-
Notifications
You must be signed in to change notification settings - Fork 3.9k
/
Copy pathreplica_write.go
604 lines (563 loc) · 24.3 KB
/
replica_write.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
// Copyright 2019 The Cockroach Authors.
//
// Use of this software is governed by the Business Source License
// included in the file licenses/BSL.txt.
//
// As of the Change Date specified in that file, in accordance with
// the Business Source License, use of this software will be governed
// by the Apache License, Version 2.0, included in the file
// licenses/APL.txt.
package storage
import (
"context"
"github.com/cockroachdb/cockroach/pkg/base"
"github.com/cockroachdb/cockroach/pkg/roachpb"
"github.com/cockroachdb/cockroach/pkg/storage/batcheval"
"github.com/cockroachdb/cockroach/pkg/storage/batcheval/result"
"github.com/cockroachdb/cockroach/pkg/storage/closedts/ctpb"
"github.com/cockroachdb/cockroach/pkg/storage/engine"
"github.com/cockroachdb/cockroach/pkg/storage/engine/enginepb"
"github.com/cockroachdb/cockroach/pkg/storage/spanset"
"github.com/cockroachdb/cockroach/pkg/storage/storagebase"
"github.com/cockroachdb/cockroach/pkg/storage/storagepb"
"github.com/cockroachdb/cockroach/pkg/util"
"github.com/cockroachdb/cockroach/pkg/util/log"
"github.com/cockroachdb/cockroach/pkg/util/timeutil"
"github.com/pkg/errors"
)
// executeWriteBatch is the entry point for client requests which may mutate the
// range's replicated state. Requests taking this path are evaluated and ultimately
// serialized through Raft, but pass through additional machinery whose goal is
// to allow commands which commute to be proposed in parallel. The naive
// alternative, submitting requests to Raft one after another, paying massive
// latency, is only taken for commands whose effects may overlap.
//
// Concretely,
//
// - Latches for the keys affected by the command are acquired (i.e.
// tracked as in-flight mutations).
// - In doing so, we wait until no overlapping mutations are in flight.
// - The timestamp cache is checked to determine if the command's affected keys
// were accessed with a timestamp exceeding that of the command; if so, the
// command's timestamp is incremented accordingly.
// - A RaftCommand is constructed. If proposer-evaluated KV is active,
// the request is evaluated and the Result is placed in the
// RaftCommand. If not, the request itself is added to the command.
// - The proposal is inserted into the Replica's in-flight proposals map,
// a lease index is assigned to it, and it is submitted to Raft, returning
// a channel.
// - The result of the Raft proposal is read from the channel and the command
// registered with the timestamp cache, its latches are released, and
// its result (which could be an error) is returned to the client.
//
// Returns exactly one of a response, an error or re-evaluation reason.
//
// NB: changing BatchRequest to a pointer here would have to be done cautiously
// as this method makes the assumption that it operates on a shallow copy (see
// call to applyTimestampCache).
func (r *Replica) executeWriteBatch(
ctx context.Context, ba *roachpb.BatchRequest,
) (br *roachpb.BatchResponse, pErr *roachpb.Error) {
startTime := timeutil.Now()
if err := r.maybeBackpressureWriteBatch(ctx, ba); err != nil {
return nil, roachpb.NewError(err)
}
// NB: must be performed before collecting request spans.
ba, err := maybeStripInFlightWrites(ba)
if err != nil {
return nil, roachpb.NewError(err)
}
spans, err := r.collectSpans(ba)
if err != nil {
return nil, roachpb.NewError(err)
}
var ec endCmds
if !ba.IsLeaseRequest() {
// Acquire latches to prevent overlapping commands from executing until
// this command completes. Note that this must be done before getting
// the max timestamp for the key(s), as timestamp cache is only updated
// after preceding commands have been run to successful completion.
log.Event(ctx, "acquire latches")
var err error
ec, err = r.beginCmds(ctx, ba, spans)
if err != nil {
return nil, roachpb.NewError(err)
}
}
// Guarantee we release the latches that we just acquired if we never make
// it to passing responsibility to evalAndPropose. This is wrapped to delay
// pErr evaluation to its value when returning.
defer func() {
// No-op if we move ec into evalAndPropose.
ec.done(ba, br, pErr)
}()
var lease roachpb.Lease
var status storagepb.LeaseStatus
// For lease commands, use the provided previous lease for verification.
if ba.IsSingleSkipLeaseCheckRequest() {
lease = ba.GetPrevLeaseForLeaseRequest()
} else {
// Other write commands require that this replica has the range
// lease.
if status, pErr = r.redirectOnOrAcquireLease(ctx); pErr != nil {
return nil, pErr
}
lease = status.Lease
}
r.limitTxnMaxTimestamp(ctx, ba, status)
minTS, untrack := r.store.cfg.ClosedTimestamp.Tracker.Track(ctx)
defer untrack(ctx, 0, 0, 0) // covers all error returns below
// Examine the read and write timestamp caches for preceding
// commands which require this command to move its timestamp
// forward. Or, in the case of a transactional write, the txn
// timestamp and possible write-too-old bool.
if bumped, pErr := r.applyTimestampCache(ctx, ba, minTS); pErr != nil {
return nil, pErr
} else if bumped {
// If we bump the transaction's timestamp, we must absolutely
// tell the client in a response transaction (for otherwise it
// doesn't know about the incremented timestamp). Response
// transactions are set far away from this code, but at the time
// of writing, they always seem to be set. Since that is a
// likely target of future micro-optimization, this assertion is
// meant to protect against future correctness anomalies.
defer func() {
if br != nil && ba.Txn != nil && br.Txn == nil {
log.Fatalf(ctx, "assertion failed: transaction updated by "+
"timestamp cache, but transaction returned in response; "+
"updated timestamp would have been lost (recovered): "+
"%s in batch %s", ba.Txn, ba,
)
}
}()
}
log.Event(ctx, "applied timestamp cache")
// After the command is proposed to Raft, invoking endCmds.done is the
// responsibility of Raft, so move the endCmds into evalAndPropose.
ch, abandon, maxLeaseIndex, pErr := r.evalAndPropose(ctx, lease, ba, spans, ec.move())
if pErr != nil {
if maxLeaseIndex != 0 {
log.Fatalf(
ctx, "unexpected max lease index %d assigned to failed proposal: %s, error %s",
maxLeaseIndex, ba, pErr,
)
}
return nil, pErr
}
// A max lease index of zero is returned when no proposal was made or a lease was proposed.
// In both cases, we don't need to communicate a MLAI. Furthermore, for lease proposals we
// cannot communicate under the lease's epoch. Instead the code calls EmitMLAI explicitly
// as a side effect of stepping up as leaseholder.
if maxLeaseIndex != 0 {
untrack(ctx, ctpb.Epoch(lease.Epoch), r.RangeID, ctpb.LAI(maxLeaseIndex))
}
// If the command was accepted by raft, wait for the range to apply it.
ctxDone := ctx.Done()
shouldQuiesce := r.store.stopper.ShouldQuiesce()
slowTimer := timeutil.NewTimer()
defer slowTimer.Stop()
slowTimer.Reset(base.SlowRequestThreshold)
tBegin := timeutil.Now()
for {
select {
case propResult := <-ch:
// Semi-synchronously process any intents that need resolving here in
// order to apply back pressure on the client which generated them. The
// resolution is semi-synchronous in that there is a limited number of
// outstanding asynchronous resolution tasks allowed after which
// further calls will block.
if len(propResult.Intents) > 0 {
// TODO(peter): Re-proposed and canceled (but executed) commands can
// both leave intents to GC that don't hit this code path. No good
// solution presents itself at the moment and such intents will be
// resolved on reads.
if err := r.store.intentResolver.CleanupIntentsAsync(ctx, propResult.Intents, true /* allowSync */); err != nil {
log.Warning(ctx, err)
}
}
if len(propResult.EndTxns) > 0 {
if err := r.store.intentResolver.CleanupTxnIntentsAsync(ctx, r.RangeID, propResult.EndTxns, true /* allowSync */); err != nil {
log.Warning(ctx, err)
}
}
return propResult.Reply, propResult.Err
case <-slowTimer.C:
slowTimer.Read = true
log.Warningf(ctx, `have been waiting %.2fs for proposing command %s.
This range is likely unavailable.
Please submit this message at
https://github.com/cockroachdb/cockroach/issues/new/choose
along with
https://yourhost:8080/#/reports/range/%d
and the following Raft status: %+v`,
timeutil.Since(tBegin).Seconds(),
ba,
r.RangeID,
r.RaftStatus(),
)
r.store.metrics.SlowRaftRequests.Inc(1)
defer func() {
r.store.metrics.SlowRaftRequests.Dec(1)
log.Infof(
ctx,
"slow command %s finished after %.2fs with error %v",
ba,
timeutil.Since(tBegin).Seconds(),
pErr,
)
}()
case <-ctxDone:
// If our context was canceled, return an AmbiguousResultError,
// which indicates to the caller that the command may have executed.
abandon()
log.VEventf(ctx, 2, "context cancellation after %0.1fs of attempting command %s",
timeutil.Since(startTime).Seconds(), ba)
return nil, roachpb.NewError(roachpb.NewAmbiguousResultError(ctx.Err().Error()))
case <-shouldQuiesce:
// If shutting down, return an AmbiguousResultError, which indicates
// to the caller that the command may have executed.
abandon()
log.VEventf(ctx, 2, "shutdown cancellation after %0.1fs of attempting command %s",
timeutil.Since(startTime).Seconds(), ba)
return nil, roachpb.NewError(roachpb.NewAmbiguousResultError("server shutdown"))
}
}
}
// evaluateWriteBatch evaluates the supplied batch.
//
// If the batch is transactional and has all the hallmarks of a 1PC
// commit (i.e. includes BeginTransaction & EndTransaction, and
// there's nothing to suggest that the transaction will require retry
// or restart), the batch's txn is stripped and it's executed as an
// atomic batch write. If the writes cannot all be completed at the
// intended timestamp, the batch's txn is restored and it's
// re-executed in full. This allows it to lay down intents and return
// an appropriate retryable error.
func (r *Replica) evaluateWriteBatch(
ctx context.Context, idKey storagebase.CmdIDKey, ba *roachpb.BatchRequest, spans *spanset.SpanSet,
) (engine.Batch, enginepb.MVCCStats, *roachpb.BatchResponse, result.Result, *roachpb.Error) {
ms := enginepb.MVCCStats{}
// If not transactional or there are indications that the batch's txn will
// require restart or retry, execute as normal.
if isOnePhaseCommit(ba) {
_, hasBegin := ba.GetArg(roachpb.BeginTransaction)
arg, _ := ba.GetArg(roachpb.EndTransaction)
etArg := arg.(*roachpb.EndTransactionRequest)
// Try executing with transaction stripped. We use the transaction timestamp
// to write any values as it may have been advanced by the timestamp cache.
strippedBa := *ba
strippedBa.Timestamp = strippedBa.Txn.Timestamp
strippedBa.Txn = nil
if hasBegin {
strippedBa.Requests = ba.Requests[1 : len(ba.Requests)-1] // strip begin/end txn reqs
} else {
strippedBa.Requests = ba.Requests[:len(ba.Requests)-1] // strip end txn req
}
// Is the transaction allowed to retry locally in the event of
// write too old errors? This is only allowed if it is able to
// forward its commit timestamp without a read refresh.
canForwardTimestamp := batcheval.CanForwardCommitTimestampWithoutRefresh(ba.Txn, etArg)
// If all writes occurred at the intended timestamp, we've succeeded on the fast path.
rec := NewReplicaEvalContext(r, spans)
batch, br, res, pErr := r.evaluateWriteBatchWithLocalRetries(
ctx, idKey, rec, &ms, &strippedBa, spans, canForwardTimestamp,
)
if pErr == nil && (ba.Timestamp == br.Timestamp ||
(canForwardTimestamp && !batcheval.IsEndTransactionExceedingDeadline(br.Timestamp, etArg))) {
clonedTxn := ba.Txn.Clone()
clonedTxn.Status = roachpb.COMMITTED
// Make sure the returned txn has the actual commit
// timestamp. This can be different if the stripped batch was
// executed at the server's hlc now timestamp.
clonedTxn.Timestamp = br.Timestamp
// If the end transaction is not committed, clear the batch and mark the status aborted.
if !etArg.Commit {
clonedTxn.Status = roachpb.ABORTED
batch.Close()
batch = r.store.Engine().NewBatch()
ms = enginepb.MVCCStats{}
} else {
// Run commit trigger manually.
innerResult, err := batcheval.RunCommitTrigger(ctx, rec, batch, &ms, etArg, clonedTxn)
if err != nil {
return batch, ms, br, res, roachpb.NewErrorf("failed to run commit trigger: %s", err)
}
if err := res.MergeAndDestroy(innerResult); err != nil {
return batch, ms, br, res, roachpb.NewError(err)
}
}
br.Txn = clonedTxn
// Add placeholder responses for begin & end transaction requests.
var resps []roachpb.ResponseUnion
if hasBegin {
resps = make([]roachpb.ResponseUnion, len(br.Responses)+2)
resps[0].MustSetInner(&roachpb.BeginTransactionResponse{})
copy(resps[1:], br.Responses)
} else {
resps = append(br.Responses, roachpb.ResponseUnion{})
}
resps[len(resps)-1].MustSetInner(&roachpb.EndTransactionResponse{OnePhaseCommit: true})
br.Responses = resps
return batch, ms, br, res, nil
}
ms = enginepb.MVCCStats{}
// Handle the case of a required one phase commit transaction.
if etArg.Require1PC {
if pErr != nil {
return batch, ms, nil, result.Result{}, pErr
} else if ba.Timestamp != br.Timestamp {
err := roachpb.NewTransactionRetryError(roachpb.RETRY_REASON_UNKNOWN, "Require1PC batch pushed")
return batch, ms, nil, result.Result{}, roachpb.NewError(err)
}
log.Fatal(ctx, "unreachable")
}
batch.Close()
log.VEventf(ctx, 2, "1PC execution failed, reverting to regular execution for batch")
}
rec := NewReplicaEvalContext(r, spans)
// We can retry locally if this is a non-transactional request.
canRetry := ba.Txn == nil
batch, br, res, pErr := r.evaluateWriteBatchWithLocalRetries(ctx, idKey, rec, &ms, ba, spans, canRetry)
return batch, ms, br, res, pErr
}
// evaluateWriteBatchWithLocalRetries invokes evaluateBatch and
// retries in the event of a WriteTooOldError at a higher timestamp if
// canRetry is true.
func (r *Replica) evaluateWriteBatchWithLocalRetries(
ctx context.Context,
idKey storagebase.CmdIDKey,
rec batcheval.EvalContext,
ms *enginepb.MVCCStats,
ba *roachpb.BatchRequest,
spans *spanset.SpanSet,
canRetry bool,
) (batch engine.Batch, br *roachpb.BatchResponse, res result.Result, pErr *roachpb.Error) {
for retries := 0; ; retries++ {
if batch != nil {
batch.Close()
}
batch = r.store.Engine().NewBatch()
var opLogger *engine.OpLoggerBatch
if RangefeedEnabled.Get(&r.store.cfg.Settings.SV) {
// TODO(nvanbenschoten): once we get rid of the RangefeedEnabled
// cluster setting we'll need a way to turn this on when any
// replica (not just the leaseholder) wants it and off when no
// replicas want it. This turns out to be pretty involved.
//
// The current plan is to:
// - create a range-id local key that stores all replicas that are
// subscribed to logical operations, along with their corresponding
// liveness epoch.
// - create a new command that adds or subtracts replicas from this
// structure. The command will be a write across the entire replica
// span so that it is serialized with all writes.
// - each replica will add itself to this set when it first needs
// logical ops. It will then wait until it sees the replicated command
// that added itself pop out through Raft so that it knows all
// commands that are missing logical ops are gone.
// - It will then proceed as normal, relying on the logical ops to
// always be included on the raft commands. When its no longer
// needs logical ops, it will remove itself from the set.
// - The leaseholder will have a new queue to detect registered
// replicas that are no longer live and remove them from the
// set to prevent "leaking" subscriptions.
// - The condition here to add logical logging will be:
// if len(replicaState.logicalOpsSubs) > 0 { ... }
//
// An alternative to this is the reduce the cost of the including
// the logical op log to a negligible amount such that it can be
// included on all raft commands, regardless of whether any replica
// has a rangefeed running or not.
//
// Another alternative is to make the setting table/zone-scoped
// instead of a fine-grained per-replica state.
opLogger = engine.NewOpLoggerBatch(batch)
batch = opLogger
}
if util.RaceEnabled {
batch = spanset.NewBatch(batch, spans)
}
br, res, pErr = evaluateBatch(ctx, idKey, batch, rec, ms, ba, false /* readOnly */)
// If we can retry, set a higher batch timestamp and continue.
if wtoErr, ok := pErr.GetDetail().(*roachpb.WriteTooOldError); ok && canRetry {
// Allow one retry only; a non-txn batch containing overlapping
// spans will always experience WriteTooOldError.
if retries == 1 {
break
}
ba.Timestamp = wtoErr.ActualTimestamp
continue
}
if opLogger != nil {
res.LogicalOpLog = &storagepb.LogicalOpLog{
Ops: opLogger.LogicalOps(),
}
}
break
}
return
}
// isOnePhaseCommit returns true iff the BatchRequest contains all writes in the
// transaction and ends with an EndTransaction. One phase commits are disallowed
// if any of the following conditions are true:
// (1) the transaction has already been flagged with a write too old error
// (2) the transaction's commit timestamp has been forwarded
// (3) the transaction exceeded its deadline
// (4) the transaction is not in its first epoch and the EndTransaction request
// does not require one phase commit.
func isOnePhaseCommit(ba *roachpb.BatchRequest) bool {
if ba.Txn == nil {
return false
}
if !ba.IsCompleteTransaction() {
return false
}
arg, _ := ba.GetArg(roachpb.EndTransaction)
etArg := arg.(*roachpb.EndTransactionRequest)
if retry, _, _ := batcheval.IsEndTransactionTriggeringRetryError(ba.Txn, etArg); retry {
return false
}
// If the transaction has already restarted at least once then it may have
// left intents at prior epochs that need to be cleaned up during the
// process of committing the transaction. Even if the current epoch could
// perform a one phase commit, we don't allow it to because that could
// prevent it from properly resolving intents from prior epochs and cause
// it to abandon them instead.
//
// The exception to this rule is transactions that require a one phase
// commit. We know that if they also required a one phase commit in past
// epochs then they couldn't have left any intents that they now need to
// clean up.
return ba.Txn.Epoch == 0 || etArg.Require1PC
}
// maybeStripInFlightWrites attempts to remove all point writes and query
// intents that ended up in the same batch as an EndTransaction request from
// that EndTransaction request's "in-flight" write set. The entire batch will
// commit atomically, so there is no need to consider the writes in the same
// batch concurrent.
//
// The transformation can lead to bypassing the STAGING state for a transaction
// entirely. This is possible if the function removes all of the in-flight
// writes from an EndTransaction request that was committing in parallel with
// writes which all happened to be on the same range as the transaction record.
func maybeStripInFlightWrites(ba *roachpb.BatchRequest) (*roachpb.BatchRequest, error) {
args, hasET := ba.GetArg(roachpb.EndTransaction)
if !hasET {
return ba, nil
}
et := args.(*roachpb.EndTransactionRequest)
otherReqs := ba.Requests[:len(ba.Requests)-1]
if !et.IsParallelCommit() || len(otherReqs) == 0 {
return ba, nil
}
// Clone the BatchRequest and the EndTransaction request before modifying
// it. We nil out the request's in-flight writes and make the intent spans
// immutable on append. Code below can use origET to recreate the in-flight
// write set if any elements remain in it.
origET := et
et = origET.ShallowCopy().(*roachpb.EndTransactionRequest)
et.InFlightWrites = nil
et.IntentSpans = et.IntentSpans[:len(et.IntentSpans):len(et.IntentSpans)] // immutable
ba.Requests = append([]roachpb.RequestUnion(nil), ba.Requests...)
ba.Requests[len(ba.Requests)-1].MustSetInner(et)
// Fast-path: If we know that this batch contains all of the transaction's
// in-flight writes, then we can avoid searching in the in-flight writes set
// for each request. Instead, we can blindly merge all in-flight writes into
// the intent spans and clear out the in-flight writes set.
if len(otherReqs) >= len(origET.InFlightWrites) {
writes := 0
for _, ru := range otherReqs {
req := ru.GetInner()
switch {
case roachpb.IsTransactionWrite(req) && !roachpb.IsRange(req):
// Concurrent point write.
writes++
case req.Method() == roachpb.QueryIntent:
// Earlier pipelined point write that hasn't been proven yet.
writes++
default:
// Ranged write or read. See below.
}
}
if len(origET.InFlightWrites) < writes {
return ba, errors.New("more write in batch with EndTransaction than listed in in-flight writes")
} else if len(origET.InFlightWrites) == writes {
et.IntentSpans = make([]roachpb.Span, len(origET.IntentSpans)+len(origET.InFlightWrites))
copy(et.IntentSpans, origET.IntentSpans)
for i, w := range origET.InFlightWrites {
et.IntentSpans[len(origET.IntentSpans)+i] = roachpb.Span{Key: w.Key}
}
// See below for why we set Header.DistinctSpans here.
et.IntentSpans, ba.Header.DistinctSpans = roachpb.MergeSpans(et.IntentSpans)
return ba, nil
}
}
// Slow-path: If not then we remove each transaction write in the batch from
// the in-flight write set and merge it into the intent spans.
copiedTo := 0
for _, ru := range otherReqs {
req := ru.GetInner()
seq := req.Header().Sequence
switch {
case roachpb.IsTransactionWrite(req) && !roachpb.IsRange(req):
// Concurrent point write.
case req.Method() == roachpb.QueryIntent:
// Earlier pipelined point write that hasn't been proven yet. We
// could remove from the in-flight writes set when we see these,
// but doing so would prevent us from using the optimization we
// have below where we rely on increasing sequence numbers for
// each subsequent request.
//
// We already don't intend on sending QueryIntent requests in the
// same batch as EndTransaction requests because doing so causes
// a pipeline stall, so this doesn't seem worthwhile to support.
continue
default:
// Ranged write or read. These can make it into the final batch with
// a parallel committing EndTransaction request if the entire batch
// issued by DistSender lands on the same range. Skip.
continue
}
// Remove the write from the in-flight writes set. We only need to
// search from after the previously removed sequence number forward
// because both the InFlightWrites and the Requests in the batch are
// stored in increasing sequence order.
//
// Maintaining an iterator into the in-flight writes slice and scanning
// instead of performing a binary search on each request changes the
// complexity of this loop from O(n*log(m)) to O(m) where n is the
// number of point writes in the batch and m is the number of in-flight
// writes. These complexities aren't directly comparable, but copying
// all unstripped writes back into et.InFlightWrites is already O(m),
// so the approach here was preferred over repeat binary searches.
match := -1
for i, w := range origET.InFlightWrites[copiedTo:] {
if w.Sequence == seq {
match = i + copiedTo
break
}
}
if match == -1 {
return ba, errors.New("write in batch with EndTransaction missing from in-flight writes")
}
w := origET.InFlightWrites[match]
notInBa := origET.InFlightWrites[copiedTo:match]
et.InFlightWrites = append(et.InFlightWrites, notInBa...)
copiedTo = match + 1
// Move the write to the intent spans set since it's
// no longer being tracked in the in-flight write set.
et.IntentSpans = append(et.IntentSpans, roachpb.Span{Key: w.Key})
}
if et != origET {
// Finish building up the remaining in-flight writes.
notInBa := origET.InFlightWrites[copiedTo:]
et.InFlightWrites = append(et.InFlightWrites, notInBa...)
// Re-sort and merge the intent spans. We can set the batch request's
// DistinctSpans flag based on whether any of in-flight writes in this
// batch overlap with each other. This will have (rare) false negatives
// when the in-flight writes overlap with existing intent spans, but
// never false positives.
et.IntentSpans, ba.Header.DistinctSpans = roachpb.MergeSpans(et.IntentSpans)
}
return ba, nil
}