-
Notifications
You must be signed in to change notification settings - Fork 3.8k
/
select.go
1448 lines (1276 loc) · 46.6 KB
/
select.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
// Copyright 2018 The Cockroach Authors.
//
// Use of this software is governed by the Business Source License
// included in the file licenses/BSL.txt.
//
// As of the Change Date specified in that file, in accordance with
// the Business Source License, use of this software will be governed
// by the Apache License, Version 2.0, included in the file
// licenses/APL.txt.
package optbuilder
import (
"github.com/cockroachdb/cockroach/pkg/server/telemetry"
"github.com/cockroachdb/cockroach/pkg/sql/catalog/colinfo"
"github.com/cockroachdb/cockroach/pkg/sql/opt"
"github.com/cockroachdb/cockroach/pkg/sql/opt/cat"
"github.com/cockroachdb/cockroach/pkg/sql/opt/memo"
"github.com/cockroachdb/cockroach/pkg/sql/opt/props"
"github.com/cockroachdb/cockroach/pkg/sql/parser"
"github.com/cockroachdb/cockroach/pkg/sql/pgwire/pgcode"
"github.com/cockroachdb/cockroach/pkg/sql/pgwire/pgerror"
"github.com/cockroachdb/cockroach/pkg/sql/privilege"
"github.com/cockroachdb/cockroach/pkg/sql/sem/tree"
"github.com/cockroachdb/cockroach/pkg/sql/sqltelemetry"
"github.com/cockroachdb/cockroach/pkg/sql/types"
"github.com/cockroachdb/cockroach/pkg/util/errorutil/unimplemented"
"github.com/cockroachdb/errors"
)
// buildDataSource builds a set of memo groups that represent the given table
// expression. For example, if the tree.TableExpr consists of a single table,
// the resulting set of memo groups will consist of a single group with a
// scanOp operator. Joins will result in the construction of several groups,
// including two for the left and right table scans, at least one for the join
// condition, and one for the join itself.
//
// See Builder.buildStmt for a description of the remaining input and
// return values.
func (b *Builder) buildDataSource(
texpr tree.TableExpr, indexFlags *tree.IndexFlags, locking lockingSpec, inScope *scope,
) (outScope *scope) {
defer func(prevAtRoot bool) {
inScope.atRoot = prevAtRoot
}(inScope.atRoot)
inScope.atRoot = false
// NB: The case statements are sorted lexicographically.
switch source := texpr.(type) {
case *tree.AliasedTableExpr:
if source.IndexFlags != nil {
telemetry.Inc(sqltelemetry.IndexHintUseCounter)
telemetry.Inc(sqltelemetry.IndexHintSelectUseCounter)
indexFlags = source.IndexFlags
}
if source.As.Alias != "" {
locking = locking.filter(source.As.Alias)
}
outScope = b.buildDataSource(source.Expr, indexFlags, locking, inScope)
if source.Ordinality {
outScope = b.buildWithOrdinality("ordinality", outScope)
}
// Overwrite output properties with any alias information.
b.renameSource(source.As, outScope)
return outScope
case *tree.JoinTableExpr:
return b.buildJoin(source, locking, inScope)
case *tree.TableName:
tn := source
// CTEs take precedence over other data sources.
if cte := inScope.resolveCTE(tn); cte != nil {
locking.ignoreLockingForCTE()
outScope = inScope.push()
inCols := make(opt.ColList, len(cte.cols))
outCols := make(opt.ColList, len(cte.cols))
outScope.cols = nil
for i, col := range cte.cols {
id := col.ID
c := b.factory.Metadata().ColumnMeta(id)
newCol := b.synthesizeColumn(outScope, col.Alias, c.Type, nil, nil)
newCol.table = *tn
inCols[i] = id
outCols[i] = newCol.id
}
outScope.expr = b.factory.ConstructWithScan(&memo.WithScanPrivate{
With: cte.id,
Name: string(cte.name.Alias),
InCols: inCols,
OutCols: outCols,
ID: b.factory.Metadata().NextUniqueID(),
})
return outScope
}
ds, depName, resName := b.resolveDataSource(tn, privilege.SELECT)
locking = locking.filter(tn.ObjectName)
if locking.isSet() {
// SELECT ... FOR [KEY] UPDATE/SHARE also requires UPDATE privileges.
b.checkPrivilege(depName, ds, privilege.UPDATE)
}
switch t := ds.(type) {
case cat.Table:
tabMeta := b.addTable(t, &resName)
return b.buildScan(
tabMeta,
tableOrdinals(t, columnKinds{
includeMutations: false,
includeSystem: true,
includeVirtualInverted: false,
includeVirtualComputed: true,
}),
indexFlags, locking, inScope,
)
case cat.Sequence:
return b.buildSequenceSelect(t, &resName, inScope)
case cat.View:
return b.buildView(t, &resName, locking, inScope)
default:
panic(errors.AssertionFailedf("unknown DataSource type %T", ds))
}
case *tree.ParenTableExpr:
return b.buildDataSource(source.Expr, indexFlags, locking, inScope)
case *tree.RowsFromExpr:
return b.buildZip(source.Items, inScope)
case *tree.Subquery:
// Remove any target relations from the current scope's locking spec, as
// those only apply to relations in this statement. Interestingly, this
// would not be necessary if we required all subqueries to have aliases
// like Postgres does.
locking = locking.withoutTargets()
outScope = b.buildSelectStmt(source.Select, locking, nil /* desiredTypes */, inScope)
// Treat the subquery result as an anonymous data source (i.e. column names
// are not qualified). Remove hidden columns, as they are not accessible
// outside the subquery.
outScope.setTableAlias("")
outScope.removeHiddenCols()
return outScope
case *tree.StatementSource:
// This is the special '[ ... ]' syntax. We treat this as syntactic sugar
// for a top-level CTE, so it cannot refer to anything in the input scope.
// See #41078.
emptyScope := b.allocScope()
innerScope := b.buildStmt(source.Statement, nil /* desiredTypes */, emptyScope)
if len(innerScope.cols) == 0 {
panic(pgerror.Newf(pgcode.UndefinedColumn,
"statement source \"%v\" does not return any columns", source.Statement))
}
id := b.factory.Memo().NextWithID()
b.factory.Metadata().AddWithBinding(id, innerScope.expr)
cte := cteSource{
name: tree.AliasClause{},
cols: innerScope.makePresentationWithHiddenCols(),
originalExpr: source.Statement,
expr: innerScope.expr,
id: id,
}
b.cteStack[len(b.cteStack)-1] = append(b.cteStack[len(b.cteStack)-1], cte)
inCols := make(opt.ColList, len(cte.cols))
outCols := make(opt.ColList, len(cte.cols))
for i, col := range cte.cols {
id := col.ID
c := b.factory.Metadata().ColumnMeta(id)
inCols[i] = id
outCols[i] = b.factory.Metadata().AddColumn(col.Alias, c.Type)
}
locking.ignoreLockingForCTE()
outScope = inScope.push()
// Similar to appendColumnsFromScope, but with re-numbering the column IDs.
for i, col := range innerScope.cols {
col.scalar = nil
col.id = outCols[i]
outScope.cols = append(outScope.cols, col)
}
outScope.expr = b.factory.ConstructWithScan(&memo.WithScanPrivate{
With: cte.id,
Name: string(cte.name.Alias),
InCols: inCols,
OutCols: outCols,
ID: b.factory.Metadata().NextUniqueID(),
})
return outScope
case *tree.TableRef:
ds, depName := b.resolveDataSourceRef(source, privilege.SELECT)
locking = locking.filter(source.As.Alias)
if locking.isSet() {
// SELECT ... FOR [KEY] UPDATE/SHARE also requires UPDATE privileges.
b.checkPrivilege(depName, ds, privilege.UPDATE)
}
switch t := ds.(type) {
case cat.Table:
outScope = b.buildScanFromTableRef(t, source, indexFlags, locking, inScope)
case cat.View:
if source.Columns != nil {
panic(pgerror.Newf(pgcode.FeatureNotSupported,
"cannot specify an explicit column list when accessing a view by reference"))
}
tn := tree.MakeUnqualifiedTableName(t.Name())
outScope = b.buildView(t, &tn, locking, inScope)
case cat.Sequence:
tn := tree.MakeUnqualifiedTableName(t.Name())
// Any explicitly listed columns are ignored.
outScope = b.buildSequenceSelect(t, &tn, inScope)
default:
panic(errors.AssertionFailedf("unsupported catalog object"))
}
b.renameSource(source.As, outScope)
return outScope
default:
panic(errors.AssertionFailedf("unknown table expr: %T", texpr))
}
}
// buildView parses the view query text and builds it as a Select expression.
func (b *Builder) buildView(
view cat.View, viewName *tree.TableName, locking lockingSpec, inScope *scope,
) (outScope *scope) {
// Cache the AST so that multiple references won't need to reparse.
if b.views == nil {
b.views = make(map[cat.View]*tree.Select)
}
// Check whether view has already been parsed, and if not, parse now.
sel, ok := b.views[view]
if !ok {
stmt, err := parser.ParseOne(view.Query())
if err != nil {
wrapped := pgerror.Wrapf(err, pgcode.Syntax,
"failed to parse underlying query from view %q", view.Name())
panic(wrapped)
}
sel, ok = stmt.AST.(*tree.Select)
if !ok {
panic(errors.AssertionFailedf("expected SELECT statement"))
}
b.views[view] = sel
// Keep track of referenced views for EXPLAIN (opt, env).
b.factory.Metadata().AddView(view)
}
// When building the view, we don't want to check for the SELECT privilege
// on the underlying tables, just on the view itself. Checking on the
// underlying tables as well would defeat the purpose of having separate
// SELECT privileges on the view, which is intended to allow for exposing
// some subset of a restricted table's data to less privileged users.
if !b.skipSelectPrivilegeChecks {
b.skipSelectPrivilegeChecks = true
defer func() { b.skipSelectPrivilegeChecks = false }()
}
trackDeps := b.trackViewDeps
if trackDeps {
// We are only interested in the direct dependency on this view descriptor.
// Any further dependency by the view's query should not be tracked.
b.trackViewDeps = false
defer func() { b.trackViewDeps = true }()
}
// We don't want the view to be able to refer to any outer scopes in the
// query. This shouldn't happen if the view is valid but there may be
// cornercases (e.g. renaming tables referenced by the view). To be safe, we
// build the view with an empty scope. But after that, we reattach the scope
// to the existing scope chain because we want the rest of the query to be
// able to refer to the higher scopes (see #46180).
emptyScope := b.allocScope()
outScope = b.buildSelect(sel, locking, nil /* desiredTypes */, emptyScope)
emptyScope.parent = inScope
// Update data source name to be the name of the view. And if view columns
// are specified, then update names of output columns.
hasCols := view.ColumnNameCount() > 0
for i := range outScope.cols {
outScope.cols[i].table = *viewName
if hasCols {
outScope.cols[i].name = view.ColumnName(i)
}
}
if trackDeps && !view.IsSystemView() {
dep := opt.ViewDep{DataSource: view}
for i := range outScope.cols {
dep.ColumnOrdinals.Add(i)
}
b.viewDeps = append(b.viewDeps, dep)
}
return outScope
}
// renameSource applies an AS clause to the columns in scope.
func (b *Builder) renameSource(as tree.AliasClause, scope *scope) {
if as.Alias != "" {
colAlias := as.Cols
// Special case for Postgres compatibility: if a data source does not
// currently have a name, and it is a set-generating function or a scalar
// function with just one column, and the AS clause doesn't specify column
// names, then use the specified table name both as the column name and
// table name.
noColNameSpecified := len(colAlias) == 0
if scope.isAnonymousTable() && noColNameSpecified && scope.singleSRFColumn {
colAlias = tree.NameList{as.Alias}
}
// If an alias was specified, use that to qualify the column names.
tableAlias := tree.MakeUnqualifiedTableName(as.Alias)
scope.setTableAlias(as.Alias)
// If input expression is a ScanExpr, then override metadata aliases for
// pretty-printing.
scan, isScan := scope.expr.(*memo.ScanExpr)
if isScan {
tabMeta := b.factory.Metadata().TableMeta(scan.ScanPrivate.Table)
tabMeta.Alias = tree.MakeUnqualifiedTableName(as.Alias)
}
if len(colAlias) > 0 {
// The column aliases can only refer to explicit columns.
for colIdx, aliasIdx := 0, 0; aliasIdx < len(colAlias); colIdx++ {
if colIdx >= len(scope.cols) {
srcName := tree.ErrString(&tableAlias)
panic(pgerror.Newf(
pgcode.InvalidColumnReference,
"source %q has %d columns available but %d columns specified",
srcName, aliasIdx, len(colAlias),
))
}
col := &scope.cols[colIdx]
if col.hidden {
continue
}
col.name = colAlias[aliasIdx]
if isScan {
// Override column metadata alias.
colMeta := b.factory.Metadata().ColumnMeta(col.id)
colMeta.Alias = string(colAlias[aliasIdx])
}
aliasIdx++
}
}
}
}
// buildScanFromTableRef adds support for numeric references in queries.
// For example:
// SELECT * FROM [53 as t]; (table reference)
// SELECT * FROM [53(1) as t]; (+columnar reference)
// SELECT * FROM [53(1) as t]@1; (+index reference)
// Note, the query SELECT * FROM [53() as t] is unsupported. Column lists must
// be non-empty
func (b *Builder) buildScanFromTableRef(
tab cat.Table,
ref *tree.TableRef,
indexFlags *tree.IndexFlags,
locking lockingSpec,
inScope *scope,
) (outScope *scope) {
var ordinals []int
if ref.Columns != nil {
// See tree.TableRef: "Note that a nil [Columns] array means 'unspecified'
// (all columns). whereas an array of length 0 means 'zero columns'.
// Lists of zero columns are not supported and will throw an error."
if len(ref.Columns) == 0 {
panic(pgerror.Newf(pgcode.Syntax,
"an explicit list of column IDs must include at least one column"))
}
ordinals = resolveNumericColumnRefs(tab, ref.Columns)
} else {
ordinals = tableOrdinals(tab, columnKinds{
includeMutations: false,
includeSystem: true,
includeVirtualInverted: false,
includeVirtualComputed: true,
})
}
tn := tree.MakeUnqualifiedTableName(tab.Name())
tabMeta := b.addTable(tab, &tn)
return b.buildScan(tabMeta, ordinals, indexFlags, locking, inScope)
}
// addTable adds a table to the metadata and returns the TableMeta. The table
// name is passed separately in order to preserve knowledge of whether the
// catalog and schema names were explicitly specified.
func (b *Builder) addTable(tab cat.Table, alias *tree.TableName) *opt.TableMeta {
md := b.factory.Metadata()
tabID := md.AddTable(tab, alias)
return md.TableMeta(tabID)
}
// buildScan builds a memo group for a ScanOp expression on the given table. If
// the ordinals list contains any VirtualComputed columns, a ProjectOp is built
// on top.
//
// The resulting scope and expression output the given table ordinals. If an
// ordinal is for a VirtualComputed column, the ordinals it depends on must also
// be in the list (in practice, this coincides with all "ordinary" table columns
// being in the list).
//
// If scanMutationCols is true, then include columns being added or dropped from
// the table. These are currently required by the execution engine as "fetch
// columns", when performing mutation DML statements (INSERT, UPDATE, UPSERT,
// DELETE).
//
// NOTE: Callers must take care that these mutation columns are never used in
// any other way, since they may not have been initialized yet by the
// backfiller!
//
// See Builder.buildStmt for a description of the remaining input and return
// values.
func (b *Builder) buildScan(
tabMeta *opt.TableMeta,
ordinals []int,
indexFlags *tree.IndexFlags,
locking lockingSpec,
inScope *scope,
) (outScope *scope) {
if ordinals == nil {
panic(errors.AssertionFailedf("no ordinals"))
}
tab := tabMeta.Table
tabID := tabMeta.MetaID
if indexFlags != nil && indexFlags.IgnoreForeignKeys {
tabMeta.IgnoreForeignKeys = true
}
outScope = inScope.push()
// We collect VirtualComputed columns separately; these cannot be scanned,
// they can only be projected afterward.
var tabColIDs, virtualColIDs opt.ColSet
outScope.cols = make([]scopeColumn, len(ordinals))
for i, ord := range ordinals {
col := tab.Column(ord)
colID := tabID.ColumnID(ord)
name := col.ColName()
kind := col.Kind()
if kind != cat.VirtualComputed {
tabColIDs.Add(colID)
} else {
virtualColIDs.Add(colID)
}
outScope.cols[i] = scopeColumn{
id: colID,
name: name,
table: tabMeta.Alias,
typ: col.DatumType(),
hidden: col.IsHidden() || (kind != cat.Ordinary && kind != cat.VirtualComputed),
kind: kind,
mutation: kind == cat.WriteOnly || kind == cat.DeleteOnly,
tableOrdinal: ord,
}
}
if tab.IsVirtualTable() {
if indexFlags != nil {
panic(pgerror.Newf(pgcode.Syntax,
"index flags not allowed with virtual tables"))
}
if locking.isSet() {
panic(pgerror.Newf(pgcode.Syntax,
"%s not allowed with virtual tables", locking.get().Strength))
}
private := memo.ScanPrivate{Table: tabID, Cols: tabColIDs}
outScope.expr = b.factory.ConstructScan(&private)
// Note: virtual tables should not be collected as view dependencies.
return outScope
}
private := memo.ScanPrivate{Table: tabID, Cols: tabColIDs}
if indexFlags != nil {
private.Flags.NoIndexJoin = indexFlags.NoIndexJoin
if indexFlags.Index != "" || indexFlags.IndexID != 0 {
idx := -1
for i := 0; i < tab.IndexCount(); i++ {
if tab.Index(i).Name() == tree.Name(indexFlags.Index) ||
tab.Index(i).ID() == cat.StableID(indexFlags.IndexID) {
idx = i
break
}
}
if idx == -1 {
var err error
if indexFlags.Index != "" {
err = errors.Errorf("index %q not found", tree.ErrString(&indexFlags.Index))
} else {
err = errors.Errorf("index [%d] not found", indexFlags.IndexID)
}
panic(err)
}
private.Flags.ForceIndex = true
private.Flags.Index = idx
private.Flags.Direction = indexFlags.Direction
}
}
if locking.isSet() {
private.Locking = locking.get()
}
b.addCheckConstraintsForTable(tabMeta)
b.addComputedColsForTable(tabMeta)
outScope.expr = b.factory.ConstructScan(&private)
if !virtualColIDs.Empty() {
// Project the expressions for the virtual columns (and pass through all
// scanned columns).
proj := make(memo.ProjectionsExpr, 0, virtualColIDs.Len())
virtualColIDs.ForEach(func(col opt.ColumnID) {
item := b.factory.ConstructProjectionsItem(tabMeta.ComputedCols[col], col)
if !item.ScalarProps().OuterCols.SubsetOf(tabColIDs) {
panic(errors.AssertionFailedf("scanned virtual column depends on non-scanned column"))
}
proj = append(proj, item)
})
outScope.expr = b.factory.ConstructProject(outScope.expr, proj, tabColIDs)
}
// Add the partial indexes after constructing the scan so we can use the
// logical properties of the scan to fully normalize the index
// predicates. Partial index predicates are only added if the outScope
// contains all the table's ordinary columns. If it does not, partial
// index predicates cannot be built because they may reference columns
// not in outScope. In the most common case, the outScope has the same
// number of columns as the table and we can skip checking that each
// ordinary column exists in outScope.
containsAllOrdinaryTableColumns := true
if len(outScope.cols) != tab.ColumnCount() {
for i := 0; i < tab.ColumnCount(); i++ {
col := tab.Column(i)
if col.Kind() == cat.Ordinary && !outScope.colSet().Contains(tabID.ColumnID(col.Ordinal())) {
containsAllOrdinaryTableColumns = false
break
}
}
}
if containsAllOrdinaryTableColumns {
b.addPartialIndexPredicatesForTable(tabMeta, outScope)
}
if b.trackViewDeps {
dep := opt.ViewDep{DataSource: tab}
dep.ColumnIDToOrd = make(map[opt.ColumnID]int)
// We will track the ColumnID to Ord mapping so Ords can be added
// when a column is referenced.
for i, col := range outScope.cols {
dep.ColumnIDToOrd[col.id] = ordinals[i]
}
if private.Flags.ForceIndex {
dep.SpecificIndex = true
dep.Index = private.Flags.Index
}
b.viewDeps = append(b.viewDeps, dep)
}
return outScope
}
// addCheckConstraintsForTable extracts filters from the check constraints that
// apply to the table and adds them to the table metadata (see
// TableMeta.Constraints). To do this, the scalar expressions of the check
// constraints are built here.
//
// These expressions are used as "known truths" about table data; as such they
// can only contain immutable operators.
func (b *Builder) addCheckConstraintsForTable(tabMeta *opt.TableMeta) {
tab := tabMeta.Table
// Check if we have any validated check constraints. Only validated
// constraints are known to hold on existing table data.
numChecks := tab.CheckCount()
chkIdx := 0
for ; chkIdx < numChecks; chkIdx++ {
if tab.Check(chkIdx).Validated {
break
}
}
if chkIdx == numChecks {
return
}
// Create a scope that can be used for building the scalar expressions.
tableScope := b.allocScope()
tableScope.appendOrdinaryColumnsFromTable(tabMeta, &tabMeta.Alias)
// Find the non-nullable table columns. Mutation columns can be NULL during
// backfill, so they should be excluded.
var notNullCols opt.ColSet
for i, n := 0, tab.ColumnCount(); i < n; i++ {
if col := tab.Column(i); !col.IsNullable() && !col.IsMutation() {
notNullCols.Add(tabMeta.MetaID.ColumnID(i))
}
}
var filters memo.FiltersExpr
// Skip to the first validated constraint we found above.
for ; chkIdx < numChecks; chkIdx++ {
checkConstraint := tab.Check(chkIdx)
// Only add validated check constraints to the table's metadata.
if !checkConstraint.Validated {
continue
}
expr, err := parser.ParseExpr(checkConstraint.Constraint)
if err != nil {
panic(err)
}
texpr := tableScope.resolveAndRequireType(expr, types.Bool)
var condition opt.ScalarExpr
b.factory.FoldingControl().TemporarilyDisallowStableFolds(func() {
condition = b.buildScalar(texpr, tableScope, nil, nil, nil)
})
// Check constraints that are guaranteed to not evaluate to NULL
// are the only ones converted into filters. This is because a NULL
// constraint is interpreted as passing, whereas a NULL filter is not.
if memo.ExprIsNeverNull(condition, notNullCols) {
// Check if the expression contains non-immutable operators.
var sharedProps props.Shared
memo.BuildSharedProps(condition, &sharedProps)
if !sharedProps.VolatilitySet.HasStable() && !sharedProps.VolatilitySet.HasVolatile() {
filters = append(filters, b.factory.ConstructFiltersItem(condition))
}
}
}
if len(filters) > 0 {
tabMeta.SetConstraints(&filters)
}
}
// addComputedColsForTable finds all computed columns in the given table and
// caches them in the table metadata as scalar expressions. These expressions
// are used as "known truths" about table data. Any columns for which the
// expression contains non-immutable operators are omitted.
func (b *Builder) addComputedColsForTable(tabMeta *opt.TableMeta) {
var tableScope *scope
tab := tabMeta.Table
for i, n := 0, tab.ColumnCount(); i < n; i++ {
tabCol := tab.Column(i)
if !tabCol.IsComputed() {
continue
}
if tabCol.IsMutation() {
// Mutation columns can be NULL during backfill, so they won't equal the
// computed column expression value (in general).
continue
}
expr, err := parser.ParseExpr(tabCol.ComputedExprStr())
if err != nil {
panic(err)
}
if tableScope == nil {
tableScope = b.allocScope()
tableScope.appendOrdinaryColumnsFromTable(tabMeta, &tabMeta.Alias)
}
if texpr := tableScope.resolveAndRequireType(expr, types.Any); texpr != nil {
colID := tabMeta.MetaID.ColumnID(i)
var scalar opt.ScalarExpr
b.factory.FoldingControl().TemporarilyDisallowStableFolds(func() {
scalar = b.buildScalar(texpr, tableScope, nil, nil, nil)
})
// Check if the expression contains non-immutable operators.
var sharedProps props.Shared
memo.BuildSharedProps(scalar, &sharedProps)
if !sharedProps.VolatilitySet.HasStable() && !sharedProps.VolatilitySet.HasVolatile() {
tabMeta.AddComputedCol(colID, scalar)
}
}
}
}
// addPartialIndexPredicatesForTable finds all partial indexes in the table and
// adds their predicates to the table metadata (see
// TableMeta.PartialIndexPredicates). The predicates are converted from strings
// to ScalarExprs here.
//
// The predicates are used as "known truths" about table data. Any predicates
// containing non-immutable operators are omitted.
func (b *Builder) addPartialIndexPredicatesForTable(tabMeta *opt.TableMeta, tableScope *scope) {
tab := tabMeta.Table
// Find the first partial index.
numIndexes := tab.IndexCount()
indexOrd := 0
for ; indexOrd < numIndexes; indexOrd++ {
if _, ok := tab.Index(indexOrd).Predicate(); ok {
break
}
}
// Return early if there are no partial indexes. Only partial indexes have
// predicates.
if indexOrd == numIndexes {
return
}
// Skip to the first partial index we found above.
for ; indexOrd < numIndexes; indexOrd++ {
index := tab.Index(indexOrd)
pred, ok := index.Predicate()
// If the index is not a partial index, do nothing.
if !ok {
continue
}
expr, err := parser.ParseExpr(pred)
if err != nil {
panic(err)
}
// Build the partial index predicate as a memo.FiltersExpr and add it
// to the table metadata.
predExpr, err := b.buildPartialIndexPredicate(tableScope, expr, "index predicate")
if err != nil {
panic(err)
}
tabMeta.AddPartialIndexPredicate(indexOrd, &predExpr)
}
}
func (b *Builder) buildSequenceSelect(
seq cat.Sequence, seqName *tree.TableName, inScope *scope,
) (outScope *scope) {
md := b.factory.Metadata()
outScope = inScope.push()
cols := make(opt.ColList, len(colinfo.SequenceSelectColumns))
for i, c := range colinfo.SequenceSelectColumns {
cols[i] = md.AddColumn(c.Name, c.Typ)
}
outScope.cols = make([]scopeColumn, 3)
for i, c := range cols {
col := md.ColumnMeta(c)
outScope.cols[i] = scopeColumn{
id: c,
name: tree.Name(col.Alias),
table: *seqName,
typ: col.Type,
}
}
private := memo.SequenceSelectPrivate{
Sequence: md.AddSequence(seq),
Cols: cols,
}
outScope.expr = b.factory.ConstructSequenceSelect(&private)
if b.trackViewDeps {
b.viewDeps = append(b.viewDeps, opt.ViewDep{DataSource: seq})
}
return outScope
}
// buildWithOrdinality builds a group which appends an increasing integer column to
// the output. colName optionally denotes the name this column is given, or can
// be blank for none.
//
// See Builder.buildStmt for a description of the remaining input and
// return values.
func (b *Builder) buildWithOrdinality(colName string, inScope *scope) (outScope *scope) {
col := b.synthesizeColumn(inScope, colName, types.Int, nil, nil /* scalar */)
// See https://www.cockroachlabs.com/docs/stable/query-order.html#order-preservation
// for the semantics around WITH ORDINALITY and ordering.
input := inScope.expr.(memo.RelExpr)
inScope.expr = b.factory.ConstructOrdinality(input, &memo.OrdinalityPrivate{
Ordering: inScope.makeOrderingChoice(),
ColID: col.id,
})
return inScope
}
func (b *Builder) buildCTEs(with *tree.With, inScope *scope) (outScope *scope) {
if with == nil {
return inScope
}
outScope = inScope.push()
addedCTEs := make([]cteSource, len(with.CTEList))
hasRecursive := false
// Make a fake subquery to ensure that no CTEs are correlated.
// TODO(justin): relax this restriction.
outer := b.subquery
defer func() { b.subquery = outer }()
b.subquery = &subquery{}
outScope.ctes = make(map[string]*cteSource)
for i, cte := range with.CTEList {
hasRecursive = hasRecursive || with.Recursive
cteExpr, cteCols := b.buildCTE(cte, outScope, with.Recursive)
// TODO(justin): lift this restriction when possible. WITH should be hoistable.
if b.subquery != nil && !b.subquery.outerCols.Empty() {
panic(pgerror.Newf(pgcode.FeatureNotSupported, "CTEs may not be correlated"))
}
aliasStr := cte.Name.Alias.String()
if _, ok := outScope.ctes[aliasStr]; ok {
panic(pgerror.Newf(
pgcode.DuplicateAlias, "WITH query name %s specified more than once", aliasStr,
))
}
id := b.factory.Memo().NextWithID()
b.factory.Metadata().AddWithBinding(id, cteExpr)
addedCTEs[i] = cteSource{
name: cte.Name,
cols: cteCols,
originalExpr: cte.Stmt,
expr: cteExpr,
id: id,
mtr: cte.Mtr,
}
cte := &addedCTEs[i]
outScope.ctes[cte.name.Alias.String()] = cte
b.cteStack[len(b.cteStack)-1] = append(b.cteStack[len(b.cteStack)-1], *cte)
if cteExpr.Relational().CanMutate && !inScope.atRoot {
panic(
pgerror.Newf(
pgcode.FeatureNotSupported,
"WITH clause containing a data-modifying statement must be at the top level",
),
)
}
}
telemetry.Inc(sqltelemetry.CteUseCounter)
if hasRecursive {
telemetry.Inc(sqltelemetry.RecursiveCteUseCounter)
}
return outScope
}
// A WITH constructed within an EXPLAIN should not be hoisted above it, and so
// we need to denote a boundary which blocks them.
func (b *Builder) pushWithFrame() {
b.cteStack = append(b.cteStack, []cteSource{})
}
// popWithFrame wraps the given scope's expression in the CTEs that have been
// queued up at this level.
func (b *Builder) popWithFrame(s *scope) {
s.expr = b.flushCTEs(s.expr)
}
// flushCTEs adds With expressions on top of an expression.
func (b *Builder) flushCTEs(expr memo.RelExpr) memo.RelExpr {
ctes := b.cteStack[len(b.cteStack)-1]
b.cteStack = b.cteStack[:len(b.cteStack)-1]
if len(ctes) == 0 {
return expr
}
// Since later CTEs can refer to earlier ones, we want to add these in
// reverse order.
for i := len(ctes) - 1; i >= 0; i-- {
expr = b.factory.ConstructWith(
ctes[i].expr,
expr,
&memo.WithPrivate{
ID: ctes[i].id,
Name: string(ctes[i].name.Alias),
Mtr: ctes[i].mtr,
OriginalExpr: ctes[i].originalExpr,
},
)
}
return expr
}
// buildSelectStmt builds a set of memo groups that represent the given select
// statement.
//
// See Builder.buildStmt for a description of the remaining input and
// return values.
func (b *Builder) buildSelectStmt(
stmt tree.SelectStatement, locking lockingSpec, desiredTypes []*types.T, inScope *scope,
) (outScope *scope) {
// NB: The case statements are sorted lexicographically.
switch stmt := stmt.(type) {
case *tree.ParenSelect:
return b.buildSelect(stmt.Select, locking, desiredTypes, inScope)
case *tree.SelectClause:
return b.buildSelectClause(stmt, nil /* orderBy */, locking, desiredTypes, inScope)
case *tree.UnionClause:
return b.buildUnionClause(stmt, desiredTypes, inScope)
case *tree.ValuesClause:
return b.buildValuesClause(stmt, desiredTypes, inScope)
default:
panic(errors.AssertionFailedf("unknown select statement type: %T", stmt))
}
}
// buildSelect builds a set of memo groups that represent the given select
// expression.
//
// See Builder.buildStmt for a description of the remaining input and
// return values.
func (b *Builder) buildSelect(
stmt *tree.Select, locking lockingSpec, desiredTypes []*types.T, inScope *scope,
) (outScope *scope) {
wrapped := stmt.Select
with := stmt.With
orderBy := stmt.OrderBy
limit := stmt.Limit
locking.apply(stmt.Locking)
for s, ok := wrapped.(*tree.ParenSelect); ok; s, ok = wrapped.(*tree.ParenSelect) {
stmt = s.Select
wrapped = stmt.Select
if stmt.With != nil {
if with != nil {
// (WITH ... (WITH ...))
// Currently we are unable to nest the scopes inside ParenSelect so we
// must refuse the syntax so that the query does not get invalid results.
panic(unimplemented.NewWithIssue(
24303, "multiple WITH clauses in parentheses",
))
}
with = s.Select.With
}
if stmt.OrderBy != nil {
if orderBy != nil {
panic(pgerror.Newf(
pgcode.Syntax, "multiple ORDER BY clauses not allowed",
))
}
orderBy = stmt.OrderBy
}
if stmt.Limit != nil {
if limit != nil {
panic(pgerror.Newf(
pgcode.Syntax, "multiple LIMIT clauses not allowed",
))
}
limit = stmt.Limit
}
if stmt.Locking != nil {
locking.apply(stmt.Locking)
}
}
return b.processWiths(with, inScope, func(inScope *scope) *scope {
return b.buildSelectStmtWithoutParens(
wrapped, orderBy, limit, locking, desiredTypes, inScope,
)
})
}
// buildSelectStmtWithoutParens builds a set of memo groups that represent
// the given select statement components. The wrapped select statement can