-
Notifications
You must be signed in to change notification settings - Fork 3.8k
/
replica_rangefeed.go
744 lines (679 loc) · 26.6 KB
/
replica_rangefeed.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
// Copyright 2018 The Cockroach Authors.
//
// Use of this software is governed by the Business Source License
// included in the file licenses/BSL.txt.
//
// As of the Change Date specified in that file, in accordance with
// the Business Source License, use of this software will be governed
// by the Apache License, Version 2.0, included in the file
// licenses/APL.txt.
package kvserver
import (
"context"
"fmt"
"sync"
"time"
"github.com/cockroachdb/cockroach/pkg/clusterversion"
"github.com/cockroachdb/cockroach/pkg/docs"
"github.com/cockroachdb/cockroach/pkg/keys"
"github.com/cockroachdb/cockroach/pkg/kv"
"github.com/cockroachdb/cockroach/pkg/kv/kvserver/closedts"
"github.com/cockroachdb/cockroach/pkg/kv/kvserver/intentresolver"
"github.com/cockroachdb/cockroach/pkg/kv/kvserver/kvserverpb"
"github.com/cockroachdb/cockroach/pkg/kv/kvserver/rangefeed"
"github.com/cockroachdb/cockroach/pkg/roachpb"
"github.com/cockroachdb/cockroach/pkg/settings"
"github.com/cockroachdb/cockroach/pkg/storage"
"github.com/cockroachdb/cockroach/pkg/storage/enginepb"
"github.com/cockroachdb/cockroach/pkg/util/contextutil"
"github.com/cockroachdb/cockroach/pkg/util/hlc"
"github.com/cockroachdb/cockroach/pkg/util/log"
"github.com/cockroachdb/cockroach/pkg/util/syncutil"
"github.com/cockroachdb/cockroach/pkg/util/uuid"
"github.com/cockroachdb/errors"
)
// RangefeedEnabled is a cluster setting that enables rangefeed requests.
var RangefeedEnabled = settings.RegisterBoolSetting(
"kv.rangefeed.enabled",
"if set, rangefeed registration is enabled",
false,
).WithPublic()
// RangeFeedRefreshInterval controls the frequency with which we deliver closed
// timestamp updates to rangefeeds.
var RangeFeedRefreshInterval = settings.RegisterDurationSetting(
"kv.rangefeed.closed_timestamp_refresh_interval",
"the interval at which closed-timestamp updates"+
"are delivered to rangefeeds; set to 0 to use kv.closed_timestamp.side_transport_interval",
0,
settings.NonNegativeDuration,
)
// lockedRangefeedStream is an implementation of rangefeed.Stream which provides
// support for concurrent calls to Send. Note that the default implementation of
// grpc.Stream is not safe for concurrent calls to Send.
type lockedRangefeedStream struct {
wrapped roachpb.Internal_RangeFeedServer
sendMu syncutil.Mutex
}
func (s *lockedRangefeedStream) Context() context.Context {
return s.wrapped.Context()
}
func (s *lockedRangefeedStream) Send(e *roachpb.RangeFeedEvent) error {
s.sendMu.Lock()
defer s.sendMu.Unlock()
return s.wrapped.Send(e)
}
// rangefeedTxnPusher is a shim around intentResolver that implements the
// rangefeed.TxnPusher interface.
type rangefeedTxnPusher struct {
ir *intentresolver.IntentResolver
r *Replica
}
// PushTxns is part of the rangefeed.TxnPusher interface. It performs a
// high-priority push at the specified timestamp to each of the specified
// transactions.
func (tp *rangefeedTxnPusher) PushTxns(
ctx context.Context, txns []enginepb.TxnMeta, ts hlc.Timestamp,
) ([]*roachpb.Transaction, error) {
pushTxnMap := make(map[uuid.UUID]*enginepb.TxnMeta, len(txns))
for i := range txns {
txn := &txns[i]
pushTxnMap[txn.ID] = txn
}
h := roachpb.Header{
Timestamp: ts,
Txn: &roachpb.Transaction{
TxnMeta: enginepb.TxnMeta{
Priority: enginepb.MaxTxnPriority,
},
},
}
pushedTxnMap, pErr := tp.ir.MaybePushTransactions(
ctx, pushTxnMap, h, roachpb.PUSH_TIMESTAMP, false, /* skipIfInFlight */
)
if pErr != nil {
return nil, pErr.GoError()
}
pushedTxns := make([]*roachpb.Transaction, 0, len(pushedTxnMap))
for _, txn := range pushedTxnMap {
pushedTxns = append(pushedTxns, txn)
}
return pushedTxns, nil
}
// ResolveIntents is part of the rangefeed.TxnPusher interface.
func (tp *rangefeedTxnPusher) ResolveIntents(
ctx context.Context, intents []roachpb.LockUpdate,
) error {
return tp.ir.ResolveIntents(ctx, intents,
// NB: Poison is ignored for non-ABORTED intents.
intentresolver.ResolveOptions{Poison: true},
).GoError()
}
type iteratorWithCloser struct {
storage.SimpleMVCCIterator
close func()
}
func (i iteratorWithCloser) Close() {
i.SimpleMVCCIterator.Close()
i.close()
}
// RangeFeed registers a rangefeed over the specified span. It sends updates to
// the provided stream and returns with an optional error when the rangefeed is
// complete. The provided ConcurrentRequestLimiter is used to limit the number
// of rangefeeds using catchup iterators at the same time.
func (r *Replica) RangeFeed(
args *roachpb.RangeFeedRequest, stream roachpb.Internal_RangeFeedServer,
) *roachpb.Error {
return r.rangeFeedWithRangeID(r.RangeID, args, stream)
}
func (r *Replica) rangeFeedWithRangeID(
_forStacks roachpb.RangeID,
args *roachpb.RangeFeedRequest,
stream roachpb.Internal_RangeFeedServer,
) *roachpb.Error {
if !r.isSystemRange() && !RangefeedEnabled.Get(&r.store.cfg.Settings.SV) {
return roachpb.NewErrorf("rangefeeds require the kv.rangefeed.enabled setting. See %s",
docs.URL(`change-data-capture.html#enable-rangefeeds-to-reduce-latency`))
}
ctx := r.AnnotateCtx(stream.Context())
rSpan, err := keys.SpanAddr(args.Span)
if err != nil {
return roachpb.NewError(err)
}
if err := r.ensureClosedTimestampStarted(ctx); err != nil {
if err := stream.Send(&roachpb.RangeFeedEvent{Error: &roachpb.RangeFeedError{
Error: *err,
}}); err != nil {
return roachpb.NewError(err)
}
return nil
}
// If the RangeFeed is performing a catch-up scan then it will observe all
// values above args.Timestamp. If the RangeFeed is requesting previous
// values for every update then it will also need to look for the version
// proceeding each value observed during the catch-up scan timestamp. This
// means that the earliest value observed by the catch-up scan will be
// args.Timestamp.Next and the earliest timestamp used to retrieve the
// previous version of a value will be args.Timestamp, so this is the
// timestamp we must check against the GCThreshold.
checkTS := args.Timestamp
if checkTS.IsEmpty() {
// If no timestamp was provided then we're not going to run a catch-up
// scan, so make sure the GCThreshold in requestCanProceed succeeds.
checkTS = r.Clock().Now()
}
lockedStream := &lockedRangefeedStream{wrapped: stream}
errC := make(chan *roachpb.Error, 1)
// If we will be using a catch-up iterator, wait for the limiter here before
// locking raftMu.
usingCatchupIter := false
var iterSemRelease func()
if !args.Timestamp.IsEmpty() {
usingCatchupIter = true
alloc, err := r.store.limiters.ConcurrentRangefeedIters.Begin(ctx)
if err != nil {
return roachpb.NewError(err)
}
// Finish the iterator limit if we exit before the iterator finishes.
// The release function will be hooked into the Close method on the
// iterator below. The sync.Once prevents any races between exiting early
// from this call and finishing the catchup scan underneath the
// rangefeed.Processor. We need to release here in case we fail to
// register the processor, or, more perniciously, in the case where the
// processor gets registered by shut down before starting the catchup
// scan.
var iterSemReleaseOnce sync.Once
iterSemRelease = func() {
iterSemReleaseOnce.Do(alloc.Release)
}
defer iterSemRelease()
}
// Lock the raftMu, then register the stream as a new rangefeed registration.
// raftMu is held so that the catch-up iterator is captured in the same
// critical-section as the registration is established. This ensures that
// the registration doesn't miss any events.
r.raftMu.Lock()
if err := r.checkExecutionCanProceedForRangeFeed(ctx, rSpan, checkTS); err != nil {
r.raftMu.Unlock()
return roachpb.NewError(err)
}
// Register the stream with a catch-up iterator.
var catchUpIterFunc rangefeed.IteratorConstructor
if usingCatchupIter {
catchUpIterFunc = func() storage.SimpleMVCCIterator {
// Assert that we still hold the raftMu when this is called to ensure
// that the catchUpIter reads from the current snapshot.
r.raftMu.AssertHeld()
innerIter := r.Engine().NewMVCCIterator(storage.MVCCKeyAndIntentsIterKind, storage.IterOptions{
UpperBound: args.Span.EndKey,
// RangeFeed originally intended to use the time-bound iterator
// performance optimization. However, they've had correctness issues in
// the past (#28358, #34819) and no-one has the time for the due-diligence
// necessary to be confidant in their correctness going forward. Not using
// them causes the total time spent in RangeFeed catchup on changefeed
// over tpcc-1000 to go from 40s -> 4853s, which is quite large but still
// workable. See #35122 for details.
// MinTimestampHint: args.Timestamp,
})
catchUpIter := iteratorWithCloser{
SimpleMVCCIterator: innerIter,
close: iterSemRelease,
}
return catchUpIter
}
}
p := r.registerWithRangefeedRaftMuLocked(
ctx, rSpan, args.Timestamp, catchUpIterFunc, args.WithDiff, lockedStream, errC,
)
r.raftMu.Unlock()
// When this function returns, attempt to clean up the rangefeed.
defer r.maybeDisconnectEmptyRangefeed(p)
// Block on the registration's error channel. Note that the registration
// observes stream.Context().Done.
return <-errC
}
func (r *Replica) getRangefeedProcessorAndFilter() (*rangefeed.Processor, *rangefeed.Filter) {
r.rangefeedMu.RLock()
defer r.rangefeedMu.RUnlock()
return r.rangefeedMu.proc, r.rangefeedMu.opFilter
}
func (r *Replica) getRangefeedProcessor() *rangefeed.Processor {
p, _ := r.getRangefeedProcessorAndFilter()
return p
}
func (r *Replica) setRangefeedProcessor(p *rangefeed.Processor) {
r.rangefeedMu.Lock()
defer r.rangefeedMu.Unlock()
r.rangefeedMu.proc = p
r.store.addReplicaWithRangefeed(r.RangeID)
}
func (r *Replica) unsetRangefeedProcessorLocked(p *rangefeed.Processor) {
if r.rangefeedMu.proc != p {
// The processor was already unset.
return
}
r.rangefeedMu.proc = nil
r.rangefeedMu.opFilter = nil
r.store.removeReplicaWithRangefeed(r.RangeID)
}
func (r *Replica) unsetRangefeedProcessor(p *rangefeed.Processor) {
r.rangefeedMu.Lock()
defer r.rangefeedMu.Unlock()
r.unsetRangefeedProcessorLocked(p)
}
func (r *Replica) setRangefeedFilterLocked(f *rangefeed.Filter) {
if f == nil {
panic("filter nil")
}
r.rangefeedMu.opFilter = f
}
func (r *Replica) updateRangefeedFilterLocked() bool {
f := r.rangefeedMu.proc.Filter()
// Return whether the update to the filter was successful or not. If
// the processor was already stopped then we can't update the filter.
if f != nil {
r.setRangefeedFilterLocked(f)
return true
}
return false
}
// The size of an event is 112 bytes, so this will result in an allocation on
// the order of ~512KB per RangeFeed. That's probably ok given the number of
// ranges on a node that we'd like to support with active rangefeeds, but it's
// certainly on the upper end of the range.
//
// TODO(dan): Everyone seems to agree that this memory limit would be better set
// at a store-wide level, but there doesn't seem to be an easy way to accomplish
// that.
const defaultEventChanCap = 4096
// registerWithRangefeedRaftMuLocked sets up a Rangefeed registration over the
// provided span. It initializes a rangefeed for the Replica if one is not
// already running. Requires raftMu be locked.
func (r *Replica) registerWithRangefeedRaftMuLocked(
ctx context.Context,
span roachpb.RSpan,
startTS hlc.Timestamp,
catchupIter rangefeed.IteratorConstructor,
withDiff bool,
stream rangefeed.Stream,
errC chan<- *roachpb.Error,
) *rangefeed.Processor {
// Attempt to register with an existing Rangefeed processor, if one exists.
// The locking here is a little tricky because we need to handle the case
// of concurrent processor shutdowns (see maybeDisconnectEmptyRangefeed).
r.rangefeedMu.Lock()
p := r.rangefeedMu.proc
if p != nil {
reg, filter := p.Register(span, startTS, catchupIter, withDiff, stream, errC)
if reg {
// Registered successfully with an existing processor.
// Update the rangefeed filter to avoid filtering ops
// that this new registration might be interested in.
r.setRangefeedFilterLocked(filter)
r.rangefeedMu.Unlock()
return p
}
// If the registration failed, the processor was already being shut
// down. Help unset it and then continue on with initializing a new
// processor.
r.unsetRangefeedProcessorLocked(p)
p = nil
}
r.rangefeedMu.Unlock()
// Create a new rangefeed.
desc := r.Desc()
tp := rangefeedTxnPusher{ir: r.store.intentResolver, r: r}
cfg := rangefeed.Config{
AmbientContext: r.AmbientContext,
Clock: r.Clock(),
RangeID: r.RangeID,
Span: desc.RSpan(),
TxnPusher: &tp,
PushTxnsInterval: r.store.TestingKnobs().RangeFeedPushTxnsInterval,
PushTxnsAge: r.store.TestingKnobs().RangeFeedPushTxnsAge,
EventChanCap: defaultEventChanCap,
EventChanTimeout: 50 * time.Millisecond,
Metrics: r.store.metrics.RangeFeedMetrics,
}
p = rangefeed.NewProcessor(cfg)
// Start it with an iterator to initialize the resolved timestamp.
rtsIter := func() storage.SimpleMVCCIterator {
// Assert that we still hold the raftMu when this is called to ensure
// that the catchUpIter reads from the current snapshot. The replica
// synchronizes with the rangefeed Processor calling this function by
// waiting for the Register call below to return.
r.raftMu.AssertHeld()
return r.Engine().NewMVCCIterator(storage.MVCCKeyAndIntentsIterKind, storage.IterOptions{
UpperBound: desc.EndKey.AsRawKey(),
// TODO(nvanbenschoten): To facilitate fast restarts of rangefeed
// we should periodically persist the resolved timestamp so that we
// can initialize the rangefeed using an iterator that only needs to
// observe timestamps back to the last recorded resolved timestamp.
// This is safe because we know that there are no unresolved intents
// at times before a resolved timestamp.
// MinTimestampHint: r.ResolvedTimestamp,
})
}
p.Start(r.store.Stopper(), rtsIter)
// Register with the processor *before* we attach its reference to the
// Replica struct. This ensures that the registration is in place before
// any other goroutines are able to stop the processor. In other words,
// this ensures that the only time the registration fails is during
// server shutdown.
reg, filter := p.Register(span, startTS, catchupIter, withDiff, stream, errC)
if !reg {
select {
case <-r.store.Stopper().ShouldQuiesce():
errC <- roachpb.NewError(&roachpb.NodeUnavailableError{})
return nil
default:
panic("unexpected Stopped processor")
}
}
// Set the rangefeed processor and filter reference. We know that no other
// registration process could have raced with ours because calling this
// method requires raftMu to be exclusively locked.
r.setRangefeedProcessor(p)
r.setRangefeedFilterLocked(filter)
// Check for an initial closed timestamp update immediately to help
// initialize the rangefeed's resolved timestamp as soon as possible.
r.handleClosedTimestampUpdateRaftMuLocked(ctx)
return p
}
// maybeDisconnectEmptyRangefeed tears down the provided Processor if it is
// still active and if it no longer has any registrations.
func (r *Replica) maybeDisconnectEmptyRangefeed(p *rangefeed.Processor) {
r.rangefeedMu.Lock()
defer r.rangefeedMu.Unlock()
if p == nil || p != r.rangefeedMu.proc {
// The processor has already been removed or replaced.
return
}
if p.Len() == 0 || !r.updateRangefeedFilterLocked() {
// Stop the rangefeed processor if it has no registrations or if we are
// unable to update the operation filter.
p.Stop()
r.unsetRangefeedProcessorLocked(p)
}
}
// disconnectRangefeedWithErr broadcasts the provided error to all rangefeed
// registrations and tears down the provided rangefeed Processor.
func (r *Replica) disconnectRangefeedWithErr(p *rangefeed.Processor, pErr *roachpb.Error) {
p.StopWithErr(pErr)
r.unsetRangefeedProcessor(p)
}
// disconnectRangefeedWithReason broadcasts the provided rangefeed retry reason
// to all rangefeed registrations and tears down the active rangefeed Processor.
// No-op if a rangefeed is not active.
func (r *Replica) disconnectRangefeedWithReason(reason roachpb.RangeFeedRetryError_Reason) {
p := r.getRangefeedProcessor()
if p == nil {
return
}
pErr := roachpb.NewError(roachpb.NewRangeFeedRetryError(reason))
r.disconnectRangefeedWithErr(p, pErr)
}
// numRangefeedRegistrations returns the number of registrations attached to the
// Replica's rangefeed processor.
func (r *Replica) numRangefeedRegistrations() int {
p := r.getRangefeedProcessor()
if p == nil {
return 0
}
return p.Len()
}
// populatePrevValsInLogicalOpLogRaftMuLocked updates the provided logical op
// log with previous values read from the reader, which is expected to reflect
// the state of the Replica before the operations in the logical op log are
// applied. No-op if a rangefeed is not active. Requires raftMu to be locked.
func (r *Replica) populatePrevValsInLogicalOpLogRaftMuLocked(
ctx context.Context, ops *kvserverpb.LogicalOpLog, prevReader storage.Reader,
) {
p, filter := r.getRangefeedProcessorAndFilter()
if p == nil {
return
}
// Read from the Reader to populate the PrevValue fields.
for _, op := range ops.Ops {
var key []byte
var ts hlc.Timestamp
var prevValPtr *[]byte
switch t := op.GetValue().(type) {
case *enginepb.MVCCWriteValueOp:
key, ts, prevValPtr = t.Key, t.Timestamp, &t.PrevValue
case *enginepb.MVCCCommitIntentOp:
key, ts, prevValPtr = t.Key, t.Timestamp, &t.PrevValue
case *enginepb.MVCCWriteIntentOp,
*enginepb.MVCCUpdateIntentOp,
*enginepb.MVCCAbortIntentOp,
*enginepb.MVCCAbortTxnOp:
// Nothing to do.
continue
default:
panic(errors.AssertionFailedf("unknown logical op %T", t))
}
// Don't read previous values from the reader for operations that are
// not needed by any rangefeed registration.
if !filter.NeedPrevVal(roachpb.Span{Key: key}) {
continue
}
// Read the previous value from the prev Reader. Unlike the new value
// (see handleLogicalOpLogRaftMuLocked), this one may be missing.
prevVal, _, err := storage.MVCCGet(
ctx, prevReader, key, ts, storage.MVCCGetOptions{Tombstones: true, Inconsistent: true},
)
if err != nil {
r.disconnectRangefeedWithErr(p, roachpb.NewErrorf(
"error consuming %T for key %v @ ts %v: %v", op, key, ts, err,
))
return
}
if prevVal != nil {
*prevValPtr = prevVal.RawBytes
} else {
*prevValPtr = nil
}
}
}
// handleLogicalOpLogRaftMuLocked passes the logical op log to the active
// rangefeed, if one is running. The method accepts a reader, which is used to
// look up the values associated with key-value writes in the log before handing
// them to the rangefeed processor. No-op if a rangefeed is not active. Requires
// raftMu to be locked.
func (r *Replica) handleLogicalOpLogRaftMuLocked(
ctx context.Context, ops *kvserverpb.LogicalOpLog, reader storage.Reader,
) {
p, filter := r.getRangefeedProcessorAndFilter()
if p == nil {
return
}
if ops == nil {
// Rangefeeds can't be turned on unless RangefeedEnabled is set to true,
// after which point new Raft proposals will include logical op logs.
// However, there's a race present where old Raft commands without a
// logical op log might be passed to a rangefeed. Since the effect of
// these commands was not included in the catch-up scan of current
// registrations, we're forced to throw an error. The rangefeed clients
// can reconnect at a later time, at which point all new Raft commands
// should have logical op logs.
r.disconnectRangefeedWithReason(roachpb.RangeFeedRetryError_REASON_LOGICAL_OPS_MISSING)
return
}
if len(ops.Ops) == 0 {
return
}
// When reading straight from the Raft log, some logical ops will not be
// fully populated. Read from the Reader to populate all fields.
for _, op := range ops.Ops {
var key []byte
var ts hlc.Timestamp
var valPtr *[]byte
switch t := op.GetValue().(type) {
case *enginepb.MVCCWriteValueOp:
key, ts, valPtr = t.Key, t.Timestamp, &t.Value
case *enginepb.MVCCCommitIntentOp:
key, ts, valPtr = t.Key, t.Timestamp, &t.Value
case *enginepb.MVCCWriteIntentOp,
*enginepb.MVCCUpdateIntentOp,
*enginepb.MVCCAbortIntentOp,
*enginepb.MVCCAbortTxnOp:
// Nothing to do.
continue
default:
panic(errors.AssertionFailedf("unknown logical op %T", t))
}
// Don't read values from the reader for operations that are not needed
// by any rangefeed registration. We still need to inform the rangefeed
// processor of the changes to intents so that it can track unresolved
// intents, but we don't need to provide values.
//
// We could filter out MVCCWriteValueOp operations entirely at this
// point if they are not needed by any registration, but as long as we
// avoid the value lookup here, doing any more doesn't seem worth it.
if !filter.NeedVal(roachpb.Span{Key: key}) {
continue
}
// Read the value directly from the Reader. This is performed in the
// same raftMu critical section that the logical op's corresponding
// WriteBatch is applied, so the value should exist.
val, _, err := storage.MVCCGet(ctx, reader, key, ts, storage.MVCCGetOptions{Tombstones: true})
if val == nil && err == nil {
err = errors.New("value missing in reader")
}
if err != nil {
r.disconnectRangefeedWithErr(p, roachpb.NewErrorf(
"error consuming %T for key %v @ ts %v: %v", op, key, ts, err,
))
return
}
*valPtr = val.RawBytes
}
// Pass the ops to the rangefeed processor.
if !p.ConsumeLogicalOps(ops.Ops...) {
// Consumption failed and the rangefeed was stopped.
r.unsetRangefeedProcessor(p)
}
}
// handleClosedTimestampUpdate determines the current maximum closed timestamp
// for the replica and informs the rangefeed, if one is running. No-op if a
// rangefeed is not active.
func (r *Replica) handleClosedTimestampUpdate(ctx context.Context) {
ctx = r.AnnotateCtx(ctx)
r.raftMu.Lock()
defer r.raftMu.Unlock()
r.handleClosedTimestampUpdateRaftMuLocked(ctx)
}
// handleClosedTimestampUpdateRaftMuLocked is like handleClosedTimestampUpdate,
// but it requires raftMu to be locked.
func (r *Replica) handleClosedTimestampUpdateRaftMuLocked(ctx context.Context) {
p := r.getRangefeedProcessor()
if p == nil {
return
}
// Determine what the maximum closed timestamp is for this replica.
closedTS, _ := r.maxClosed(ctx)
// If the closed timestamp is sufficiently stale, signal that we want an
// update to the leaseholder so that it will eventually begin to progress
// again.
behind := r.Clock().PhysicalTime().Sub(closedTS.GoTime())
slowClosedTSThresh := 5 * closedts.TargetDuration.Get(&r.store.cfg.Settings.SV)
if behind > slowClosedTSThresh {
m := r.store.metrics.RangeFeedMetrics
if m.RangeFeedSlowClosedTimestampLogN.ShouldLog() {
if closedTS.IsEmpty() {
log.Infof(ctx, "RangeFeed closed timestamp is empty")
} else {
log.Infof(ctx, "RangeFeed closed timestamp %s is behind by %s", closedTS, behind)
}
}
// Asynchronously attempt to nudge the closed timestamp in case it's stuck.
key := fmt.Sprintf(`rangefeed-slow-closed-timestamp-nudge-r%d`, r.RangeID)
// Ignore the result of DoChan since, to keep this all async, it always
// returns nil and any errors are logged by the closure passed to the
// `DoChan` call.
_, _ = m.RangeFeedSlowClosedTimestampNudge.DoChan(key, func() (interface{}, error) {
// Also ignore the result of RunTask, since it only returns errors when
// the task didn't start because we're shutting down.
_ = r.store.stopper.RunTask(ctx, key, func(context.Context) {
// Limit the amount of work this can suddenly spin up. In particular,
// this is to protect against the case of a system-wide slowdown on
// closed timestamps, which would otherwise potentially launch a huge
// number of lease acquisitions all at once.
select {
case <-ctx.Done():
// Don't need to do this anymore.
return
case m.RangeFeedSlowClosedTimestampNudgeSem <- struct{}{}:
}
defer func() { <-m.RangeFeedSlowClosedTimestampNudgeSem }()
if err := r.ensureClosedTimestampStarted(ctx); err != nil {
log.Infof(ctx, `RangeFeed failed to nudge: %s`, err)
}
})
return nil, nil
})
}
// If the closed timestamp is not empty, inform the Processor.
if closedTS.IsEmpty() {
return
}
if !p.ForwardClosedTS(closedTS) {
// Consumption failed and the rangefeed was stopped.
r.unsetRangefeedProcessor(p)
}
}
// ensureClosedTimestampStarted does its best to make sure that this node is
// receiving closed timestamp updates for this replica's range. Note that this
// forces a valid lease to exist on the range and so can be reasonably expensive
// if there is not already a valid lease.
func (r *Replica) ensureClosedTimestampStarted(ctx context.Context) *roachpb.Error {
// Make sure there's a valid lease. If there's no lease, nobody's sending
// closed timestamp updates.
lease := r.CurrentLeaseStatus(ctx)
if !lease.IsValid() {
// Send a cheap request that needs a leaseholder, in order to ensure a
// lease. We don't care about the request's result, only its routing. We're
// employing higher-level machinery here (the DistSender); there's no better
// way to ensure that someone (potentially another replica) takes a lease.
// In particular, r.redirectOnOrAcquireLease() doesn't work because, if the
// current lease is invalid and the current replica is not a leader, the
// current replica will not take a lease.
log.VEventf(ctx, 2, "ensuring lease for rangefeed range. current lease invalid: %s", lease.Lease)
err := contextutil.RunWithTimeout(ctx, "read forcing lease acquisition", 5*time.Second,
func(ctx context.Context) error {
var b kv.Batch
liReq := &roachpb.LeaseInfoRequest{}
liReq.Key = r.Desc().StartKey.AsRawKey()
b.AddRawRequest(liReq)
return r.store.DB().Run(ctx, &b)
})
if err != nil {
if errors.HasType(err, (*contextutil.TimeoutError)(nil)) {
if r.store.cfg.Settings.Version.IsActive(ctx, clusterversion.NewRetryableRangefeedErrors) {
err = &roachpb.RangeFeedRetryError{
Reason: roachpb.RangeFeedRetryError_REASON_NO_LEASEHOLDER,
}
}
}
return roachpb.NewError(err)
}
}
if r.store.cfg.Settings.Version.IsActive(ctx, clusterversion.ClosedTimestampsRaftTransport) {
// In the "new closed timestamps subsystem", there's nothing more to do.
// Once there's a leaseholder, that node will connect to us and inform us of
// updates.
return nil
}
lease = r.CurrentLeaseStatus(ctx)
if lease.OwnedBy(r.StoreID()) {
// We have the lease. Request is essentially a wrapper for calling EmitMLAI
// on a remote node, so cut out the middleman.
r.EmitMLAI()
return nil
}
leaseholderNodeID := lease.Lease.Replica.NodeID
// Request fixes any issues where we've missed a closed timestamp update or
// where we're not connected to receive them from this node in the first
// place.
r.store.cfg.ClosedTimestamp.Clients.Request(leaseholderNodeID, r.RangeID)
return nil
}