-
Notifications
You must be signed in to change notification settings - Fork 3.9k
/
Copy pathcrdbspan.go
1459 lines (1316 loc) · 50.2 KB
/
crdbspan.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
// Copyright 2021 The Cockroach Authors.
//
// Use of this software is governed by the Business Source License
// included in the file licenses/BSL.txt.
//
// As of the Change Date specified in that file, in accordance with
// the Business Source License, use of this software will be governed
// by the Apache License, Version 2.0, included in the file
// licenses/APL.txt.
package tracing
import (
"fmt"
"sort"
"sync"
"sync/atomic"
"time"
"github.com/cockroachdb/cockroach/pkg/util/protoutil"
"github.com/cockroachdb/cockroach/pkg/util/ring"
"github.com/cockroachdb/cockroach/pkg/util/syncutil"
"github.com/cockroachdb/cockroach/pkg/util/timeutil"
"github.com/cockroachdb/cockroach/pkg/util/tracing/tracingpb"
"github.com/cockroachdb/logtags"
"github.com/cockroachdb/redact"
"github.com/gogo/protobuf/types"
"go.opentelemetry.io/otel/attribute"
)
// crdbSpan is a span for internal crdb usage. This is used to power SQL session
// tracing.
type crdbSpan struct {
// tracer is the Tracer that created this span.
tracer *Tracer
// sp is Span that this crdbSpan is part of.
sp *Span
traceID tracingpb.TraceID // probabilistically unique
spanID tracingpb.SpanID // probabilistically unique
// parentSpanID indicates the parent at the time when this span was created. 0
// if this span didn't have a parent. If crdbSpan.mu.parent is set,
// parentSpanID corresponds to it. However, if the parent finishes, or if the
// parent is a span from a remote node, crdbSpan.mu.parent will be nil.
parentSpanID tracingpb.SpanID
operation string // name of operation associated with the span
startTime time.Time
// logTags are set to the log tags that were available when this Span was
// created, so that there's no need to eagerly copy all of those log tags
// into this Span's tags. If the Span's tags are actually requested, these
// logTags will be copied out at that point.
//
// Note that these tags have not gone through the log tag -> Span tag
// remapping procedure; tagName() needs to be called before exposing each
// tag's key to a user.
logTags *logtags.Buffer
// eventListeners is a list of registered EventListener's that are notified
// whenever a Structured event is recorded by the span and its children.
eventListeners []EventListener
// Locking rules:
// - If locking both a parent and a child, the parent must be locked first. In
// practice, children don't take the parent's lock.
// - The active spans registry's lock must be acquired before this lock.
mu struct {
syncutil.Mutex
crdbSpanMu
}
}
type childRef struct {
_spanRef spanRef
// collectRecording is set if this child's recording should be included in the
// parent's recording. This is usually the case, except for children created
// with the WithDetachedRecording() option.
collectRecording bool
}
func (c childRef) span() *crdbSpan {
return c._spanRef.i.crdb
}
type crdbSpanMu struct {
// goroutineID is the ID of the goroutine that created this span, or the goroutine that
// subsequently adopted it through Span.UpdateGoroutineIDToCurrent()).
goroutineID uint64
// parent is the span's local parent, if any. parent is not set if the span is
// a root or the parent span is remote.
//
// Note that parent is mutable; a span can start by having a parent but then,
// if the parent finishes before the child does (which is uncommon), the
// child's parent is set to nil.
//
// While parent is set, this child is holding a reference in the parent's
// reference counter. The parent's ref count is decremented when this child
// Finish()es, or otherwise when this pointer is nil'ed (i.e. on parent
// Finish()).
parent spanRef
// finished is set if finish() was called.
finished bool
// finishing is set while finish() is in the process of running. finish() has
// two separate critical sections, and this finishing field is used to detect
// when other calls have been interleaved between them.
finishing bool
// duration is initialized to -1 and set on Finish().
duration time.Duration
// openChildren maintains the list of currently-open local children. These
// children are part of the active spans registry only indirectly, through
// this parent. When the parent finishes, any child that's still open will be
// inserted into the registry directly.
//
// If this parent is recording at the time when a child Finish()es, and the
// respective childRef indicates that the child is to be included in the
// parent's recording, then the child's recording is collected in
// recording.finishedChildren.
//
// The spans are not maintained in a particular order.
openChildren []childRef
recording recordingState
// tags are a list of key/value pairs associated with the span through
// SetTag(). They will be appended to the tags in logTags when someone needs
// to actually observe the total set of tags that is a part of this Span.
tags []attribute.KeyValue
// lazyTags are tags whose values are only string-ified on demand. Each lazy
// tag is expected to implement either fmt.Stringer or LazyTag.
lazyTags []lazyTag
}
type lazyTag struct {
Key string
Value interface{}
}
type recordingState struct {
// recordingType is the recording type of the ongoing recording, if any.
// Its 'load' method may be called without holding the surrounding mutex,
// but its 'swap' method requires the mutex.
recordingType atomicRecordingType
logs sizeLimitedBuffer[*tracingpb.LogRecord]
// structured accumulates StructuredRecord's.
//
// Note that structured events that originally belonged to child spans but
// bubbled up to this parent in various ways (e.g. children finished while
// this span was not recording verbosely, or children that were dropped from a
// verbose recording because of the span limit) are not part of this buffer;
// they're in finishedChildren.Root.StructuredRecords.
structured sizeLimitedBuffer[*tracingpb.StructuredRecord]
// notifyParentOnStructuredEvent is true if the span's parent has asked to be
// notified of every StructuredEvent recording on this span.
notifyParentOnStructuredEvent bool
// droppedLogs is set if the span has capped out its memory limits for logs
// and structured events, and had to drop some. It's used to annotate
// recordings with the _dropped_logs tag, when applicable.
//
// NOTE: The _dropped_logs tag applies exclusively to logs directly pertaining
// to this span. It does not apply to structured logs belonging to child spans
// that were dropped because of the limit on the number of spans in the
// recording. We move the structured logs from such spans into the parent if
// there's room. If there isn't, they are silently dropped.
droppedLogs bool
// finishedChildren contains the recordings of finished children (and
// grandchildren recursively). This includes remote child span recordings
// that were manually imported, as well as recordings from local children
// that Finish()ed.
//
// Only child spans that finished while this span was in the RecordingVerbose
// mode are included here. Structured events from children finished while this
// parent was in RecordingStructured mode are stored
// finishedChildren.Root.Structured.
//
// It's convenient to store finishedChildren as a Trace, even though the
// finishedChildren.Root will only be initialized when the span finishes
// (other that Root.Structured, which can accumulate events from children).
finishedChildren Trace
// childrenMetadata is a mapping from operation to the aggregated metadata of
// that operation.
//
// When a child of this span is Finish()ed, it updates the map with all the
// children in its Recording. childrenMetadata therefore provides a bucketed
// view of the various operations that are being traced as part of a span.
childrenMetadata map[string]tracingpb.OperationMetadata
}
// makeSizeLimitedBuffer creates a sizeLimitedBuffer.
//
// scratch, if not nil, represents pre-allocated space that the Buffer takes
// ownership of. The whole backing array of the provided slice is taken over,
// included elements and available capacity.
func makeSizeLimitedBuffer[T any](limit int64, scratch []T) sizeLimitedBuffer[T] {
return sizeLimitedBuffer[T]{
bytesLimit: limit,
Buffer: ring.MakeBuffer(scratch),
}
}
// sizeLimitedBuffer is a wrapper on top of ring.Buffer that keeps track of the
// memory size of its elements.
type sizeLimitedBuffer[T any] struct {
ring.Buffer[T]
bytesSize int64
bytesLimit int64
}
// Trace represents the recording of a span and all its descendents.
type Trace struct {
Root tracingpb.RecordedSpan
// Children are the traces of the child spans. The slice is kept sorted by
// child start time.
//
// Children are added via addChildren(). Once a child is added to a Trace, the
// Trace takes ownership; only the Trace can modify that child, since it needs
// to maintain the NumSpans and StructuredRecordsSizeBytes bookkeeping.
Children []Trace
// NumSpans tracks the number of spans in the recording: 1 for the root plus
// the size of the child traces recursively.
NumSpans int
// StructuredRecordsSizeBytes tracks the total size of structured logs in Root
// and all the Children, recursively.
StructuredRecordsSizeBytes int64
// DroppedDirectChildren maintains info about whether any direct children were
// omitted from Children because of recording limits.
//
// When set, DroppedDirectChildren and DroppedIndirectChildren are also
// reflected in corresponding tags on Root.
DroppedDirectChildren bool
// DroppedIndirectChildren maintains info about whether any indirect children
// were omitted from Children because of recording limits.
DroppedIndirectChildren bool
}
// MakeTrace constructs a Trace.
func MakeTrace(root tracingpb.RecordedSpan) Trace {
return Trace{
Root: root,
NumSpans: 1,
StructuredRecordsSizeBytes: root.StructuredRecordsSizeBytes,
}
}
func (t *Trace) String() string {
return tracingpb.Recording(t.Flatten()).String()
}
// trimSpans reduces the size of the trace to maxSpans. If t.NumSpans <= maxSpans,
// this is a no-op. Otherwise, spans will be dropped from the trace until the
// size is exactly maxSpans.
//
// Structured events from the dropped spans are moved to the first non-dropped
// parent. Note that trimStructuredEvents() can be used to reduce the size of
// events.
func (t *Trace) trimSpans(maxSpans int) {
if t.NumSpans <= maxSpans {
return
}
t.trimSpansRecursive(t.NumSpans - maxSpans)
}
func (t *Trace) trimSpansRecursive(toDrop int) {
if toDrop <= 0 {
toDrop := toDrop // copy escaping to the heap
panic(fmt.Sprintf("invalid toDrop < 0: %d", toDrop))
}
if t.NumSpans <= toDrop {
panic(fmt.Sprintf("NumSpans expected to be > toDrop; NumSpans: %d, toDrop: %d", t.NumSpans, toDrop))
}
// Look at the spans ordered by size descendingly, so that we drop the fewest children
// possible.
childrenIdx := make([]int, len(t.Children))
for i := range t.Children {
childrenIdx[i] = i
}
sort.Slice(childrenIdx, func(i, j int) bool {
return t.Children[childrenIdx[i]].NumSpans >= t.Children[childrenIdx[j]].NumSpans
})
// We'll eliminate some children completely (the largest ones), and we'll
// recurse into the next one.
// Figure out how many spans we're going to drop completely (we might not have
// to drop any).
spansToDrop := 0
total := 0
recurseIdx := -1
for _, idx := range childrenIdx {
if total+t.Children[idx].NumSpans <= toDrop {
spansToDrop++
total += t.Children[idx].NumSpans
} else {
break
}
}
// If we need to drop some more spans, but we don't have to completely drop
// the next fattest child, recurse into the next child.
toDropFromNextChild := toDrop - total
if toDropFromNextChild > 0 {
// Note: we know that childrenIdx[spansToDrop] is not out of bounds; if
// toDropFromNextChild > 0, there must be at least one more child after
// spansToDrop.
recurseIdx = childrenIdx[spansToDrop]
if t.Children[recurseIdx].NumSpans < toDropFromNextChild {
panic("expected next child to have enough spans")
}
t.Children[recurseIdx].trimSpansRecursive(toDropFromNextChild)
t.NumSpans -= toDropFromNextChild
t.DroppedIndirectChildren = true
t.Root.EnsureTagGroup(tracingpb.AnonymousTagGroupName).AddTag("_dropped_indirect_children", "")
}
if spansToDrop > 0 {
t.DroppedDirectChildren = true
t.Root.EnsureTagGroup(tracingpb.AnonymousTagGroupName).AddTag("_dropped_children", "")
// We're going to drop the fattest spansToDrop spans.
childrenToDropIdx := childrenIdx[:spansToDrop]
// Sort the indexes of the children to drop ascendingly, so that we can
// remove them easily while maintaining the existing order for the children
// that stay.
sort.Ints(childrenToDropIdx)
newChildren := make([]Trace, 0, len(t.Children)-spansToDrop)
j := 0 // This will iterate over childrenToDropIdx
for i := range t.Children {
if j < len(childrenToDropIdx) && i == childrenToDropIdx[j] {
// We need to drop this child.
j++
// Copy the structured events from the dropped child to the parent.
// Note that t.StructuredRecordsSizeBytes doesn't change.
buf := t.Children[i].appendStructuredEventsRecursively(nil /* buffer */)
for i := range buf {
t.Root.AddStructuredRecord(buf[i])
}
} else {
// This child is not dropped; copy it over to newChildren.
newChildren = append(newChildren, t.Children[i])
}
}
t.Children = newChildren
t.NumSpans -= total
}
}
// trimStructuredEvents drops structured records as needed in order to make the total
// size of events in t <= maxBytes.
//
// The method works recursively. Events are dropped first from the spans with
// the largest events size.
func (t *Trace) trimStructuredEvents(maxBytes int64) int64 {
toDrop := t.StructuredRecordsSizeBytes - maxBytes
if toDrop <= 0 {
return 0
}
// Look at the spans ordered by structured size descendingly; we'll drop
// events from the fattest child first.
childrenIdx := make([]int, len(t.Children)+1)
for i := range t.Children {
childrenIdx[i] = i
}
childrenIdx[len(t.Children)] = -1 // Represent the root.
sort.Slice(childrenIdx, func(i, j int) bool {
var leftSize, rightSize int64
if childrenIdx[i] == -1 {
leftSize = t.Root.StructuredRecordsSizeBytes
} else {
leftSize = t.Children[childrenIdx[i]].StructuredRecordsSizeBytes
}
if childrenIdx[j] == -1 {
rightSize = t.Root.StructuredRecordsSizeBytes
} else {
rightSize = t.Children[childrenIdx[j]].StructuredRecordsSizeBytes
}
return leftSize >= rightSize
})
droppedTotal := int64(0)
for _, idx := range childrenIdx {
var dropped int64
if idx == -1 {
// This is the root.
dropped = t.Root.TrimStructured(t.Root.StructuredRecordsSizeBytes - toDrop)
} else {
child := &t.Children[idx]
dropped = child.trimStructuredEvents(child.StructuredRecordsSizeBytes - toDrop)
}
droppedTotal += dropped
toDrop -= dropped
if toDrop <= 0 {
break
}
}
t.StructuredRecordsSizeBytes -= droppedTotal
return droppedTotal
}
// addChildren adds child traces to t. After adding the children, the trace is
// trimmed to maxSpans (if 0, no trimming occurs). If spans are dropped because
// of the maxSpans limit, the structured messages from dropped spans are copied
// into their parents. However, the total size of structured logs across t is
// limited to maxStructuredBytes (if not zero). If records need to be dropped
// because of this limit, they're dropped from the span with the largest size
// first.
//
// The list of children is kept sorted.
func (t *Trace) addChildren(children []Trace, maxSpans int, maxStructuredBytes int64) {
// Figure out if we'll need to re-sort the children. We won't need to do it if
// we're adding a single child that belongs in the last position.
needSort := false
if len(t.Children) > 0 {
needSort = !(len(children) == 1 &&
children[0].Root.StartTime.After(
t.Children[len(t.Children)-1].Root.StartTime))
}
for i := range children {
c := &children[i]
t.NumSpans += c.NumSpans
t.StructuredRecordsSizeBytes += c.StructuredRecordsSizeBytes
t.Children = append(t.Children, *c)
}
if needSort {
t.sortChildren()
}
if maxSpans > 0 {
t.trimSpans(maxSpans)
}
if maxStructuredBytes > 0 {
t.trimStructuredEvents(maxStructuredBytes)
}
}
// sortChildren sorts the children in the trace by start time.
func (t *Trace) sortChildren() {
toSort := sortPoolTraces.Get().(*[]Trace) // avoids allocations in sort.Sort
*toSort = t.Children
sort.Slice(*toSort, func(i, j int) bool {
return (*toSort)[i].Root.StartTime.Before((*toSort)[j].Root.StartTime)
})
*toSort = nil
sortPoolTraces.Put(toSort)
}
var sortPoolTraces = sync.Pool{
New: func() interface{} {
return &[]Trace{}
},
}
// Empty returns true if the receiver is not initialized.
func (t *Trace) Empty() bool {
return len(t.Children) == 0 && t.Root.StartTime == time.Time{}
}
func (t *Trace) appendStructuredEventsRecursively(
buffer []tracingpb.StructuredRecord,
) []tracingpb.StructuredRecord {
buffer = append(buffer, t.Root.StructuredRecords...)
for i := range t.Children {
buffer = t.Children[i].appendStructuredEventsRecursively(buffer)
}
return buffer
}
func (t *Trace) appendSpansRecursively(buffer []tracingpb.RecordedSpan) []tracingpb.RecordedSpan {
buffer = append(buffer, t.Root)
for i := range t.Children {
buffer = t.Children[i].appendSpansRecursively(buffer)
}
return buffer
}
// Flatten flattens the trace into a slice of spans. The root is the first span,
// and parents come before children. Otherwise, the spans are not sorted.
//
// See SortSpans() for sorting the result in order to turn it into a
// tracingpb.Recording.
func (t *Trace) Flatten() []tracingpb.RecordedSpan {
if t.Empty() {
return nil
}
return t.appendSpansRecursively(nil /* buffer */)
}
// ToRecording converts the Trace to a tracingpb.Recording by flattening it and
// sorting the spans.
func (t *Trace) ToRecording() tracingpb.Recording {
spans := t.Flatten()
// sortSpans sorts the spans by StartTime, except the first Span (the root of
// this recording) which stays in place.
toSort := sortPoolRecordings.Get().(*tracingpb.Recording) // avoids allocations in sort.Sort
*toSort = spans[1:]
sort.Sort(toSort)
*toSort = nil
sortPoolRecordings.Put(toSort)
return spans
}
var sortPoolRecordings = sync.Pool{
New: func() interface{} {
return &tracingpb.Recording{}
},
}
// PartialClone performs a deep copy of the trace. The immutable slices are not
// copied: logs, tags and stats.
func (t *Trace) PartialClone() Trace {
r := *t
// The structured logs need copying since the slice is mutable: new logs can
// be added to the source when spans are added to the trace but the trace is
// over the span limit. Technically, simply adding to the slice is safe if we
// made a shallow copy of the slice, but we're being defensive here as we
// might go beyond simply adding logs in the future.
r.Root.StructuredRecords = make([]tracingpb.StructuredRecord, len(t.Root.StructuredRecords))
copy(r.Root.StructuredRecords, t.Root.StructuredRecords)
r.Children = make([]Trace, len(t.Children))
for i := range t.Children {
r.Children[i] = t.Children[i].PartialClone()
}
return r
}
// Discard zeroes out *buf. If nobody else is referencing the backing storage
// for the buffer, or any of the elements, then this makes the backing storage
// is made available for GC.
//
// Note that Discard does not modify the backing storage (i.e. it does not nil
// out the elements). So, if anyone still has a reference to the storage, then
// the elements cannot be GCed.
func (buf *sizeLimitedBuffer[T]) Discard() {
*buf = sizeLimitedBuffer[T]{}
}
// finish marks the span as finished. Further operations on the span are not
// allowed. Returns false if the span was already finished.
//
// Calling finish() a second time is illegal, as is any use-after-finish().
// Still, the Tracer can be configured to tolerate such uses. If the Tracer was
// configured to not tolerate use-after-Finish, we would have crashed before
// calling this.
func (s *crdbSpan) finish() bool {
// Finishing involves the following steps:
// 1) Take the lock and capture a reference to the parent.
// 2) Operate on the parent outside of the lock.
// 3) Take the lock again, operate on the children under the lock, and also
// capture references to the children for further operations outside of the
// lock.
// 4) Insert the children into the active spans registry outside of the lock.
//
// We could reorder things such that the lock is only taken once, but it
// results in more awkward code because operating on the s' parent expects to
// find s' children in place, to collect their recordings.
var parent spanRef
var hasParent bool
{
s.mu.Lock()
if s.mu.finished {
// Already finished (or at least in the process of finish()ing). This
// check ensures that only one caller performs cleanup for this span. We
// don't want the span to be re-allocated while finish() is running.
s.mu.Unlock()
return false
}
s.mu.finished = true
if s.recordingType() != tracingpb.RecordingOff {
duration := timeutil.Since(s.startTime)
if duration == 0 {
duration = time.Nanosecond
}
s.mu.duration = duration
}
// If there is a parent, we'll operate on the parent below, outside the
// child's lock, as per the lock ordering convention between parents and
// children. The parent might get Finish()ed by the time we call
// parent.childFinished(s) on it below; that's OK because we're going to
// hold on taking a reference in the parent's reference counter. Notice that
// we move the reference out of s.mu.parent; leaving it there would not work
// because s.mu.parent can be released by s.parentFinished() after we drop
// our lock.
//
// If there is no parent, we avoid releasing and then immediately
// re-acquiring the lock, as a performance optimization.
parent = s.mu.parent.move()
hasParent = !parent.empty()
if hasParent {
s.mu.finishing = true
s.mu.Unlock()
}
}
// Operate on the parent outside the child (our current receiver) lock.
// childFinished() might call back into the child (`s`) and acquire the
// child's lock.
if hasParent {
// It's possible to race with parent.Finish(); if we lose the race, the
// parent will not have any record of this child. childFinished() deals with
// that possibility.
parent.Span.i.crdb.childFinished(s)
parent.release()
}
// Operate on children.
var children []spanRef
var needRegistryChange bool
{
// Re-acquire the lock if we dropped it above.
if hasParent {
s.mu.Lock()
s.mu.finishing = false
}
// If the span was not part of the registry the first time the lock was
// acquired, above, it never will be (because we marked it as finished). So,
// we'll need to remove it from the registry only if it currently does not
// have a parent. We'll also need to manipulate the registry if there are
// open children (they'll need to be added to the registry).
needRegistryChange = !hasParent || len(s.mu.openChildren) > 0
// Deal with the orphaned children - make them roots. We call into the
// children while holding the parent's lock. As per the span locking
// convention, that's OK (but the reverse isn't).
//
// We also shallow-copy the children for operating on them outside the lock.
children = make([]spanRef, len(s.mu.openChildren))
for i := range s.mu.openChildren {
c := &s.mu.openChildren[i]
c.span().parentFinished()
// Move ownership of the child reference, and also nil out the pointer to
// the child, making it available for GC.
children[i] = c._spanRef.move()
}
s.mu.openChildren = nil // The children were moved away.
s.mu.Unlock()
}
if needRegistryChange {
// Atomically replace s in the registry with all of its still-open children.
s.tracer.activeSpansRegistry.swap(s.spanID, children)
}
return true
}
func (s *crdbSpan) recordingType() tracingpb.RecordingType {
if s == nil {
return tracingpb.RecordingOff
}
return s.mu.recording.recordingType.load()
}
// TraceID is part of the RegistrySpan interface.
func (s *crdbSpan) TraceID() tracingpb.TraceID {
return s.traceID
}
// SpanID is part of the RegistrySpan interface.
func (s *crdbSpan) SpanID() tracingpb.SpanID {
return s.spanID
}
// GetRecording returns the span's recording.
//
// finishing indicates whether s is in the process of finishing. If it isn't,
// the recording will include an "_unfinished" tag.
func (s *crdbSpan) GetRecording(recType tracingpb.RecordingType, finishing bool) Trace {
return s.getRecordingImpl(recType, false /* includeDetachedChildren */, finishing)
}
// GetFullRecording is part of the RegistrySpan interface.
func (s *crdbSpan) GetFullRecording(recType tracingpb.RecordingType) Trace {
return s.getRecordingImpl(recType, true /* includeDetachedChildren */, false /* finishing */)
}
// getRecordingImpl returns the span's recording.
//
// finishing indicates whether s is in the process of finishing. If it isn't,
// the recording will include an "_unfinished" tag.
func (s *crdbSpan) getRecordingImpl(
recType tracingpb.RecordingType, includeDetachedChildren bool, finishing bool,
) Trace {
switch recType {
case tracingpb.RecordingVerbose:
return s.getVerboseRecording(includeDetachedChildren, finishing)
case tracingpb.RecordingStructured:
return MakeTrace(s.getStructuredRecording(includeDetachedChildren))
case tracingpb.RecordingOff:
return Trace{}
default:
panic("unreachable")
}
}
// rollupChildrenMetadata combines the OperationMetadata in `from` into `to`.
func rollupChildrenMetadata(
to map[string]tracingpb.OperationMetadata, from map[string]tracingpb.OperationMetadata,
) {
for op, metadata := range from {
to[op] = to[op].Combine(metadata)
}
}
// getVerboseRecording returns the Span's recording, including its children.
//
// Each RecordedSpan in the Recording contains the ChildrenMetadata of all the
// children, both finished and open, in the spans' subtree.
//
// finishing indicates whether s is in the process of finishing. If it isn't,
// the recording will include an "_unfinished" tag.
func (s *crdbSpan) getVerboseRecording(includeDetachedChildren bool, finishing bool) Trace {
if s == nil {
return Trace{} // noop span
}
var result Trace
var childrenMetadata map[string]tracingpb.OperationMetadata
func() {
s.mu.Lock()
defer s.mu.Unlock()
// Make a clone of the finished children, to avoid working on and returning
// a trace that aliases s.mu.recording.finishedChildren. We're going to
// modify the trace below, when adding open children to it, and
// s.mu.recording.finishedChildren will also evolve after we return the
// copy, so we can't allow for aliases.
result = s.mu.recording.finishedChildren.PartialClone()
// result.Root.StructuredRecords might have accumulated entries from spans
// that were trimmed from finishedChildren. Save them so we can re-insert
// them below.
oldEvents := result.Root.StructuredRecords
result.StructuredRecordsSizeBytes -= result.Root.StructuredRecordsSizeBytes
result.Root = s.getRecordingNoChildrenLocked(tracingpb.RecordingVerbose, finishing)
result.StructuredRecordsSizeBytes += result.Root.StructuredRecordsSizeBytes
for i := range oldEvents {
size := int64(oldEvents[i].Size())
if result.StructuredRecordsSizeBytes+size < maxStructuredBytesPerTrace {
result.Root.AddStructuredRecord(oldEvents[i])
result.StructuredRecordsSizeBytes += size
}
}
// Copy over the OperationMetadata collected from s' finished children.
childrenMetadata = make(map[string]tracingpb.OperationMetadata)
rollupChildrenMetadata(childrenMetadata, s.mu.recording.childrenMetadata)
// We recurse on s' open children to get their verbose recordings, and to
// aggregate OperationMetadata from their children, both finished and open.
now := s.tracer.now()
openRecordings := make([]Trace, 0, len(s.mu.openChildren))
for _, openChild := range s.mu.openChildren {
if openChild.collectRecording || includeDetachedChildren {
openChildSp := openChild.span()
openChildRecording := openChildSp.getVerboseRecording(includeDetachedChildren, false /* finishing */)
openRecordings = append(openRecordings, openChildRecording)
// Record an entry for openChilds' OperationMetadata.
op := openChildSp.operation
meta := childrenMetadata[op]
meta.Count++
meta.ContainsUnfinished = true
meta.Duration += now.Sub(openChildSp.startTime)
childrenMetadata[op] = meta
// Copy over the OperationMetadata collected recursively from openChilds'
// children.
rollupChildrenMetadata(childrenMetadata, openChildRecording.Root.ChildrenMetadata)
}
}
result.addChildren(openRecordings, maxRecordedSpansPerTrace, maxStructuredBytesPerTrace)
}()
// Copy over the OperationMetadata collected from s' children into the root of
// the recording.
if len(childrenMetadata) != 0 {
result.Root.ChildrenMetadata = childrenMetadata
}
return result
}
// getStructuredRecording returns a shallow copy of the structured events in
// this span and in all the children. The returned span will contain all
// structured events across the receiver and all its children. The returned span
// will also have its `childrenMetadata` populated with data for all the
// children.
//
// The caller does not take ownership of the events; the event payloads must be
// treated as immutable since they're shared with the receiver.
func (s *crdbSpan) getStructuredRecording(includeDetachedChildren bool) tracingpb.RecordedSpan {
s.mu.Lock()
defer s.mu.Unlock()
res := s.getRecordingNoChildrenLocked(
tracingpb.RecordingStructured,
false, // finishing - since we're only asking for the structured recording, the argument doesn't matter
)
// Wipe the root's records. We're going to re-add them.
res.StructuredRecordsSizeBytes = 0
res.StructuredRecords = res.StructuredRecords[:0]
// Recursively fetch the StructuredEvents for s' and its children, both
// finished and open.
buf := s.appendStructuredEventsRecursivelyLocked(res.StructuredRecords, includeDetachedChildren)
for i := range buf {
res.AddStructuredRecord(buf[i])
}
// Recursively fetch the OperationMetadata for s' children, both finished and
// open.
res.ChildrenMetadata = make(map[string]tracingpb.OperationMetadata)
s.getChildrenMetadataRecursivelyLocked(res.ChildrenMetadata,
false /* includeRootMetadata */, includeDetachedChildren)
return res
}
// recordFinishedChildren adds the spans in childRecording to s' recording.
//
// s takes ownership of childRecording; the caller is not allowed to use them anymore.
func (s *crdbSpan) recordFinishedChildren(childRecording Trace) {
if childRecording.Empty() {
return
}
// Notify the event listeners registered with s of the StructuredEvents on the
// children being added to s.
events := childRecording.appendStructuredEventsRecursively(nil)
for _, record := range events {
var d types.DynamicAny
if err := types.UnmarshalAny(record.Payload, &d); err != nil {
continue
}
s.notifyEventListeners(d.Message.(protoutil.Message))
}
s.mu.Lock()
defer s.mu.Unlock()
s.recordFinishedChildrenLocked(childRecording)
}
// s takes ownership of childRec; the caller is not allowed to use them
// anymore.
func (s *crdbSpan) recordFinishedChildrenLocked(childRec Trace) {
if childRec.Empty() {
return
}
// Depending on the type of recording, we either keep all the information
// received, or only the structured events.
switch s.recordingType() {
case tracingpb.RecordingVerbose:
// Change the root of the recording to be a child of this Span. This is
// usually already the case, except with DistSQL traces where remote
// processors run in spans that FollowFrom an RPC Span that we don't
// collect.
childRec.Root.ParentSpanID = s.spanID
s.mu.recording.finishedChildren.addChildren([]Trace{childRec}, maxRecordedSpansPerTrace, maxStructuredBytesPerTrace)
case tracingpb.RecordingStructured:
buf := childRec.appendStructuredEventsRecursively(nil /* buffer */)
for i := range buf {
event := &buf[i]
if s.mu.recording.finishedChildren.StructuredRecordsSizeBytes+int64(event.MemorySize()) < maxStructuredBytesPerTrace {
size := s.mu.recording.finishedChildren.Root.AddStructuredRecord(*event)
s.mu.recording.finishedChildren.StructuredRecordsSizeBytes += size
}
}
case tracingpb.RecordingOff:
break
default:
panic(fmt.Sprintf("unrecognized recording mode: %v", s.recordingType()))
}
// Update s' ChildrenMetadata to capture all the spans in childRec.
//
// As an example where we are done finishing `child`:
//
// parent
// child
// grandchild
//
// `parent` will have:
// {child: 2s, grandchild: 1s}
//
// Record finished rootChilds' metadata.
s.mu.recording.childrenMetadata[childRec.Root.Operation] =
s.mu.recording.childrenMetadata[childRec.Root.Operation].Combine(
tracingpb.OperationMetadata{
Count: 1,
Duration: childRec.Root.Duration,
ContainsUnfinished: false,
})
// Record the metadata of rootChilds' children, both finished and open.
//
// GetRecording(...) is responsible for recursively capturing the metadata for
// rootChilds' open and finished children.
rollupChildrenMetadata(s.mu.recording.childrenMetadata, childRec.Root.ChildrenMetadata)
}
func (s *crdbSpan) setTagLocked(key string, value attribute.Value) {
k := attribute.Key(key)
for i := range s.mu.tags {
if s.mu.tags[i].Key == k {
s.mu.tags[i].Value = value
return
}
}
s.mu.tags = append(s.mu.tags, attribute.KeyValue{Key: k, Value: value})
}
// setLazyTagLocked sets a tag that's only stringified if s' recording is
// collected.
//
// value is expected to implement either Stringer or LazyTag.
//
// key is expected to not match the key of a non-lazy tag.
func (s *crdbSpan) setLazyTagLocked(key string, value interface{}) {
for i := range s.mu.lazyTags {
if s.mu.lazyTags[i].Key == key {
s.mu.lazyTags[i].Value = value
return
}
}
s.mu.lazyTags = append(s.mu.lazyTags, lazyTag{Key: key, Value: value})
}
// getLazyTagLocked returns the value of the tag with the given key. If that tag
// doesn't exist, the bool retval is false.
func (s *crdbSpan) getLazyTagLocked(key string) (interface{}, bool) {
for i := range s.mu.lazyTags {
if s.mu.lazyTags[i].Key == key {
return s.mu.lazyTags[i].Value, true
}
}
return nil, false
}
// notifyEventListeners recursively notifies all the EventListeners registered
// with this span and any ancestor spans in the Recording, of a StructuredEvent.
//
// If s has a parent, then we notify the parent of the StructuredEvent outside
// the child (our current receiver) lock. This is as per the lock ordering
// convention between parents and children.
func (s *crdbSpan) notifyEventListeners(item Structured) {
s.mu.Lock()
// Check if the span has been finished concurrently with this notify call.
// This can happen when the signal comes from a child span; in that case the
// child calls into the parent without holding the child's lock, so the call
// can race with parent.Finish().
if s.mu.finished {
s.mu.Unlock()
return
}
// Pass the event to the parent, if necessary.
if s.mu.recording.notifyParentOnStructuredEvent {
parent := s.mu.parent.Span.i.crdb
// Take a reference of s' parent before releasing the mutex. This ensures
// that if the parent were to be Finish()ed concurrently then the span does
// not get reused until we release the reference.
parentRef := makeSpanRef(s.mu.parent.Span)
defer parentRef.release()
s.mu.Unlock()
parent.notifyEventListeners(item)
} else {
s.mu.Unlock()
}
// We can operate on s' eventListeners without holding the mutex because the
// slice is only written to once during span creation.
for _, listener := range s.eventListeners {
listener.Notify(item)
}
}
// record includes a log message in s' recording.
func (s *crdbSpan) record(msg redact.RedactableString) {
if s.recordingType() != tracingpb.RecordingVerbose {
return
}
recordInternal(s, &tracingpb.LogRecord{
Time: s.tracer.now(),
Message: msg,
}, &s.mu.recording.logs)