// TryJoinGeoIndex returns nil.
func TryJoinGeoIndex(
ctx context.Context,
factory *norm.Factory,
filters memo.FiltersExpr,
tabID opt.TableID,
index cat.Index,
inputCols opt.ColSet,
) opt.ScalarExpr {
config := index.GeoConfig()
var getSpanExpr getSpanExprForGeoIndexFn
if geoindex.IsGeographyConfig(config) {
getSpanExpr = getSpanExprForGeographyIndex
} else if geoindex.IsGeometryConfig(config) {
getSpanExpr = getSpanExprForGeometryIndex
} else {
return nil
}
var invertedExpr opt.ScalarExpr
for i := range filters {
invertedExprLocal := joinGeoIndex(
ctx, factory, filters[i].Condition, tabID, index, inputCols, getSpanExpr,
)
if invertedExprLocal == nil {
continue
}
if invertedExpr == nil {
invertedExpr = invertedExprLocal
} else {
invertedExpr = factory.ConstructAnd(invertedExpr, invertedExprLocal)
}
}
if invertedExpr == nil {
return nil
}
// The resulting expression must contain at least one column from the input.
var p props.Shared
memo.BuildSharedProps(invertedExpr, &p)
if !p.OuterCols.Intersects(inputCols) {
return nil
}
return invertedExpr
}
// TryConstrainGeoIndex tries to derive an inverted index constraint for the
// given geospatial index from the specified filters. If a constraint is
// derived, it is returned with ok=true. If no constraint can be derived,
// then TryConstrainGeoIndex returns ok=false.
func TryConstrainGeoIndex(
ctx context.Context,
factory *norm.Factory,
filters memo.FiltersExpr,
tabID opt.TableID,
index cat.Index,
) (invertedConstraint *invertedexpr.SpanExpression, ok bool) {
config := index.GeoConfig()
var getSpanExpr getSpanExprForGeoIndexFn
if geoindex.IsGeographyConfig(config) {
getSpanExpr = getSpanExprForGeographyIndex
} else if geoindex.IsGeometryConfig(config) {
getSpanExpr = getSpanExprForGeometryIndex
} else {
return nil, false
}
var invertedExpr invertedexpr.InvertedExpression
for i := range filters {
invertedExprLocal := constrainGeoIndex(
ctx, factory, filters[i].Condition, tabID, index, getSpanExpr,
)
if invertedExpr == nil {
invertedExpr = invertedExprLocal
} else {
invertedExpr = invertedexpr.And(invertedExpr, invertedExprLocal)
}
}
if invertedExpr == nil {
return nil, false
}
spanExpr, ok := invertedExpr.(*invertedexpr.SpanExpression)
if !ok {
return nil, false
}
return spanExpr, true
}
// getSpanExprForGeographyIndex gets a SpanExpression that constrains the given
// geography index according to the given constant and geospatial relationship.
func getSpanExprForGeographyIndex(
ctx context.Context,
d tree.Datum,
additionalParams []tree.Datum,
relationship geoindex.RelationshipType,
indexConfig *geoindex.Config,
) *invertedexpr.SpanExpression {
geogIdx := geoindex.NewS2GeographyIndex(*indexConfig.S2Geography)
geog := d.(*tree.DGeography).Geography
var spanExpr *invertedexpr.SpanExpression
switch relationship {
case geoindex.Covers:
unionKeySpans, err := geogIdx.Covers(ctx, geog)
if err != nil {
panic(err)
}
spanExpr = invertedexpr.GeoUnionKeySpansToSpanExpr(unionKeySpans)
case geoindex.CoveredBy:
rpKeyExpr, err := geogIdx.CoveredBy(ctx, geog)
if err != nil {
panic(err)
}
if spanExpr, err = invertedexpr.GeoRPKeyExprToSpanExpr(rpKeyExpr); err != nil {
panic(err)
}
case geoindex.DWithin:
// Parameters are type checked earlier. Keep this consistent with the definition
// in geo_builtins.go.
if len(additionalParams) != 1 && len(additionalParams) != 2 {
panic(errors.AssertionFailedf("unexpected param length %d", len(additionalParams)))
}
d, ok := additionalParams[0].(*tree.DFloat)
if !ok {
panic(errors.AssertionFailedf(
"parameter %s is not float", additionalParams[0].ResolvedType()))
}
distanceMeters := float64(*d)
useSpheroid := geogfn.UseSpheroid
if len(additionalParams) == 2 {
b, ok := additionalParams[1].(*tree.DBool)
if !ok {
panic(errors.AssertionFailedf(
"parameter %s is not bool", additionalParams[1].ResolvedType()))
}
if !*b {
useSpheroid = geogfn.UseSphere
}
}
unionKeySpans, err := geogIdx.DWithin(ctx, geog, distanceMeters, useSpheroid)
if err != nil {
panic(err)
}
spanExpr = invertedexpr.GeoUnionKeySpansToSpanExpr(unionKeySpans)
case geoindex.Intersects:
unionKeySpans, err := geogIdx.Intersects(ctx, geog)
if err != nil {
panic(err)
}
spanExpr = invertedexpr.GeoUnionKeySpansToSpanExpr(unionKeySpans)
default:
panic(errors.AssertionFailedf("unhandled relationship: %v", relationship))
}
return spanExpr
}
// Helper for DWithin and DFullyWithin.
func getDistanceParam(params []tree.Datum) float64 {
// Parameters are type checked earlier. Keep this consistent with the definition
// in geo_builtins.go.
if len(params) != 1 {
panic(errors.AssertionFailedf("unexpected param length %d", len(params)))
}
d, ok := params[0].(*tree.DFloat)
if !ok {
panic(errors.AssertionFailedf("parameter %s is not float", params[0].ResolvedType()))
}
return float64(*d)
}
// getSpanExprForGeometryIndex gets a SpanExpression that constrains the given
// geometry index according to the given constant and geospatial relationship.
func getSpanExprForGeometryIndex(
ctx context.Context,
d tree.Datum,
additionalParams []tree.Datum,
relationship geoindex.RelationshipType,
indexConfig *geoindex.Config,
) *invertedexpr.SpanExpression {
geomIdx := geoindex.NewS2GeometryIndex(*indexConfig.S2Geometry)
geom := d.(*tree.DGeometry).Geometry
var spanExpr *invertedexpr.SpanExpression
switch relationship {
case geoindex.Covers:
unionKeySpans, err := geomIdx.Covers(ctx, geom)
if err != nil {
panic(err)
}
spanExpr = invertedexpr.GeoUnionKeySpansToSpanExpr(unionKeySpans)
case geoindex.CoveredBy:
rpKeyExpr, err := geomIdx.CoveredBy(ctx, geom)
if err != nil {
panic(err)
}
if spanExpr, err = invertedexpr.GeoRPKeyExprToSpanExpr(rpKeyExpr); err != nil {
panic(err)
}
case geoindex.DFullyWithin:
distance := getDistanceParam(additionalParams)
unionKeySpans, err := geomIdx.DFullyWithin(ctx, geom, distance)
if err != nil {
panic(err)
}
spanExpr = invertedexpr.GeoUnionKeySpansToSpanExpr(unionKeySpans)
case geoindex.DWithin:
distance := getDistanceParam(additionalParams)
unionKeySpans, err := geomIdx.DWithin(ctx, geom, distance)
if err != nil {
panic(err)
}
spanExpr = invertedexpr.GeoUnionKeySpansToSpanExpr(unionKeySpans)
case geoindex.Intersects:
unionKeySpans, err := geomIdx.Intersects(ctx, geom)
if err != nil {
panic(err)
}
spanExpr = invertedexpr.GeoUnionKeySpansToSpanExpr(unionKeySpans)
default:
panic(errors.AssertionFailedf("unhandled relationship: %v", relationship))
}
return spanExpr
}
// joinGeoIndex extracts a scalar expression from the given filter condition,
// where the scalar expression represents a join condition between the given
// input columns and geospatial index. Returns nil if no join condition could
// be extracted.
func joinGeoIndex(
ctx context.Context,
factory *norm.Factory,
filterCond opt.ScalarExpr,
tabID opt.TableID,
index cat.Index,
inputCols opt.ColSet,
getSpanExpr getSpanExprForGeoIndexFn,
) opt.ScalarExpr {
var args memo.ScalarListExpr
switch t := filterCond.(type) {
case *memo.AndExpr:
leftExpr := joinGeoIndex(ctx, factory, t.Left, tabID, index, inputCols, getSpanExpr)
rightExpr := joinGeoIndex(ctx, factory, t.Right, tabID, index, inputCols, getSpanExpr)
if leftExpr == nil {
return rightExpr
}
if rightExpr == nil {
return leftExpr
}
return factory.ConstructAnd(leftExpr, rightExpr)
case *memo.OrExpr:
leftExpr := joinGeoIndex(ctx, factory, t.Left, tabID, index, inputCols, getSpanExpr)
rightExpr := joinGeoIndex(ctx, factory, t.Right, tabID, index, inputCols, getSpanExpr)
if leftExpr == nil || rightExpr == nil {
return nil
}
return factory.ConstructOr(leftExpr, rightExpr)
case *memo.FunctionExpr:
args = t.Args
case *memo.BBoxCoversExpr, *memo.BBoxIntersectsExpr:
args = memo.ScalarListExpr{
t.Child(0).(opt.ScalarExpr), t.Child(1).(opt.ScalarExpr),
}
// Cast the arguments to type Geometry if they are type Box2d.
for i := 0; i < len(args); i++ {
if args[i].DataType().Family() == types.Box2DFamily {
args[i] = factory.ConstructCast(args[i], types.Geometry)
}
}
default:
return nil
}
// Try to extract an inverted join condition from the given filter condition.
// If unsuccessful, try to extract a join condition from an equivalent
// function in which the arguments are commuted. For example:
//
// ST_Intersects(g1, g2) <-> ST_Intersects(g2, g1)
// ST_Covers(g1, g2) <-> ST_CoveredBy(g2, g1)
// g1 && g2 -> ST_Intersects(g2, g1)
// g1 ~ g2 -> ST_CoveredBy(g2, g1)
//
// See joinGeoIndexFromExpr for more details.
fn := joinGeoIndexFromExpr(
factory, filterCond, args, false /* commuteArgs */, inputCols, tabID, index,
)
if fn == nil {
fn = joinGeoIndexFromExpr(
factory, filterCond, args, true /* commuteArgs */, inputCols, tabID, index,
)
}
return fn
}
// joinGeoIndexFromExpr tries to extract an inverted join condition from the
// given expression, which should be either a function or comparison operation.
// If commuteArgs is true, joinGeoIndexFromExpr tries to extract an inverted
// join condition from an equivalent version of the given expression in which
// the first two arguments are swapped.
//
// If commuteArgs is false, returns the original function (if the expression
// was a function) or a new function representing the geospatial relationship
// of the comparison operation. If commuteArgs is true, returns a new function
// representing the same relationship but with commuted arguments. For example:
//
// ST_Intersects(g1, g2) <-> ST_Intersects(g2, g1)
// ST_Covers(g1, g2) <-> ST_CoveredBy(g2, g1)
// g1 && g2 -> ST_Intersects(g2, g1)
// g1 ~ g2 -> ST_CoveredBy(g2, g1)
//
// See geoindex.CommuteRelationshipMap for the full list of mappings.
//
// Returns nil if a join condition was not successfully extracted.
func joinGeoIndexFromExpr(
factory *norm.Factory,
expr opt.ScalarExpr,
args memo.ScalarListExpr,
commuteArgs bool,
inputCols opt.ColSet,
tabID opt.TableID,
index cat.Index,
) opt.ScalarExpr {
rel, ok := GetGeoIndexRelationship(expr)
if !ok {
return nil
}
// Extract the the inputs to the geospatial function.
if args.ChildCount() < 2 {
panic(errors.AssertionFailedf(
"all index-accelerated geospatial functions should have at least two arguments",
))
}
arg1, arg2 := args.Child(0), args.Child(1)
if commuteArgs {
arg1, arg2 = arg2, arg1
}
// The first argument should either come from the input or be a constant.
var p props.Shared
memo.BuildSharedProps(arg1, &p)
if !p.OuterCols.Empty() {
if !p.OuterCols.SubsetOf(inputCols) {
return nil
}
} else if !memo.CanExtractConstDatum(arg1) {
return nil
}
// The second argument should be a variable corresponding to the index
// column.
variable, ok := arg2.(*memo.VariableExpr)
if !ok {
return nil
}
if variable.Col != tabID.ColumnID(index.Column(0).InvertedSourceColumnOrdinal()) {
// The column in the function does not match the index column.
return nil
}
// Any additional params must be constant.
for i := 2; i < args.ChildCount(); i++ {
if !memo.CanExtractConstDatum(args.Child(i)) {
return nil
}
}
if commuteArgs {
// Get the geospatial relationship that is equivalent to this one with the
// arguments commuted, and construct a new function that represents that
// relationship.
commutedRel, ok := geoindex.CommuteRelationshipMap[rel]
if !ok {
// It's not possible to commute this relationship.
return nil
}
name := geoindex.RelationshipReverseMap[commutedRel]
// Copy the original arguments into a new list, and swap the first two
// arguments.
commutedArgs := make(memo.ScalarListExpr, len(args))
copy(commutedArgs, args)
commutedArgs[0], commutedArgs[1] = commutedArgs[1], commutedArgs[0]
return constructFunction(factory, name, commutedArgs)
}
if _, ok := expr.(*memo.FunctionExpr); !ok {
// This expression was one of the bounding box comparison operators.
// Construct a function that represents the same geospatial relationship.
name := geoindex.RelationshipReverseMap[rel]
return constructFunction(factory, name, args)
}
return expr
}
// constructFunction finds a function overload matching the given name and
// argument types, and uses the factory to construct a function. The return
// type of the function must be bool.
func constructFunction(
factory *norm.Factory, name string, args memo.ScalarListExpr,
) opt.ScalarExpr {
props, overload, ok := memo.FindFunction(&args, name)
if !ok {
panic(errors.AssertionFailedf("could not find overload for %s", name))
}
return factory.ConstructFunction(args, &memo.FunctionPrivate{
Name: name,
Typ: types.Bool,
Properties: props,
Overload: overload,
})
}
// constrainGeoIndex returns an InvertedExpression representing a constraint
// of the given geospatial index.
func constrainGeoIndex(
ctx context.Context,
factory *norm.Factory,
expr opt.ScalarExpr,
tabID opt.TableID,
index cat.Index,
getSpanExpr getSpanExprForGeoIndexFn,
) invertedexpr.InvertedExpression {
var args memo.ScalarListExpr
switch t := expr.(type) {
case *memo.AndExpr:
return invertedexpr.And(
constrainGeoIndex(ctx, factory, t.Left, tabID, index, getSpanExpr),
constrainGeoIndex(ctx, factory, t.Right, tabID, index, getSpanExpr),
)
case *memo.OrExpr:
return invertedexpr.Or(
constrainGeoIndex(ctx, factory, t.Left, tabID, index, getSpanExpr),
constrainGeoIndex(ctx, factory, t.Right, tabID, index, getSpanExpr),
)
case *memo.FunctionExpr:
args = t.Args
case *memo.BBoxCoversExpr, *memo.BBoxIntersectsExpr:
args = memo.ScalarListExpr{
t.Child(0).(opt.ScalarExpr), t.Child(1).(opt.ScalarExpr),
}
// Cast the arguments to type Geometry if they are type Box2d.
for i := 0; i < len(args); i++ {
if args[i].DataType().Family() == types.Box2DFamily {
args[i] = factory.ConstructCast(args[i], types.Geometry)
}
}
default:
return invertedexpr.NonInvertedColExpression{}
}
// Try to constrain the index with the given expression. If the resulting
// inverted expression is not a SpanExpression, try constraining the index
// with an equivalent function in which the arguments are commuted. For
// example:
//
// ST_Intersects(g1, g2) <-> ST_Intersects(g2, g1)
// ST_Covers(g1, g2) <-> ST_CoveredBy(g2, g1)
// g1 && g2 -> ST_Intersects(g2, g1)
// g1 ~ g2 -> ST_CoveredBy(g2, g1)
//
// See geoindex.CommuteRelationshipMap for the full list of mappings.
invertedExpr := constrainGeoIndexFromExpr(
ctx, expr, args, false /* commuteArgs */, tabID, index, getSpanExpr,
)
if _, ok := invertedExpr.(invertedexpr.NonInvertedColExpression); ok {
invertedExpr = constrainGeoIndexFromExpr(
ctx, expr, args, true /* commuteArgs */, tabID, index, getSpanExpr,
)
}
return invertedExpr
}
// constrainGeoIndexFromExpr returns an InvertedExpression representing a
// constraint of the given geospatial index, based on the given expression.
// If commuteArgs is true, constrainGeoIndexFromExpr constrains the index
// based on an equivalent version of the given expression in which the first
// two arguments are swapped.
func constrainGeoIndexFromExpr(
ctx context.Context,
expr opt.ScalarExpr,
args memo.ScalarListExpr,
commuteArgs bool,
tabID opt.TableID,
index cat.Index,
getSpanExpr getSpanExprForGeoIndexFn,
) invertedexpr.InvertedExpression {
relationship, ok := GetGeoIndexRelationship(expr)
if !ok {
return invertedexpr.NonInvertedColExpression{}
}
if args.ChildCount() < 2 {
panic(errors.AssertionFailedf(
"all index-accelerated geospatial functions should have at least two arguments",
))
}
arg1, arg2 := args.Child(0), args.Child(1)
if commuteArgs {
arg1, arg2 = arg2, arg1
}
// The first argument should be a constant.
if !memo.CanExtractConstDatum(arg1) {
return invertedexpr.NonInvertedColExpression{}
}
d := memo.ExtractConstDatum(arg1)
// The second argument should be a variable corresponding to the index
// column.
variable, ok := arg2.(*memo.VariableExpr)
if !ok {
return invertedexpr.NonInvertedColExpression{}
}
if variable.Col != tabID.ColumnID(index.Column(0).InvertedSourceColumnOrdinal()) {
// The column in the function does not match the index column.
return invertedexpr.NonInvertedColExpression{}
}
// Any additional params must be constant.
var additionalParams []tree.Datum
for i := 2; i < args.ChildCount(); i++ {
if !memo.CanExtractConstDatum(args.Child(i)) {
return invertedexpr.NonInvertedColExpression{}
}
additionalParams = append(additionalParams, memo.ExtractConstDatum(args.Child(i)))
}
if commuteArgs {
relationship, ok = geoindex.CommuteRelationshipMap[relationship]
if !ok {
// It's not possible to commute this relationship.
return invertedexpr.NonInvertedColExpression{}
}
}
return getSpanExpr(ctx, d, additionalParams, relationship, index.GeoConfig())
}
type geoInvertedExpr struct {
tree.FuncExpr
relationship geoindex.RelationshipType
nonIndexParam tree.TypedExpr
additionalParams []tree.Datum
// spanExpr is the result of evaluating the geospatial relationship
// represented by this geoInvertedExpr. It is nil prior to evaluation.
spanExpr *invertedexpr.SpanExpression
}
var _ tree.TypedExpr = &geoInvertedExpr{}
// State for pre-filtering, returned by PreFilterer.Bind.
type filterState struct {
geopb.BoundingBox
srid geopb.SRID
}
// The pre-filtering interface{} returned by Convert refers to *filterState
// which are backed by batch allocated []filterState to reduce the number of
// heap allocations.
const preFilterAllocBatch = 100
// PreFilterer captures the pre-filtering state for a function whose
// non-indexed parameter (the lookup column for an inverted join) has not been
// bound to a value. The bound value is captured in the interface{} returned
// by Bind, to allow the caller to hold onto that state for a batch of lookup
// columns.
//
// TODO(sumeer):
// - extend PreFilterer to more general expressions.
// - use PreFilterer for invertedFilterer (where it will be bound once).
type PreFilterer struct {
// The type of the lookup column.
typ *types.T
// The relationship represented by the function.
preFilterRelationship geoindex.RelationshipType
additionalPreFilterParams []tree.Datum
// Batch allocated for reducing heap allocations.
preFilterState []filterState
}
// NewPreFilterer constructs a PreFilterer
func NewPreFilterer(
typ *types.T, preFilterRelationship geoindex.RelationshipType, additionalParams []tree.Datum,
) *PreFilterer {
return &PreFilterer{
typ: typ,
preFilterRelationship: preFilterRelationship,
additionalPreFilterParams: additionalParams,
}
}
// Bind binds the datum and returns the pre-filter state.
func (p *PreFilterer) Bind(d tree.Datum) interface{} {
bbox := geopb.BoundingBox{}
var srid geopb.SRID
// Earlier type-checking ensures we only see these two types.
switch g := d.(type) {
case *tree.DGeometry:
bboxRef := g.BoundingBoxRef()
if bboxRef != nil {
bbox = *bboxRef
}
srid = g.SRID()
case *tree.DGeography:
rect := g.BoundingRect()
bbox = geopb.BoundingBox{
LoX: rect.Lng.Lo,
HiX: rect.Lng.Hi,
LoY: rect.Lat.Lo,
HiY: rect.Lat.Hi,
}
srid = g.SRID()
default:
panic(errors.AssertionFailedf("datum of unhandled type: %s", d))
}
if len(p.preFilterState) == 0 {
p.preFilterState = make([]filterState, preFilterAllocBatch)
}
p.preFilterState[0] = filterState{BoundingBox: bbox, srid: srid}
rv := &p.preFilterState[0]
p.preFilterState = p.preFilterState[1:]
return rv
}
// PreFilter pre-filters a retrieved inverted value against a set of
// pre-filter states. The function signature matches the PreFilter function of
// the DatumsToInvertedExpr interface (PreFilterer does not implment the full
// interface): the result slice indicates which pre-filters matched and the
// single bool in the return value is true iff there is at least one result
// index with a true value.
func (p *PreFilterer) PreFilter(
enc invertedexpr.EncInvertedVal, preFilters []interface{}, result []bool,
) (bool, error) {
loX, loY, hiX, hiY, _, err := encoding.DecodeGeoInvertedKey(enc)
if err != nil {
return false, err
}
switch p.typ {
case types.Geometry:
var bb geo.CartesianBoundingBox
bb.LoX, bb.LoY, bb.HiX, bb.HiY = loX, loY, hiX, hiY
switch p.preFilterRelationship {
case geoindex.DWithin, geoindex.DFullyWithin:
distance := float64(tree.MustBeDFloat(p.additionalPreFilterParams[0]))
bb.LoX -= distance
bb.LoY -= distance
bb.HiX += distance
bb.HiY += distance
}
rv := false
for i := range preFilters {
pbb := geo.CartesianBoundingBox{BoundingBox: preFilters[i].(*filterState).BoundingBox}
switch p.preFilterRelationship {
case geoindex.Intersects, geoindex.DWithin:
result[i] = bb.Intersects(&pbb)
case geoindex.Covers:
result[i] = pbb.Covers(&bb)
case geoindex.CoveredBy, geoindex.DFullyWithin:
result[i] = bb.Covers(&pbb)
default:
return false, errors.Errorf("unhandled relationship %s", p.preFilterRelationship)
}
if result[i] {
rv = true
}
}
return rv, nil
case types.Geography:
bb := s2.Rect{
Lat: r1.Interval{Lo: loY, Hi: hiY},
Lng: s1.Interval{Lo: loX, Hi: hiX},
}
rv := false
for i := range preFilters {
fs := preFilters[i].(*filterState)
pbb := s2.Rect{
Lat: r1.Interval{Lo: fs.LoY, Hi: fs.HiY},
Lng: s1.Interval{Lo: fs.LoX, Hi: fs.HiX},
}
switch p.preFilterRelationship {
case geoindex.Intersects:
result[i] = pbb.Intersects(bb)
case geoindex.Covers:
result[i] = pbb.Contains(bb)
case geoindex.CoveredBy:
result[i] = bb.Contains(pbb)
case geoindex.DWithin:
distance := float64(tree.MustBeDFloat(p.additionalPreFilterParams[0]))
useSphereOrSpheroid := geogfn.UseSpheroid
if len(p.additionalPreFilterParams) == 2 {
useSphereOrSpheroid =
geogfn.UseSphereOrSpheroid(tree.MustBeDBool(p.additionalPreFilterParams[1]))
}
// TODO(sumeer): refactor to share code with geogfn.DWithin.
proj, ok := geoprojbase.Projection(fs.srid)
if !ok {
return false, errors.Errorf("cannot compute DWithin on unknown SRID %d", fs.srid)
}
angleToExpand := s1.Angle(distance / proj.Spheroid.SphereRadius)
if useSphereOrSpheroid == geogfn.UseSpheroid {
angleToExpand *= (1 + geogfn.SpheroidErrorFraction)
}
result[i] = pbb.CapBound().Expanded(angleToExpand).Intersects(bb.CapBound())
default:
return false, errors.Errorf("unhandled relationship %s", p.preFilterRelationship)
}
if result[i] {
rv = true
}
}
return rv, nil
}
panic(errors.AssertionFailedf("unhandled type %s", p.typ))
}
// geoDatumsToInvertedExpr implements invertedexpr.DatumsToInvertedExpr for
// geospatial columns.
type geoDatumsToInvertedExpr struct {
evalCtx *tree.EvalContext
colTypes []*types.T
invertedExpr tree.TypedExpr
indexConfig *geoindex.Config
typ *types.T
getSpanExpr getSpanExprForGeoIndexFn
// Non-nil only when it can pre-filter.
filterer *PreFilterer
row rowenc.EncDatumRow
alloc rowenc.DatumAlloc
}
var _ invertedexpr.DatumsToInvertedExpr = &geoDatumsToInvertedExpr{}
var _ tree.IndexedVarContainer = &geoDatumsToInvertedExpr{}
// IndexedVarEval is part of the IndexedVarContainer interface.
func (g *geoDatumsToInvertedExpr) IndexedVarEval(
idx int, ctx *tree.EvalContext,
) (tree.Datum, error) {
err := g.row[idx].EnsureDecoded(g.colTypes[idx], &g.alloc)
if err != nil {
return nil, err
}
return g.row[idx].Datum.Eval(ctx)
}
// IndexedVarResolvedType is part of the IndexedVarContainer interface.
func (g *geoDatumsToInvertedExpr) IndexedVarResolvedType(idx int) *types.T {
return g.colTypes[idx]
}
// IndexedVarNodeFormatter is part of the IndexedVarContainer interface.
func (g *geoDatumsToInvertedExpr) IndexedVarNodeFormatter(idx int) tree.NodeFormatter {
n := tree.Name(fmt.Sprintf("$%d", idx))
return &n
}
// NewGeoDatumsToInvertedExpr returns a new geoDatumsToInvertedExpr.
func NewGeoDatumsToInvertedExpr(
evalCtx *tree.EvalContext, colTypes []*types.T, expr tree.TypedExpr, config *geoindex.Config,
) (invertedexpr.DatumsToInvertedExpr, error) {
if geoindex.IsEmptyConfig(config) {
return nil, fmt.Errorf("inverted joins are currently only supported for geospatial indexes")
}
g := &geoDatumsToInvertedExpr{
evalCtx: evalCtx,
colTypes: colTypes,
indexConfig: config,
}
if geoindex.IsGeographyConfig(config) {
g.typ = types.Geography
g.getSpanExpr = getSpanExprForGeographyIndex
} else if geoindex.IsGeometryConfig(config) {
g.typ = types.Geometry
g.getSpanExpr = getSpanExprForGeometryIndex
} else {
panic(errors.AssertionFailedf("not a geography or geometry index"))
}
// getInvertedExpr takes a TypedExpr tree consisting of And, Or and Func
// expressions, and constructs a new TypedExpr tree consisting of And, Or and
// geoInvertedExpr expressions. The geoInvertedExpr serves to improve the
// performance of geoDatumsToInvertedExpr.Convert by reducing the amount of
// computation needed to convert an input row to a SpanExpression. It does
// this by caching the geospatial relationship of each function, and pre-
// computing and caching the SpanExpressions for any functions that have a
// constant as the non-indexed argument.
var getInvertedExpr func(expr tree.TypedExpr) (tree.TypedExpr, error)
funcExprCount := 0
var preFilterRelationship geoindex.RelationshipType
var additionalPreFilterParams []tree.Datum
getInvertedExpr = func(expr tree.TypedExpr) (tree.TypedExpr, error) {
switch t := expr.(type) {
case *tree.AndExpr:
leftExpr, err := getInvertedExpr(t.TypedLeft())
if err != nil {
return nil, err
}
rightExpr, err := getInvertedExpr(t.TypedRight())
if err != nil {
return nil, err
}
return tree.NewTypedAndExpr(leftExpr, rightExpr), nil
case *tree.OrExpr:
leftExpr, err := getInvertedExpr(t.TypedLeft())
if err != nil {
return nil, err
}
rightExpr, err := getInvertedExpr(t.TypedRight())
if err != nil {
return nil, err
}
return tree.NewTypedOrExpr(leftExpr, rightExpr), nil
case *tree.FuncExpr:
funcExprCount++
name := t.Func.FunctionReference.String()
relationship, ok := geoindex.RelationshipMap[name]
if !ok {
return nil, fmt.Errorf("%s cannot be index-accelerated", name)
}
if len(t.Exprs) < 2 {
return nil, fmt.Errorf("index-accelerated functions must have at least two arguments")
}
// We know that the non-index param is the first param, because the
// optimizer already commuted the arguments of any functions where that
// was not the case. See joinGeoIndexFromExpr for details.
nonIndexParam := t.Exprs[0].(tree.TypedExpr)
var additionalParams []tree.Datum
for i := 2; i < len(t.Exprs); i++ {
datum, ok := t.Exprs[i].(tree.Datum)
if !ok {
return nil, fmt.Errorf("non constant additional parameter for %s", name)
}
additionalParams = append(additionalParams, datum)
}
// If possible, get the span expression now so we don't need to recompute
// it for every row.
var spanExpr *invertedexpr.SpanExpression
if d, ok := nonIndexParam.(tree.Datum); ok {
spanExpr = g.getSpanExpr(evalCtx.Ctx(), d, additionalParams, relationship, g.indexConfig)
} else if funcExprCount == 1 {
// Currently pre-filtering is limited to a single FuncExpr.
preFilterRelationship = relationship
additionalPreFilterParams = additionalParams
}
return &geoInvertedExpr{
FuncExpr: *t,
relationship: relationship,
nonIndexParam: nonIndexParam,
additionalParams: additionalParams,
spanExpr: spanExpr,
}, nil
default:
return nil, fmt.Errorf("unsupported expression %v", t)
}
}
var err error
g.invertedExpr, err = getInvertedExpr(expr)
if err != nil {
return nil, err
}
if funcExprCount == 1 {
g.filterer = NewPreFilterer(g.typ, preFilterRelationship, additionalPreFilterParams)
}
return g, nil
}
// Convert implements the invertedexpr.DatumsToInvertedExpr interface.
func (g *geoDatumsToInvertedExpr) Convert(
ctx context.Context, datums rowenc.EncDatumRow,
) (*invertedexpr.SpanExpressionProto, interface{}, error) {
g.row = datums
g.evalCtx.PushIVarContainer(g)
defer g.evalCtx.PopIVarContainer()
var preFilterState interface{}
var evalInvertedExpr func(expr tree.TypedExpr) (invertedexpr.InvertedExpression, error)
evalInvertedExpr = func(expr tree.TypedExpr) (invertedexpr.InvertedExpression, error) {
switch t := expr.(type) {
case *tree.AndExpr:
leftExpr, err := evalInvertedExpr(t.TypedLeft())
if err != nil {
return nil, err
}
rightExpr, err := evalInvertedExpr(t.TypedRight())
if err != nil {
return nil, err
}
if leftExpr == nil || rightExpr == nil {
return nil, nil