-
Notifications
You must be signed in to change notification settings - Fork 3.9k
/
Copy pathqueue.go
1255 lines (1124 loc) · 42.4 KB
/
queue.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
// Copyright 2014 The Cockroach Authors.
//
// Use of this software is governed by the Business Source License
// included in the file licenses/BSL.txt.
//
// As of the Change Date specified in that file, in accordance with
// the Business Source License, use of this software will be governed
// by the Apache License, Version 2.0, included in the file
// licenses/APL.txt.
package storage
import (
"container/heap"
"context"
"fmt"
"sync/atomic"
"time"
"github.com/cockroachdb/cockroach/pkg/config"
"github.com/cockroachdb/cockroach/pkg/gossip"
"github.com/cockroachdb/cockroach/pkg/roachpb"
"github.com/cockroachdb/cockroach/pkg/storage/storagepb"
"github.com/cockroachdb/cockroach/pkg/util/causer"
"github.com/cockroachdb/cockroach/pkg/util/contextutil"
"github.com/cockroachdb/cockroach/pkg/util/hlc"
"github.com/cockroachdb/cockroach/pkg/util/log"
"github.com/cockroachdb/cockroach/pkg/util/metric"
"github.com/cockroachdb/cockroach/pkg/util/stop"
"github.com/cockroachdb/cockroach/pkg/util/syncutil"
"github.com/cockroachdb/cockroach/pkg/util/timeutil"
"github.com/pkg/errors"
)
const (
// purgatoryReportInterval is the duration between reports on
// purgatory status.
purgatoryReportInterval = 10 * time.Minute
// defaultProcessTimeout is the timeout when processing a replica.
// The timeout prevents a queue from getting stuck on a replica.
// For example, a replica whose range is not reachable for quorum.
defaultProcessTimeout = 1 * time.Minute
// defaultQueueMaxSize is the default max size for a queue.
defaultQueueMaxSize = 10000
)
// a purgatoryError indicates a replica processing failure which indicates
// the replica can be placed into purgatory for faster retries when the
// failure condition changes.
type purgatoryError interface {
error
purgatoryErrorMarker() // dummy method for unique interface
}
// processCallback is a hook that is called when a replica finishes processing.
// It is called with the result of the process attempt.
type processCallback func(error)
// A replicaItem holds a replica and metadata about its queue state and
// processing state.
type replicaItem struct {
rangeID roachpb.RangeID
replicaID roachpb.ReplicaID
seq int // enforce FIFO order for equal priorities
// fields used when a replicaItem is enqueued in a priority queue.
priority float64
index int // The index of the item in the heap, maintained by the heap.Interface methods
// fields used when a replicaItem is processing.
processing bool
requeue bool // enqueue again after processing?
callbacks []processCallback
}
// setProcessing moves the item from an enqueued state to a processing state.
func (i *replicaItem) setProcessing() {
i.priority = 0
if i.index >= 0 {
log.Fatalf(context.Background(),
"r%d marked as processing but appears in prioQ", i.rangeID,
)
}
i.processing = true
}
// registerCallback adds a new callback to be executed when the replicaItem
// finishes processing.
func (i *replicaItem) registerCallback(cb processCallback) {
i.callbacks = append(i.callbacks, cb)
}
// A priorityQueue implements heap.Interface and holds replicaItems.
type priorityQueue struct {
seqGen int
sl []*replicaItem
}
func (pq priorityQueue) Len() int { return len(pq.sl) }
func (pq priorityQueue) Less(i, j int) bool {
a, b := pq.sl[i], pq.sl[j]
if a.priority == b.priority {
// When priorities are equal, we want the lower sequence number to show
// up first (FIFO).
return a.seq < b.seq
}
// We want Pop to give us the highest, not lowest, priority so we use greater than here.
return a.priority > b.priority
}
func (pq priorityQueue) Swap(i, j int) {
pq.sl[i], pq.sl[j] = pq.sl[j], pq.sl[i]
pq.sl[i].index, pq.sl[j].index = i, j
}
func (pq *priorityQueue) Push(x interface{}) {
n := len(pq.sl)
item := x.(*replicaItem)
item.index = n
pq.seqGen++
item.seq = pq.seqGen
pq.sl = append(pq.sl, item)
}
func (pq *priorityQueue) Pop() interface{} {
old := pq.sl
n := len(old)
item := old[n-1]
item.index = -1 // for safety
old[n-1] = nil // for gc
pq.sl = old[0 : n-1]
return item
}
// update modifies the priority of a replicaItem in the queue.
func (pq *priorityQueue) update(item *replicaItem, priority float64) {
item.priority = priority
if len(pq.sl) <= item.index || pq.sl[item.index] != item {
log.Fatalf(context.Background(), "updating item in heap that's not contained in it: %v", item)
}
heap.Fix(pq, item.index)
}
var (
errQueueDisabled = errors.New("queue disabled")
errQueueStopped = errors.New("queue stopped")
)
func isExpectedQueueError(err error) bool {
cause := errors.Cause(err)
return err == nil || cause == errQueueDisabled
}
// shouldQueueAgain is a helper function to determine whether the
// replica should be queued according to the current time, the last
// time the replica was processed, and the minimum interval between
// successive processing. Specifying minInterval=0 queues all replicas.
// Returns a bool for whether to queue as well as a priority based
// on how long it's been since last processed.
func shouldQueueAgain(now, last hlc.Timestamp, minInterval time.Duration) (bool, float64) {
if minInterval == 0 || last == (hlc.Timestamp{}) {
return true, 0
}
if diff := now.GoTime().Sub(last.GoTime()); diff >= minInterval {
priority := float64(1)
// If there's a non-zero last processed timestamp, adjust the
// priority by a multiple of how long it's been since the last
// time this replica was processed.
if last != (hlc.Timestamp{}) {
priority = float64(diff.Nanoseconds()) / float64(minInterval.Nanoseconds())
}
return true, priority
}
return false, 0
}
// replicaInQueue is the subset of *Replica required for interacting with queues.
//
// TODO(tbg): this interface is horrible, but this is what we do use at time of
// extraction. Establish a sane interface and use that.
type replicaInQueue interface {
AnnotateCtx(context.Context) context.Context
ReplicaID() roachpb.ReplicaID
StoreID() roachpb.StoreID
GetRangeID() roachpb.RangeID
IsInitialized() bool
IsDestroyed() (DestroyReason, error)
Desc() *roachpb.RangeDescriptor
maybeInitializeRaftGroup(context.Context)
redirectOnOrAcquireLease(context.Context) (storagepb.LeaseStatus, *roachpb.Error)
IsLeaseValid(roachpb.Lease, hlc.Timestamp) bool
GetLease() (roachpb.Lease, roachpb.Lease)
}
type queueImpl interface {
// shouldQueue accepts current time, a replica, and the system config
// and returns whether it should be queued and if so, at what priority.
// The Replica is guaranteed to be initialized.
shouldQueue(
context.Context, hlc.Timestamp, *Replica, *config.SystemConfig,
) (shouldQueue bool, priority float64)
// process accepts a replica, and the system config and executes
// queue-specific work on it. The Replica is guaranteed to be initialized.
process(context.Context, *Replica, *config.SystemConfig) error
// timer returns a duration to wait between processing the next item
// from the queue. The duration of the last processing of a replica
// is supplied as an argument. If no replicas have finished processing
// yet, this can be 0.
timer(time.Duration) time.Duration
// purgatoryChan returns a channel that is signaled with the current
// time when it's time to retry replicas which have been relegated to
// purgatory due to failures. If purgatoryChan returns nil, failing
// replicas are not sent to purgatory.
purgatoryChan() <-chan time.Time
}
type queueConfig struct {
// maxSize is the maximum number of replicas to queue.
maxSize int
// maxConcurrency is the maximum number of replicas that can be processed
// concurrently. If not set, defaults to 1.
maxConcurrency int
addOrMaybeAddSemSize int
// needsLease controls whether this queue requires the range lease to operate
// on a replica. If so, one will be acquired if necessary. Many queues set
// needsLease not because they literally need a lease, but because they work
// on a range level and use it to ensure that only one node in the cluster
// processes that range.
needsLease bool
// needsRaftInitialized controls whether the Raft group will be initialized
// (if not already initialized) when deciding whether to process this
// replica.
needsRaftInitialized bool
// needsSystemConfig controls whether this queue requires a valid copy of the
// system config to operate on a replica. Not all queues require it, and it's
// unsafe for certain queues to wait on it. For example, a raft snapshot may
// be needed in order to make it possible for the system config to become
// available (as observed in #16268), so the raft snapshot queue can't
// require the system config to already be available.
needsSystemConfig bool
// acceptsUnsplitRanges controls whether this queue can process ranges that
// need to be split due to zone config settings. Ranges are checked before
// calling queueImpl.shouldQueue and queueImpl.process.
// This is to avoid giving the queue a replica that spans multiple config
// zones (which might make the action of the queue ambiguous - e.g. we don't
// want to try to replicate a range until we know which zone it is in and
// therefore how many replicas are required).
acceptsUnsplitRanges bool
// processDestroyedReplicas controls whether or not we want to process replicas
// that have been destroyed but not GCed.
processDestroyedReplicas bool
// processTimeout is the timeout for processing a replica.
processTimeout time.Duration
// successes is a counter of replicas processed successfully.
successes *metric.Counter
// failures is a counter of replicas which failed processing.
failures *metric.Counter
// pending is a gauge measuring current replica count pending.
pending *metric.Gauge
// processingNanos is a counter measuring total nanoseconds spent processing replicas.
processingNanos *metric.Counter
// purgatory is a gauge measuring current replica count in purgatory.
purgatory *metric.Gauge
}
// baseQueue is the base implementation of the replicaQueue interface. Queue
// implementations should embed a baseQueue and implement queueImpl.
//
// A queue contains replicas in one of three stages: queued, processing, and
// purgatory. A "queued" replica is waiting for processing with some priority
// that was selected when it was added. A "processing" replica is actively being
// worked on by the queue, which delegates to the queueImpl's `process` method.
// Replicas are selected from the queue for processing purely in priority order.
// A "purgatory" replica has been marked by the queue implementation as
// temporarily uninteresting and it will not be processed again until some
// queue-specific event occurs. Not every queue has a purgatory.
//
// Generally, replicas are added to a queue by a replicaScanner, which is a
// Store-level object. The scanner is configured with a set of queues (which in
// practice is all of the queues) and will repeatedly iterate through every
// replica on the store at a measured pace, handing each replica to every
// queueImpl's `shouldQueue` method. This method is implemented differently by
// each queue and decides whether the replica is currently interesting. If so,
// it also selects a priority. Note that queues have a bounded size controlled
// by the `maxSize` config option, which means the ones with lowest priority may
// be dropped if processing cannot keep up and the queue fills.
//
// Replicas are added asynchronously through `MaybeAddAsync` or `AddAsync`.
// MaybeAddAsync checks the various requirements selected by the queue config
// (needsSystemConfig, needsLease, acceptsUnsplitRanges) as well as the
// queueImpl's `shouldQueue`. AddAsync does not check any of this and accept a
// priority directly instead of getting it from `shouldQueue`. These methods run
// with shared a maximum concurrency of `addOrMaybeAddSemSize`. If the maximum
// concurrency is reached, MaybeAddAsync will silently drop the replica but
// AddAsync will block.
//
// Synchronous replica addition is intentionally not part of the public
// interface. Many queue impl's "processing" work functions acquire various
// locks on Replica, so it would be too easy for a callsite of such a method to
// deadlock. See #36413 for context. Additionally, the queues themselves process
// asynchronously and the bounded size means what you add isn't guaranteed to be
// processed, so the exclusive-async contract just forces callers to realize
// this early.
//
// Processing is rate limited by the queueImpl's `timer` which receives the
// amount of time it took to processes the previous replica and returns the
// amount of time to wait before processing the next one. A bounded amount of
// processing concurrency is allowed, which is controlled by the
// `maxConcurrency` option in the queue's configuration. If a replica is added
// while being processed, it's requeued after the processing finishes.
//
// Note that all sorts of things can change between when a replica is enqueued
// and when it is processed, so the queue makes sure to grab the latest one
// right before processing by looking up the current replica with the same
// RangeID. This replica could be gone or, in extreme cases, could have been
// removed and re-added and now has a new ReplicaID. Implementors needs to be
// resilient to this.
//
// A queueImpl can opt into a purgatory by returning a non-nil channel from the
// `purgatoryChan` method. A replica is put into purgatory when the `process`
// method returns an error with a `purgatoryError` as an entry somewhere in the
// `Cause` chain. A replica in purgatory is not processed again until the
// channel is signaled, at which point every replica in purgatory is immediately
// processed. This catchup is run without the `timer` rate limiting but shares
// the same `maxConcurrency` semaphore as regular processing. Note that if a
// purgatory replica is pushed out of a full queue, it's also removed from
// purgatory. Replicas in purgatory count against the max queue size.
//
// After construction a queue needs to be `Start`ed, which spawns a goroutine to
// continually pop the "queued" replica with the highest priority and process
// it. In practice, this is done by the same replicaScanner that adds replicas.
type baseQueue struct {
log.AmbientContext
name string
getReplica func(roachpb.RangeID) (replicaInQueue, error)
// The constructor of the queueImpl structure MUST return a pointer.
// This is because assigning queueImpl to a function-local, then
// passing a pointer to it to `makeBaseQueue`, and then returning it
// from the constructor function will return a queueImpl containing
// a pointer to a structure which is a copy of the one within which
// it is contained. DANGER.
impl queueImpl
store *Store
gossip *gossip.Gossip
queueConfig
incoming chan struct{} // Channel signaled when a new replica is added to the queue.
processSem chan struct{}
addOrMaybeAddSem chan struct{} // for {Maybe,}AddAsync
addLogN log.EveryN // avoid log spam when addSem, addOrMaybeAddSemSize are maxed out
processDur int64 // accessed atomically
mu struct {
syncutil.Mutex // Protects all variables in the mu struct
replicas map[roachpb.RangeID]*replicaItem // Map from RangeID to replicaItem
priorityQ priorityQueue // The priority queue
purgatory map[roachpb.RangeID]purgatoryError // Map of replicas to processing errors
stopped bool
// Some tests in this package disable queues.
disabled bool
}
}
// newBaseQueue returns a new instance of baseQueue with the specified
// shouldQueue function to determine which replicas to queue and maxSize to
// limit the growth of the queue. Note that maxSize doesn't prevent new
// replicas from being added, it just limits the total size. Higher priority
// replicas can still be added; their addition simply removes the lowest
// priority replica.
func newBaseQueue(
name string, impl queueImpl, store *Store, gossip *gossip.Gossip, cfg queueConfig,
) *baseQueue {
// Use the default process timeout if none specified.
if cfg.processTimeout == 0 {
cfg.processTimeout = defaultProcessTimeout
}
if cfg.maxConcurrency == 0 {
cfg.maxConcurrency = 1
}
// NB: addOrMaybeAddSemSize coupled with tight scanner intervals in tests
// unfortunately bog down the race build if they are increased too much.
if cfg.addOrMaybeAddSemSize == 0 {
cfg.addOrMaybeAddSemSize = 20
}
ambient := store.cfg.AmbientCtx
ambient.AddLogTag(name, nil)
if !cfg.acceptsUnsplitRanges && !cfg.needsSystemConfig {
log.Fatalf(ambient.AnnotateCtx(context.Background()),
"misconfigured queue: acceptsUnsplitRanges=false requires needsSystemConfig=true; got %+v", cfg)
}
bq := baseQueue{
AmbientContext: ambient,
name: name,
impl: impl,
store: store,
gossip: gossip,
queueConfig: cfg,
incoming: make(chan struct{}, 1),
processSem: make(chan struct{}, cfg.maxConcurrency),
addOrMaybeAddSem: make(chan struct{}, cfg.addOrMaybeAddSemSize),
addLogN: log.Every(5 * time.Second),
getReplica: func(id roachpb.RangeID) (replicaInQueue, error) {
repl, err := store.GetReplica(id)
if repl == nil || err != nil {
// Don't return (*Replica)(nil) as replicaInQueue or NPEs will
// ensue.
return nil, err
}
return repl, err
},
}
bq.mu.replicas = map[roachpb.RangeID]*replicaItem{}
return &bq
}
// Name returns the name of the queue.
func (bq *baseQueue) Name() string {
return bq.name
}
// NeedsLease returns whether the queue requires a replica to be leaseholder.
func (bq *baseQueue) NeedsLease() bool {
return bq.needsLease
}
// Length returns the current size of the queue.
func (bq *baseQueue) Length() int {
bq.mu.Lock()
defer bq.mu.Unlock()
return bq.mu.priorityQ.Len()
}
// PurgatoryLength returns the current size of purgatory.
func (bq *baseQueue) PurgatoryLength() int {
// Lock processing while measuring the purgatory length. This ensures that
// no purgatory replicas are concurrently being processed, during which time
// they are removed from bq.mu.purgatory even though they may be re-added.
defer bq.lockProcessing()()
bq.mu.Lock()
defer bq.mu.Unlock()
return len(bq.mu.purgatory)
}
// SetDisabled turns queue processing off or on as directed.
func (bq *baseQueue) SetDisabled(disabled bool) {
bq.mu.Lock()
bq.mu.disabled = disabled
bq.mu.Unlock()
}
// lockProcessing locks all processing in the baseQueue. It returns
// a function to unlock processing.
func (bq *baseQueue) lockProcessing() func() {
semCount := cap(bq.processSem)
// Drain process semaphore.
for i := 0; i < semCount; i++ {
bq.processSem <- struct{}{}
}
return func() {
// Populate process semaphore.
for i := 0; i < semCount; i++ {
<-bq.processSem
}
}
}
// Start launches a goroutine to process entries in the queue. The
// provided stopper is used to finish processing.
func (bq *baseQueue) Start(stopper *stop.Stopper) {
bq.processLoop(stopper)
}
type baseQueueHelper struct {
bq *baseQueue
}
func (h baseQueueHelper) MaybeAdd(ctx context.Context, repl replicaInQueue, now hlc.Timestamp) {
h.bq.maybeAdd(ctx, repl, now)
}
func (h baseQueueHelper) Add(ctx context.Context, repl replicaInQueue, prio float64) {
_, err := h.bq.addInternal(ctx, repl.Desc(), repl.ReplicaID(), prio)
if err != nil && log.V(1) {
log.Infof(ctx, "during Add: %s", err)
}
}
type queueHelper interface {
MaybeAdd(ctx context.Context, repl replicaInQueue, now hlc.Timestamp)
Add(ctx context.Context, repl replicaInQueue, prio float64)
}
// Async is a more performant substitute for calling AddAsync or MaybeAddAsync
// when many operations are going to be carried out. It invokes the given helper
// function in a goroutine if semaphore capacity is available. If the semaphore
// is not available, the 'wait' parameter decides whether to wait or to return
// as a noop. Note that if the system is quiescing, fn may never be called in-
// dependent of the value of 'wait'.
func (bq *baseQueue) Async(
ctx context.Context, opName string, wait bool, fn func(ctx context.Context, h queueHelper),
) {
if log.V(3) {
log.InfofDepth(ctx, 2, opName)
}
opName += " (" + bq.name + ")"
if err := bq.store.stopper.RunLimitedAsyncTask(context.Background(), opName, bq.addOrMaybeAddSem, wait,
func(ctx context.Context) {
fn(ctx, baseQueueHelper{bq})
}); err != nil && bq.addLogN.ShouldLog() {
log.Infof(ctx, "rate limited in %s: %s", opName, err)
}
}
// MaybeAddAsync offers the replica to the queue. The queue will only process a
// certain number of these operations concurrently, and will drop (i.e. treat as
// a noop) any additional calls.
func (bq *baseQueue) MaybeAddAsync(ctx context.Context, repl replicaInQueue, now hlc.Timestamp) {
bq.Async(ctx, "MaybeAdd", false /* wait */, func(ctx context.Context, h queueHelper) {
h.MaybeAdd(ctx, repl, now)
})
}
// AddAsync adds the replica to the queue. Unlike MaybeAddAsync, it will wait
// for other operations to finish instead of turning into a noop (because
// unlikely MaybeAdd, Add is not subject to being called opportunistically).
func (bq *baseQueue) AddAsync(ctx context.Context, repl replicaInQueue, prio float64) {
bq.Async(ctx, "Add", false /* wait */, func(ctx context.Context, h queueHelper) {
h.Add(ctx, repl, prio)
})
}
func (bq *baseQueue) maybeAdd(ctx context.Context, repl replicaInQueue, now hlc.Timestamp) {
ctx = repl.AnnotateCtx(ctx)
// Load the system config if it's needed.
var cfg *config.SystemConfig
if bq.needsSystemConfig {
cfg = bq.gossip.GetSystemConfig()
if cfg == nil {
if log.V(1) {
log.Infof(ctx, "no system config available. skipping")
}
return
}
}
bq.mu.Lock()
stopped := bq.mu.stopped || bq.mu.disabled
bq.mu.Unlock()
if stopped {
return
}
if !repl.IsInitialized() {
return
}
if bq.needsRaftInitialized {
repl.maybeInitializeRaftGroup(ctx)
}
if cfg != nil && bq.requiresSplit(cfg, repl) {
// Range needs to be split due to zone configs, but queue does
// not accept unsplit ranges.
if log.V(1) {
log.Infof(ctx, "split needed; not adding")
}
return
}
if bq.needsLease {
// Check to see if either we own the lease or do not know who the lease
// holder is.
if lease, _ := repl.GetLease(); repl.IsLeaseValid(lease, now) &&
!lease.OwnedBy(repl.StoreID()) {
if log.V(1) {
log.Infof(ctx, "needs lease; not adding: %+v", lease)
}
return
}
}
// NB: in production code, this type assertion is always true. In tests,
// it may not be and shouldQueue will be passed a nil realRepl. These tests
// know what they're getting into so that's fine.
realRepl, _ := repl.(*Replica)
should, priority := bq.impl.shouldQueue(ctx, now, realRepl, cfg)
if !should {
return
}
if _, err := bq.addInternal(ctx, repl.Desc(), repl.ReplicaID(), priority); !isExpectedQueueError(err) {
log.Errorf(ctx, "unable to add: %+v", err)
}
}
func (bq *baseQueue) requiresSplit(cfg *config.SystemConfig, repl replicaInQueue) bool {
if bq.acceptsUnsplitRanges {
return false
}
desc := repl.Desc()
return cfg.NeedsSplit(desc.StartKey, desc.EndKey)
}
// addInternal adds the replica the queue with specified priority. If
// the replica is already queued at a lower priority, updates the existing
// priority. Expects the queue lock to be held by caller.
func (bq *baseQueue) addInternal(
ctx context.Context, desc *roachpb.RangeDescriptor, replicaID roachpb.ReplicaID, priority float64,
) (bool, error) {
// NB: this is intentionally outside of bq.mu to avoid having to consider
// lock ordering constraints.
if !desc.IsInitialized() {
// We checked this above in MaybeAdd(), but we need to check it
// again for Add().
return false, errors.New("replica not initialized")
}
bq.mu.Lock()
defer bq.mu.Unlock()
if bq.mu.stopped {
return false, errQueueStopped
}
if bq.mu.disabled {
if log.V(3) {
log.Infof(ctx, "queue disabled")
}
return false, errQueueDisabled
}
// If the replica is currently in purgatory, don't re-add it.
if _, ok := bq.mu.purgatory[desc.RangeID]; ok {
return false, nil
}
item, ok := bq.mu.replicas[desc.RangeID]
if ok {
// Replica is already processing. Mark to be requeued.
if item.processing {
wasRequeued := item.requeue
item.requeue = true
return !wasRequeued, nil
}
// Replica has already been added but at a lower priority; update priority.
// Don't lower it since the previous queuer may have known more than this
// one does.
if priority > item.priority {
if log.V(1) {
log.Infof(ctx, "updating priority: %0.3f -> %0.3f", item.priority, priority)
}
bq.mu.priorityQ.update(item, priority)
}
return false, nil
}
if log.V(3) {
log.Infof(ctx, "adding: priority=%0.3f", priority)
}
item = &replicaItem{rangeID: desc.RangeID, replicaID: replicaID, priority: priority}
bq.addLocked(item)
// If adding this replica has pushed the queue past its maximum size,
// remove the lowest priority element.
if pqLen := bq.mu.priorityQ.Len(); pqLen > bq.maxSize {
bq.removeLocked(bq.mu.priorityQ.sl[pqLen-1])
}
// Signal the processLoop that a replica has been added.
select {
case bq.incoming <- struct{}{}:
default:
// No need to signal again.
}
return true, nil
}
// MaybeAddCallback adds a callback to be called when the specified range
// finishes processing if the range is in the queue. If the range is in
// purgatory, the callback is called immediately with the purgatory error. If
// the range is not in the queue (either waiting or processing), the method
// returns false.
//
// NB: If the replica this attaches to is dropped from an overfull queue, this
// callback is never called. This is surprising, but the single caller of this
// is okay with these semantics. Adding new uses is discouraged without cleaning
// up the contract of this method, but this code doesn't lend itself readily to
// upholding invariants so there may need to be some cleanup first.
func (bq *baseQueue) MaybeAddCallback(rangeID roachpb.RangeID, cb processCallback) bool {
bq.mu.Lock()
defer bq.mu.Unlock()
if purgatoryErr, ok := bq.mu.purgatory[rangeID]; ok {
cb(purgatoryErr)
return true
}
if item, ok := bq.mu.replicas[rangeID]; ok {
item.registerCallback(cb)
return true
}
return false
}
// MaybeRemove removes the specified replica from the queue if enqueued.
func (bq *baseQueue) MaybeRemove(rangeID roachpb.RangeID) {
bq.mu.Lock()
defer bq.mu.Unlock()
if bq.mu.stopped {
return
}
if item, ok := bq.mu.replicas[rangeID]; ok {
ctx := bq.AnnotateCtx(context.TODO())
if log.V(3) {
log.Infof(ctx, "%s: removing", item.rangeID)
}
bq.removeLocked(item)
}
}
// processLoop processes the entries in the queue until the provided
// stopper signals exit.
func (bq *baseQueue) processLoop(stopper *stop.Stopper) {
ctx := bq.AnnotateCtx(context.Background())
stopper.RunWorker(ctx, func(ctx context.Context) {
defer func() {
bq.mu.Lock()
bq.mu.stopped = true
bq.mu.Unlock()
}()
// nextTime is initially nil; we don't start any timers until the queue
// becomes non-empty.
var nextTime <-chan time.Time
immediately := make(chan time.Time)
close(immediately)
for {
select {
// Exit on stopper.
case <-stopper.ShouldStop():
return
// Incoming signal sets the next time to process if there were previously
// no replicas in the queue.
case <-bq.incoming:
if nextTime == nil {
// When a replica is added, wake up immediately. This is mainly
// to facilitate testing without unnecessary sleeps.
nextTime = immediately
// In case we're in a test, still block on the impl.
bq.impl.timer(0)
}
// Process replicas as the timer expires.
case <-nextTime:
// Acquire from the process semaphore.
bq.processSem <- struct{}{}
repl := bq.pop()
if repl != nil {
annotatedCtx := repl.AnnotateCtx(ctx)
if stopper.RunAsyncTask(
annotatedCtx, fmt.Sprintf("storage.%s: processing replica", bq.name),
func(ctx context.Context) {
// Release semaphore when finished processing.
defer func() { <-bq.processSem }()
start := timeutil.Now()
err := bq.processReplica(ctx, repl)
duration := timeutil.Since(start)
bq.recordProcessDuration(ctx, duration)
bq.finishProcessingReplica(ctx, stopper, repl, err)
}) != nil {
// Release semaphore on task failure.
<-bq.processSem
return
}
} else {
// Release semaphore if no replicas were available.
<-bq.processSem
}
if bq.Length() == 0 {
nextTime = nil
} else {
// lastDur will be 0 after the first processing attempt.
lastDur := bq.lastProcessDuration()
switch t := bq.impl.timer(lastDur); t {
case 0:
nextTime = immediately
default:
nextTime = time.After(t)
}
}
}
}
})
}
// lastProcessDuration returns the duration of the last processing attempt.
func (bq *baseQueue) lastProcessDuration() time.Duration {
return time.Duration(atomic.LoadInt64(&bq.processDur))
}
// recordProcessDuration records the duration of a processing run.
func (bq *baseQueue) recordProcessDuration(ctx context.Context, dur time.Duration) {
if log.V(2) {
log.Infof(ctx, "done %s", dur)
}
bq.processingNanos.Inc(dur.Nanoseconds())
atomic.StoreInt64(&bq.processDur, int64(dur))
}
// processReplica processes a single replica. This should not be
// called externally to the queue. bq.mu.Lock must not be held
// while calling this method.
//
// ctx should already be annotated by repl.AnnotateCtx().
func (bq *baseQueue) processReplica(ctx context.Context, repl replicaInQueue) error {
// Load the system config if it's needed.
var cfg *config.SystemConfig
if bq.needsSystemConfig {
cfg = bq.gossip.GetSystemConfig()
if cfg == nil {
log.VEventf(ctx, 1, "no system config available. skipping")
return nil
}
}
if cfg != nil && bq.requiresSplit(cfg, repl) {
// Range needs to be split due to zone configs, but queue does
// not accept unsplit ranges.
log.VEventf(ctx, 3, "split needed; skipping")
return nil
}
ctx, span := bq.AnnotateCtxWithSpan(ctx, bq.name)
defer span.Finish()
return contextutil.RunWithTimeout(ctx, fmt.Sprintf("%s queue process replica %d", bq.name, repl.GetRangeID()),
bq.processTimeout, func(ctx context.Context) error {
log.VEventf(ctx, 1, "processing replica")
if !repl.IsInitialized() {
// We checked this when adding the replica, but we need to check it again
// in case this is a different replica with the same range ID (see #14193).
// This is possible in the case where the replica was enqueued while not
// having a replica ID, perhaps due to a pre-emptive snapshot, and has
// since been removed and re-added at a different replica ID.
return errors.New("cannot process uninitialized replica")
}
if reason, err := repl.IsDestroyed(); err != nil {
if !bq.queueConfig.processDestroyedReplicas || reason == destroyReasonRemoved {
log.VEventf(ctx, 3, "replica destroyed (%s); skipping", err)
return nil
}
}
// If the queue requires a replica to have the range lease in
// order to be processed, check whether this replica has range lease
// and renew or acquire if necessary.
if bq.needsLease {
if _, pErr := repl.redirectOnOrAcquireLease(ctx); pErr != nil {
switch v := pErr.GetDetail().(type) {
case *roachpb.NotLeaseHolderError, *roachpb.RangeNotFoundError:
log.VEventf(ctx, 3, "%s; skipping", v)
return nil
default:
log.VErrEventf(ctx, 2, "could not obtain lease: %s", pErr)
return errors.Wrapf(pErr.GoError(), "%s: could not obtain lease", repl)
}
}
}
log.VEventf(ctx, 3, "processing...")
// NB: in production code, this type assertion is always true. In tests,
// it may not be and shouldQueue will be passed a nil realRepl. These tests
// know what they're getting into so that's fine.
realRepl, _ := repl.(*Replica)
if err := bq.impl.process(ctx, realRepl, cfg); err != nil {
return err
}
log.VEventf(ctx, 3, "processing... done")
bq.successes.Inc(1)
return nil
})
}
type benignError struct {
error
}
var _ causer.Causer = &benignError{}
func (be *benignError) Cause() error {
return be.error
}
func isBenign(err error) bool {
return causer.Visit(err, func(err error) bool {
_, ok := err.(*benignError)
return ok
})
}
func isPurgatoryError(err error) (purgatoryError, bool) {
var purgErr purgatoryError
ok := causer.Visit(err, func(err error) bool {
var ok bool
purgErr, ok = err.(purgatoryError)
return ok
})
return purgErr, ok
}
// assertInvariants codifies the guarantees upheld by the data structures in the
// base queue. In summary, a replica is one of:
// - "queued" and in mu.replicas and mu.priorityQ
// - "processing" and only in mu.replicas
// - "purgatory" and in mu.replicas and mu.purgatory
//
// Note that in particular, nothing is ever in both mu.priorityQ and
// mu.purgatory.
func (bq *baseQueue) assertInvariants() {
bq.mu.Lock()
defer bq.mu.Unlock()
ctx := bq.AnnotateCtx(context.Background())
for _, item := range bq.mu.priorityQ.sl {
if item.processing {
log.Fatalf(ctx, "processing item found in prioQ: %v", item)
}
if _, inReplicas := bq.mu.replicas[item.rangeID]; !inReplicas {
log.Fatalf(ctx, "item found in prioQ but not in mu.replicas: %v", item)
}
if _, inPurg := bq.mu.purgatory[item.rangeID]; inPurg {
log.Fatalf(ctx, "item found in prioQ and purgatory: %v", item)
}
}
for rangeID := range bq.mu.purgatory {
item, inReplicas := bq.mu.replicas[rangeID]
if !inReplicas {
log.Fatalf(ctx, "item found in purg but not in mu.replicas: %v", item)
}
if item.processing {
log.Fatalf(ctx, "processing item found in purgatory: %v", item)
}
// NB: we already checked above that item not in prioQ.
}
// At this point we know that the purgatory in prioQ are distinct, and we
// also know that no processing replicas are tracked in each. Let's check
// that there aren't any non-processing replicas *only* in bq.mu.replicas.
var nNotProcessing int
for _, item := range bq.mu.replicas {
if !item.processing {
nNotProcessing++
}
}
if nNotProcessing != len(bq.mu.purgatory)+len(bq.mu.priorityQ.sl) {
log.Fatalf(ctx, "have %d non-processing replicas in mu.replicas, "+
"but %d in purgatory and %d in prioQ; the latter two should add up"+
"to the former", nNotProcessing, len(bq.mu.purgatory), len(bq.mu.priorityQ.sl))
}
}
// finishProcessingReplica handles the completion of a replica process attempt.
// It removes the replica from the replica set and may re-enqueue the replica or
// add it to purgatory.
func (bq *baseQueue) finishProcessingReplica(
ctx context.Context, stopper *stop.Stopper, repl replicaInQueue, err error,
) {
bq.mu.Lock()
// Remove item from replica set completely. We may add it
// back in down below.
item := bq.mu.replicas[repl.GetRangeID()]
processing := item.processing
callbacks := item.callbacks
requeue := item.requeue
item.callbacks = nil
bq.removeFromReplicaSetLocked(repl.GetRangeID())
item = nil // prevent accidental use below
bq.mu.Unlock()
if !processing {