-
Notifications
You must be signed in to change notification settings - Fork 3.9k
/
Copy pathallocator_scorer.go
1262 lines (1173 loc) · 42.9 KB
/
allocator_scorer.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
// Copyright 2016 The Cockroach Authors.
//
// Use of this software is governed by the Business Source License
// included in the file licenses/BSL.txt.
//
// As of the Change Date specified in that file, in accordance with
// the Business Source License, use of this software will be governed
// by the Apache License, Version 2.0, included in the file
// licenses/APL.txt.
package kvserver
import (
"bytes"
"context"
"fmt"
"math"
"sort"
"strconv"
"github.com/cockroachdb/cockroach/pkg/config/zonepb"
"github.com/cockroachdb/cockroach/pkg/kv/kvserver/constraint"
"github.com/cockroachdb/cockroach/pkg/roachpb"
"github.com/cockroachdb/cockroach/pkg/settings"
"github.com/cockroachdb/cockroach/pkg/util/log"
)
const (
// This is a somehow arbitrary chosen upper bound on the relative error to be
// used when comparing doubles for equality. The assumption that comes with it
// is that any sequence of operations on doubles won't produce a result with
// accuracy that is worse than this relative error. There is no guarantee
// however that this will be the case. A programmer writing code using
// floating point numbers will still need to be aware of the effect of the
// operations on the results and the possible loss of accuracy.
// More info https://en.wikipedia.org/wiki/Machine_epsilon
// https://en.wikipedia.org/wiki/Floating-point_arithmetic
epsilon = 1e-10
// The number of random candidates to select from a larger list of possible
// candidates. Because the allocator heuristics are being run on every node it
// is actually not desirable to set this value higher. Doing so can lead to
// situations where the allocator determistically selects the "best" node for a
// decision and all of the nodes pile on allocations to that node. See "power
// of two random choices":
// https://brooker.co.za/blog/2012/01/17/two-random.html and
// https://www.eecs.harvard.edu/~michaelm/postscripts/mythesis.pdf.
allocatorRandomCount = 2
// maxFractionUsedThreshold: if the fraction used of a store descriptor
// capacity is greater than this value, it will never be used as a rebalance
// or allocate target and we will actively try to move replicas off of it.
maxFractionUsedThreshold = 0.95
// rebalanceToMaxFractionUsedThreshold: if the fraction used of a store
// descriptor capacity is greater than this value, it will never be used as a
// rebalance target. This is important for providing a buffer between fully
// healthy stores and full stores (as determined by
// maxFractionUsedThreshold). Without such a buffer, replicas could
// hypothetically ping pong back and forth between two nodes, making one full
// and then the other.
rebalanceToMaxFractionUsedThreshold = 0.925
// minRangeRebalanceThreshold is the number of replicas by which a store
// must deviate from the mean number of replicas to be considered overfull
// or underfull. This absolute bound exists to account for deployments
// with a small number of replicas to avoid premature replica movement.
// With few enough replicas per node (<<30), a rangeRebalanceThreshold
// of 5% (the default at time of writing, see below) would otherwise
// result in rebalancing at one replica above/below the mean, which
// could lead to a condition that would always fire. Instead, we only
// consider a store full/empty if it's at least minRebalanceThreshold
// away from the mean.
minRangeRebalanceThreshold = 2
)
// rangeRebalanceThreshold is the minimum ratio of a store's range count to
// the mean range count at which that store is considered overfull or underfull
// of ranges.
var rangeRebalanceThreshold = func() *settings.FloatSetting {
s := settings.RegisterNonNegativeFloatSetting(
"kv.allocator.range_rebalance_threshold",
"minimum fraction away from the mean a store's range count can be before it is considered overfull or underfull",
0.05,
)
s.SetVisibility(settings.Public)
return s
}()
type scorerOptions struct {
deterministic bool
rangeRebalanceThreshold float64
qpsRebalanceThreshold float64 // only considered if non-zero
}
type balanceDimensions struct {
ranges rangeCountStatus
}
func (bd *balanceDimensions) totalScore() float64 {
return float64(bd.ranges)
}
func (bd balanceDimensions) String() string {
return strconv.Itoa(int(bd.ranges))
}
func (bd balanceDimensions) compactString(options scorerOptions) string {
return fmt.Sprintf("%d", bd.ranges)
}
// candidate store for allocation.
type candidate struct {
store roachpb.StoreDescriptor
valid bool
fullDisk bool
necessary bool
diversityScore float64
convergesScore int
balanceScore balanceDimensions
rangeCount int
details string
}
func (c candidate) String() string {
str := fmt.Sprintf("s%d, valid:%t, fulldisk:%t, necessary:%t, diversity:%.2f, converges:%d, "+
"balance:%s, rangeCount:%d, queriesPerSecond:%.2f",
c.store.StoreID, c.valid, c.fullDisk, c.necessary, c.diversityScore, c.convergesScore,
c.balanceScore, c.rangeCount, c.store.Capacity.QueriesPerSecond)
if c.details != "" {
return fmt.Sprintf("%s, details:(%s)", str, c.details)
}
return str
}
func (c candidate) compactString(options scorerOptions) string {
var buf bytes.Buffer
fmt.Fprintf(&buf, "s%d", c.store.StoreID)
if !c.valid {
fmt.Fprintf(&buf, ", valid:%t", c.valid)
}
if c.fullDisk {
fmt.Fprintf(&buf, ", fullDisk:%t", c.fullDisk)
}
if c.necessary {
fmt.Fprintf(&buf, ", necessary:%t", c.necessary)
}
if c.diversityScore != 0 {
fmt.Fprintf(&buf, ", diversity:%.2f", c.diversityScore)
}
fmt.Fprintf(&buf, ", converges:%d, balance:%s, rangeCount:%d",
c.convergesScore, c.balanceScore.compactString(options), c.rangeCount)
if c.details != "" {
fmt.Fprintf(&buf, ", details:(%s)", c.details)
}
return buf.String()
}
// less returns true if o is a better fit for some range than c is.
func (c candidate) less(o candidate) bool {
return c.compare(o) < 0
}
// compare is analogous to strcmp in C or string::compare in C++ -- it returns
// a positive result if c is a better fit for the range than o, 0 if they're
// equivalent, or a negative result if o is a better fit than c. The magnitude
// of the result reflects some rough idea of how much better the better
// candidate is.
func (c candidate) compare(o candidate) float64 {
if !o.valid {
return 6
}
if !c.valid {
return -6
}
if o.fullDisk {
return 5
}
if c.fullDisk {
return -5
}
if c.necessary != o.necessary {
if c.necessary {
return 4
}
return -4
}
if !scoresAlmostEqual(c.diversityScore, o.diversityScore) {
if c.diversityScore > o.diversityScore {
return 3
}
return -3
}
if c.convergesScore != o.convergesScore {
if c.convergesScore > o.convergesScore {
return 2 + float64(c.convergesScore-o.convergesScore)/10.0
}
return -(2 + float64(o.convergesScore-c.convergesScore)/10.0)
}
if !scoresAlmostEqual(c.balanceScore.totalScore(), o.balanceScore.totalScore()) {
if c.balanceScore.totalScore() > o.balanceScore.totalScore() {
return 1 + (c.balanceScore.totalScore()-o.balanceScore.totalScore())/10.0
}
return -(1 + (o.balanceScore.totalScore()-c.balanceScore.totalScore())/10.0)
}
// Sometimes we compare partially-filled in candidates, e.g. those with
// diversity scores filled in but not balance scores or range counts. This
// avoids returning NaN in such cases.
if c.rangeCount == 0 && o.rangeCount == 0 {
return 0
}
if c.rangeCount < o.rangeCount {
return float64(o.rangeCount-c.rangeCount) / float64(o.rangeCount)
}
return -float64(c.rangeCount-o.rangeCount) / float64(c.rangeCount)
}
type candidateList []candidate
func (cl candidateList) String() string {
if len(cl) == 0 {
return "[]"
}
var buffer bytes.Buffer
buffer.WriteRune('[')
for _, c := range cl {
buffer.WriteRune('\n')
buffer.WriteString(c.String())
}
buffer.WriteRune(']')
return buffer.String()
}
func (cl candidateList) compactString(options scorerOptions) string {
if len(cl) == 0 {
return "[]"
}
var buffer bytes.Buffer
buffer.WriteRune('[')
for _, c := range cl {
buffer.WriteRune('\n')
buffer.WriteString(c.compactString(options))
}
buffer.WriteRune(']')
return buffer.String()
}
// byScore implements sort.Interface to sort by scores.
type byScore candidateList
var _ sort.Interface = byScore(nil)
func (c byScore) Len() int { return len(c) }
func (c byScore) Less(i, j int) bool { return c[i].less(c[j]) }
func (c byScore) Swap(i, j int) { c[i], c[j] = c[j], c[i] }
// byScoreAndID implements sort.Interface to sort by scores and ids.
type byScoreAndID candidateList
var _ sort.Interface = byScoreAndID(nil)
func (c byScoreAndID) Len() int { return len(c) }
func (c byScoreAndID) Less(i, j int) bool {
if scoresAlmostEqual(c[i].diversityScore, c[j].diversityScore) &&
c[i].convergesScore == c[j].convergesScore &&
scoresAlmostEqual(c[i].balanceScore.totalScore(), c[j].balanceScore.totalScore()) &&
c[i].rangeCount == c[j].rangeCount &&
c[i].necessary == c[j].necessary &&
c[i].fullDisk == c[j].fullDisk &&
c[i].valid == c[j].valid {
return c[i].store.StoreID < c[j].store.StoreID
}
return c[i].less(c[j])
}
func (c byScoreAndID) Swap(i, j int) { c[i], c[j] = c[j], c[i] }
// onlyValidAndNotFull returns all the elements in a sorted (by score reversed)
// candidate list that are valid and not nearly full.
func (cl candidateList) onlyValidAndNotFull() candidateList {
for i := len(cl) - 1; i >= 0; i-- {
if cl[i].valid && !cl[i].fullDisk {
return cl[:i+1]
}
}
return candidateList{}
}
// best returns all the elements in a sorted (by score reversed) candidate list
// that share the highest constraint score and are valid.
func (cl candidateList) best() candidateList {
cl = cl.onlyValidAndNotFull()
if len(cl) <= 1 {
return cl
}
for i := 1; i < len(cl); i++ {
if cl[i].necessary == cl[0].necessary &&
scoresAlmostEqual(cl[i].diversityScore, cl[0].diversityScore) &&
cl[i].convergesScore == cl[0].convergesScore {
continue
}
return cl[:i]
}
return cl
}
// worst returns all the elements in a sorted (by score reversed) candidate
// list that share the lowest constraint score.
func (cl candidateList) worst() candidateList {
if len(cl) <= 1 {
return cl
}
// Are there invalid candidates? If so, pick those.
if !cl[len(cl)-1].valid {
for i := len(cl) - 2; i >= 0; i-- {
if cl[i].valid {
return cl[i+1:]
}
}
}
// Are there candidates with a nearly full disk? If so, pick those.
if cl[len(cl)-1].fullDisk {
for i := len(cl) - 2; i >= 0; i-- {
if !cl[i].fullDisk {
return cl[i+1:]
}
}
}
// Find the worst constraint/locality/converges values.
for i := len(cl) - 2; i >= 0; i-- {
if cl[i].necessary == cl[len(cl)-1].necessary &&
scoresAlmostEqual(cl[i].diversityScore, cl[len(cl)-1].diversityScore) &&
cl[i].convergesScore == cl[len(cl)-1].convergesScore {
continue
}
return cl[i+1:]
}
return cl
}
// betterThan returns all elements from a sorted (by score reversed) candidate
// list that have a higher score than the candidate
func (cl candidateList) betterThan(c candidate) candidateList {
for i := 0; i < len(cl); i++ {
if !c.less(cl[i]) {
return cl[:i]
}
}
return cl
}
// selectGood randomly chooses a good candidate store from a sorted (by score
// reversed) candidate list using the provided random generator.
func (cl candidateList) selectGood(randGen allocatorRand) *candidate {
cl = cl.best()
if len(cl) == 0 {
return nil
}
if len(cl) == 1 {
return &cl[0]
}
randGen.Lock()
order := randGen.Perm(len(cl))
randGen.Unlock()
best := &cl[order[0]]
for i := 1; i < allocatorRandomCount; i++ {
if best.less(cl[order[i]]) {
best = &cl[order[i]]
}
}
return best
}
// selectBad randomly chooses a bad candidate store from a sorted (by score
// reversed) candidate list using the provided random generator.
func (cl candidateList) selectBad(randGen allocatorRand) *candidate {
cl = cl.worst()
if len(cl) == 0 {
return nil
}
if len(cl) == 1 {
return &cl[0]
}
randGen.Lock()
order := randGen.Perm(len(cl))
randGen.Unlock()
worst := &cl[order[0]]
for i := 1; i < allocatorRandomCount; i++ {
if cl[order[i]].less(*worst) {
worst = &cl[order[i]]
}
}
return worst
}
// removeCandidate remove the specified candidate from candidateList.
func (cl candidateList) removeCandidate(c candidate) candidateList {
for i := 0; i < len(cl); i++ {
if cl[i].store.StoreID == c.store.StoreID {
cl = append(cl[:i], cl[i+1:]...)
break
}
}
return cl
}
// allocateCandidates creates a candidate list of all stores that can be used
// for allocating a new replica ordered from the best to the worst. Only
// stores that meet the criteria are included in the list.
func allocateCandidates(
sl StoreList,
constraints constraint.AnalyzedConstraints,
existing []roachpb.ReplicaDescriptor,
existingNodeLocalities map[roachpb.NodeID]roachpb.Locality,
options scorerOptions,
) candidateList {
var candidates candidateList
for _, s := range sl.stores {
if nodeHasReplica(s.Node.NodeID, existing) {
continue
}
constraintsOK, necessary := allocateConstraintsCheck(s, constraints)
if !constraintsOK {
continue
}
if !maxCapacityCheck(s) {
continue
}
diversityScore := diversityAllocateScore(s, existingNodeLocalities)
balanceScore := balanceScore(sl, s.Capacity, options)
var convergesScore int
if options.qpsRebalanceThreshold > 0 {
if s.Capacity.QueriesPerSecond < underfullThreshold(sl.candidateQueriesPerSecond.mean, options.qpsRebalanceThreshold) {
convergesScore = 1
} else if s.Capacity.QueriesPerSecond < sl.candidateQueriesPerSecond.mean {
convergesScore = 0
} else if s.Capacity.QueriesPerSecond < overfullThreshold(sl.candidateQueriesPerSecond.mean, options.qpsRebalanceThreshold) {
convergesScore = -1
} else {
convergesScore = -2
}
}
candidates = append(candidates, candidate{
store: s,
valid: constraintsOK,
necessary: necessary,
diversityScore: diversityScore,
convergesScore: convergesScore,
balanceScore: balanceScore,
rangeCount: int(s.Capacity.RangeCount),
})
}
if options.deterministic {
sort.Sort(sort.Reverse(byScoreAndID(candidates)))
} else {
sort.Sort(sort.Reverse(byScore(candidates)))
}
return candidates
}
// removeCandidates creates a candidate list of all existing replicas' stores
// ordered from least qualified for removal to most qualified. Stores that are
// marked as not valid, are in violation of a required criteria.
func removeCandidates(
sl StoreList,
constraints constraint.AnalyzedConstraints,
existingNodeLocalities map[roachpb.NodeID]roachpb.Locality,
options scorerOptions,
) candidateList {
var candidates candidateList
for _, s := range sl.stores {
constraintsOK, necessary := removeConstraintsCheck(s, constraints)
if !constraintsOK {
candidates = append(candidates, candidate{
store: s,
valid: false,
necessary: necessary,
details: "constraint check fail",
})
continue
}
diversityScore := diversityRemovalScore(s.Node.NodeID, existingNodeLocalities)
balanceScore := balanceScore(sl, s.Capacity, options)
var convergesScore int
if !rebalanceFromConvergesOnMean(sl, s.Capacity) {
// If removing this candidate replica does not converge the store
// stats to their means, we make it less attractive for removal by
// adding 1 to the constraint score. Note that when selecting a
// candidate for removal the candidates with the lowest scores are
// more likely to be removed.
convergesScore = 1
}
candidates = append(candidates, candidate{
store: s,
valid: constraintsOK,
necessary: necessary,
fullDisk: !maxCapacityCheck(s),
diversityScore: diversityScore,
convergesScore: convergesScore,
balanceScore: balanceScore,
rangeCount: int(s.Capacity.RangeCount),
})
}
if options.deterministic {
sort.Sort(sort.Reverse(byScoreAndID(candidates)))
} else {
sort.Sort(sort.Reverse(byScore(candidates)))
}
return candidates
}
type rebalanceOptions struct {
existingCandidates candidateList
candidates candidateList
}
// rebalanceCandidates creates two candidate lists. The first contains all
// existing replica's stores, ordered from least qualified for rebalancing to
// most qualified. The second list is of all potential stores that could be
// used as rebalancing receivers, ordered from best to worst.
func rebalanceCandidates(
ctx context.Context,
allStores StoreList,
constraints constraint.AnalyzedConstraints,
existingReplicas []roachpb.ReplicaDescriptor,
existingNodeLocalities map[roachpb.NodeID]roachpb.Locality,
localityLookupFn func(roachpb.NodeID) string,
options scorerOptions,
) []rebalanceOptions {
// 1. Determine whether existing replicas are valid and/or necessary.
type existingStore struct {
cand candidate
localityStr string
}
existingStores := make(map[roachpb.StoreID]existingStore)
var needRebalanceFrom bool
curDiversityScore := rangeDiversityScore(existingNodeLocalities)
for _, store := range allStores.stores {
for _, repl := range existingReplicas {
if store.StoreID != repl.StoreID {
continue
}
valid, necessary := removeConstraintsCheck(store, constraints)
fullDisk := !maxCapacityCheck(store)
if !valid {
if !needRebalanceFrom {
log.VEventf(ctx, 2, "s%d: should-rebalance(invalid): locality:%q",
store.StoreID, store.Node.Locality)
}
needRebalanceFrom = true
}
if fullDisk {
if !needRebalanceFrom {
log.VEventf(ctx, 2, "s%d: should-rebalance(full-disk): capacity:%q",
store.StoreID, store.Capacity)
}
needRebalanceFrom = true
}
existingStores[store.StoreID] = existingStore{
cand: candidate{
store: store,
valid: valid,
necessary: necessary,
fullDisk: fullDisk,
diversityScore: curDiversityScore,
},
localityStr: localityLookupFn(store.Node.NodeID),
}
}
}
// 2. For each store, determine the stores that would be the best
// replacements on the basis of constraints, disk fullness, and diversity.
// Only the best should be included when computing balanceScores, since it
// isn't fair to compare the fullness of stores in a valid/necessary/diverse
// locality to those in an invalid/unnecessary/nondiverse locality (see
// #20751). Along the way, determine whether rebalance is needed to improve
// the range along these critical dimensions.
//
// This creates groups of stores that are valid to compare with each other.
// For example, if a range has a replica in localities A, B, and C, it's ok
// to compare other stores in locality A with the existing store in locality
// A, but would be bad for diversity if we were to compare them to the
// existing stores in localities B and C (see #20751 for more background).
//
// NOTE: We can't just do this once per localityStr because constraints can
// also include node Attributes or store Attributes. We could try to group
// stores by attributes as well, but it's simplest to just run this for each
// store.
type comparableStoreList struct {
existing []roachpb.StoreDescriptor
sl StoreList
candidates candidateList
}
var comparableStores []comparableStoreList
var needRebalanceTo bool
for _, existing := range existingStores {
// If this store is equivalent in both Locality and Node/Store Attributes to
// some other existing store, then we can treat them the same. We have to
// include Node/Store Attributes because they affect constraints.
var matchedOtherExisting bool
for i, stores := range comparableStores {
if sameLocalityAndAttrs(stores.existing[0], existing.cand.store) {
comparableStores[i].existing = append(comparableStores[i].existing, existing.cand.store)
matchedOtherExisting = true
break
}
}
if matchedOtherExisting {
continue
}
var comparableCands candidateList
for _, store := range allStores.stores {
// Nodes that already have a replica on one of their stores aren't valid
// rebalance targets. We do include stores that currently have a replica
// because we want them to be considered as valid stores in the
// ConvergesOnMean calculations below. This is subtle but important.
if nodeHasReplica(store.Node.NodeID, existingReplicas) &&
!storeHasReplica(store.StoreID, existingReplicas) {
log.VEventf(ctx, 2, "nodeHasReplica(n%d, %v)=true",
store.Node.NodeID, existingReplicas)
continue
}
constraintsOK, necessary := rebalanceFromConstraintsCheck(
store, existing.cand.store.StoreID, constraints)
maxCapacityOK := maxCapacityCheck(store)
diversityScore := diversityRebalanceFromScore(
store, existing.cand.store.Node.NodeID, existingNodeLocalities)
cand := candidate{
store: store,
valid: constraintsOK,
necessary: necessary,
fullDisk: !maxCapacityOK,
diversityScore: diversityScore,
}
if !cand.less(existing.cand) {
comparableCands = append(comparableCands, cand)
if !needRebalanceFrom && !needRebalanceTo && existing.cand.less(cand) {
needRebalanceTo = true
log.VEventf(ctx, 2,
"s%d: should-rebalance(necessary/diversity=s%d): oldNecessary:%t, newNecessary:%t, "+
"oldDiversity:%f, newDiversity:%f, locality:%q",
existing.cand.store.StoreID, store.StoreID, existing.cand.necessary, cand.necessary,
existing.cand.diversityScore, cand.diversityScore, store.Node.Locality)
}
}
}
if options.deterministic {
sort.Sort(sort.Reverse(byScoreAndID(comparableCands)))
} else {
sort.Sort(sort.Reverse(byScore(comparableCands)))
}
bestCands := comparableCands.best()
bestStores := make([]roachpb.StoreDescriptor, len(bestCands))
for i := range bestCands {
bestStores[i] = bestCands[i].store
}
comparableStores = append(comparableStores, comparableStoreList{
existing: []roachpb.StoreDescriptor{existing.cand.store},
sl: makeStoreList(bestStores),
candidates: bestCands,
})
}
// 3. Decide whether we should try to rebalance. Note that for each existing
// store, we only compare its fullness stats to the stats of "comparable"
// stores, i.e. those stores that are at least as valid, necessary, and
// diverse as the existing store.
needRebalance := needRebalanceFrom || needRebalanceTo
var shouldRebalanceCheck bool
if !needRebalance {
for _, existing := range existingStores {
var sl StoreList
outer:
for _, comparable := range comparableStores {
for _, existingCand := range comparable.existing {
if existing.cand.store.StoreID == existingCand.StoreID {
sl = comparable.sl
break outer
}
}
}
// TODO(a-robinson): Some moderate refactoring could extract this logic out
// into the loop below, avoiding duplicate balanceScore calculations.
if shouldRebalance(ctx, existing.cand.store, sl, options) {
shouldRebalanceCheck = true
break
}
}
}
if !needRebalance && !shouldRebalanceCheck {
return nil
}
// 4. Create sets of rebalance options, i.e. groups of candidate stores and
// the existing replicas that they could legally replace in the range. We
// have to make a separate set of these for each group of comparableStores.
results := make([]rebalanceOptions, 0, len(comparableStores))
for _, comparable := range comparableStores {
var existingCandidates candidateList
var candidates candidateList
for _, existingDesc := range comparable.existing {
existing, ok := existingStores[existingDesc.StoreID]
if !ok {
log.Errorf(ctx, "BUG: missing candidate for existing store %+v; stores: %+v",
existingDesc, existingStores)
continue
}
if !existing.cand.valid {
existing.cand.details = "constraint check fail"
existingCandidates = append(existingCandidates, existing.cand)
continue
}
balanceScore := balanceScore(comparable.sl, existing.cand.store.Capacity, options)
var convergesScore int
if !rebalanceFromConvergesOnMean(comparable.sl, existing.cand.store.Capacity) {
// Similarly to in removeCandidates, any replica whose removal
// would not converge the range stats to their means is given a
// constraint score boost of 1 to make it less attractive for
// removal.
convergesScore = 1
}
existing.cand.convergesScore = convergesScore
existing.cand.balanceScore = balanceScore
existing.cand.rangeCount = int(existing.cand.store.Capacity.RangeCount)
existingCandidates = append(existingCandidates, existing.cand)
}
for _, cand := range comparable.candidates {
// We handled the possible candidates for removal above. Don't process
// anymore here.
if _, ok := existingStores[cand.store.StoreID]; ok {
continue
}
// We already computed valid, necessary, fullDisk, and diversityScore
// above, but recompute fullDisk using special rebalanceTo logic for
// rebalance candidates.
s := cand.store
cand.fullDisk = !rebalanceToMaxCapacityCheck(s)
cand.balanceScore = balanceScore(comparable.sl, s.Capacity, options)
if rebalanceToConvergesOnMean(comparable.sl, s.Capacity) {
// This is the counterpart of !rebalanceFromConvergesOnMean from
// the existing candidates. Candidates whose addition would
// converge towards the range count mean are promoted.
cand.convergesScore = 1
} else if !needRebalance {
// Only consider this candidate if we must rebalance due to constraint,
// disk fullness, or diversity reasons.
log.VEventf(ctx, 3, "not considering %+v as a candidate for range %+v: score=%s storeList=%+v",
s, existingReplicas, cand.balanceScore, comparable.sl)
continue
}
cand.rangeCount = int(s.Capacity.RangeCount)
candidates = append(candidates, cand)
}
if len(existingCandidates) == 0 || len(candidates) == 0 {
continue
}
if options.deterministic {
sort.Sort(sort.Reverse(byScoreAndID(existingCandidates)))
sort.Sort(sort.Reverse(byScoreAndID(candidates)))
} else {
sort.Sort(sort.Reverse(byScore(existingCandidates)))
sort.Sort(sort.Reverse(byScore(candidates)))
}
// Only return candidates better than the worst existing replica.
improvementCandidates := candidates.betterThan(existingCandidates[len(existingCandidates)-1])
if len(improvementCandidates) == 0 {
continue
}
results = append(results, rebalanceOptions{
existingCandidates: existingCandidates,
candidates: improvementCandidates,
})
log.VEventf(ctx, 5, "rebalance candidates #%d: %s\nexisting replicas: %s",
len(results), results[len(results)-1].candidates, results[len(results)-1].existingCandidates)
}
return results
}
// bestRebalanceTarget returns the best target to try to rebalance to out of
// the provided options, and removes it from the relevant candidate list.
// Also returns the existing replicas that the chosen candidate was compared to.
// Returns nil if there are no more targets worth rebalancing to.
func bestRebalanceTarget(
randGen allocatorRand, options []rebalanceOptions,
) (*candidate, candidateList) {
bestIdx := -1
var bestTarget *candidate
var replaces candidate
for i, option := range options {
if len(option.candidates) == 0 {
continue
}
target := option.candidates.selectGood(randGen)
if target == nil {
continue
}
existing := option.existingCandidates[len(option.existingCandidates)-1]
if betterRebalanceTarget(target, &existing, bestTarget, &replaces) == target {
bestIdx = i
bestTarget = target
replaces = existing
}
}
if bestIdx == -1 {
return nil, nil
}
// Copy the selected target out of the candidates slice before modifying
// the slice. Without this, the returned pointer likely will be pointing
// to a different candidate than intended due to movement within the slice.
copiedTarget := *bestTarget
options[bestIdx].candidates = options[bestIdx].candidates.removeCandidate(copiedTarget)
return &copiedTarget, options[bestIdx].existingCandidates
}
// betterRebalanceTarget returns whichever of target1 or target2 is a larger
// improvement over its corresponding existing replica that it will be
// replacing in the range.
func betterRebalanceTarget(target1, existing1, target2, existing2 *candidate) *candidate {
if target2 == nil {
return target1
}
// Try to pick whichever target is a larger improvement over the replica that
// they'll replace.
comp1 := target1.compare(*existing1)
comp2 := target2.compare(*existing2)
if !scoresAlmostEqual(comp1, comp2) {
if comp1 > comp2 {
return target1
}
if comp1 < comp2 {
return target2
}
}
// If the two targets are equally better than their corresponding existing
// replicas, just return whichever target is better.
if target1.less(*target2) {
return target2
}
return target1
}
// shouldRebalance returns whether the specified store is a candidate for
// having a replica removed from it given the candidate store list.
func shouldRebalance(
ctx context.Context, store roachpb.StoreDescriptor, sl StoreList, options scorerOptions,
) bool {
overfullThreshold := int32(math.Ceil(overfullRangeThreshold(options, sl.candidateRanges.mean)))
if store.Capacity.RangeCount > overfullThreshold {
log.VEventf(ctx, 2,
"s%d: should-rebalance(ranges-overfull): rangeCount=%d, mean=%.2f, overfull-threshold=%d",
store.StoreID, store.Capacity.RangeCount, sl.candidateRanges.mean, overfullThreshold)
return true
}
if float64(store.Capacity.RangeCount) > sl.candidateRanges.mean {
underfullThreshold := int32(math.Floor(underfullRangeThreshold(options, sl.candidateRanges.mean)))
for _, desc := range sl.stores {
if desc.Capacity.RangeCount < underfullThreshold {
log.VEventf(ctx, 2,
"s%d: should-rebalance(better-fit-ranges=s%d): rangeCount=%d, otherRangeCount=%d, "+
"mean=%.2f, underfull-threshold=%d",
store.StoreID, desc.StoreID, store.Capacity.RangeCount, desc.Capacity.RangeCount,
sl.candidateRanges.mean, underfullThreshold)
return true
}
}
}
// If we reached this point, we're happy with the range where it is.
return false
}
// nodeHasReplica returns true if the provided NodeID contains an entry in
// the provided list of existing replicas.
func nodeHasReplica(nodeID roachpb.NodeID, existing []roachpb.ReplicaDescriptor) bool {
for _, r := range existing {
if r.NodeID == nodeID {
return true
}
}
return false
}
// storeHasReplica returns true if the provided StoreID contains an entry in
// the provided list of existing replicas.
func storeHasReplica(storeID roachpb.StoreID, existing []roachpb.ReplicaDescriptor) bool {
for _, r := range existing {
if r.StoreID == storeID {
return true
}
}
return false
}
func sameLocalityAndAttrs(s1, s2 roachpb.StoreDescriptor) bool {
if !s1.Node.Locality.Equals(s2.Node.Locality) {
return false
}
if !s1.Node.Attrs.Equals(s2.Node.Attrs) {
return false
}
if !s1.Attrs.Equals(s2.Attrs) {
return false
}
return true
}
// allocateConstraintsCheck checks the potential allocation target store
// against all the constraints. If it matches a constraint at all, it's valid.
// If it matches a constraint that is not already fully satisfied by existing
// replicas, then it's necessary.
//
// NB: This assumes that the sum of all constraints.NumReplicas is equal to
// configured number of replicas for the range, or that there's just one set of
// constraints with NumReplicas set to 0. This is meant to be enforced in the
// config package.
func allocateConstraintsCheck(
store roachpb.StoreDescriptor, analyzed constraint.AnalyzedConstraints,
) (valid bool, necessary bool) {
// All stores are valid when there are no constraints.
if len(analyzed.Constraints) == 0 {
return true, false
}
for i, constraints := range analyzed.Constraints {
if constraintsOK := constraint.ConjunctionsCheck(
store, constraints.Constraints,
); constraintsOK {
valid = true
matchingStores := analyzed.SatisfiedBy[i]
if len(matchingStores) < int(constraints.NumReplicas) {
return true, true
}
}
}
if analyzed.UnconstrainedReplicas {
valid = true
}
return valid, false
}
// removeConstraintsCheck checks the existing store against the analyzed
// constraints, determining whether it's valid (matches some constraint) and
// necessary (matches some constraint that no other existing replica matches).
// The difference between this and allocateConstraintsCheck is that this is to
// be used on an existing replica of the range, not a potential addition.
func removeConstraintsCheck(
store roachpb.StoreDescriptor, analyzed constraint.AnalyzedConstraints,
) (valid bool, necessary bool) {
// All stores are valid when there are no constraints.
if len(analyzed.Constraints) == 0 {
return true, false
}
// The store satisfies none of the constraints, and the zone is not configured
// to desire more replicas than constraints have been specified for.
if len(analyzed.Satisfies[store.StoreID]) == 0 && !analyzed.UnconstrainedReplicas {
return false, false
}
// Check if the store matches a constraint that isn't overly satisfied.
// If so, then keeping it around is necessary to ensure that constraint stays
// fully satisfied.
for _, constraintIdx := range analyzed.Satisfies[store.StoreID] {
if len(analyzed.SatisfiedBy[constraintIdx]) <= int(analyzed.Constraints[constraintIdx].NumReplicas) {
return true, true
}
}
// If neither of the above is true, then the store is valid but nonessential.
// NOTE: We could be more precise here by trying to find the least essential
// existing replica and only considering that one nonessential, but this is
// sufficient to avoid violating constraints.
return true, false
}
// rebalanceConstraintsCheck checks the potential rebalance target store
// against the analyzed constraints, determining whether it's valid whether it
// will be necessary if fromStoreID (an existing replica) is removed from the
// range.
func rebalanceFromConstraintsCheck(
store roachpb.StoreDescriptor,
fromStoreID roachpb.StoreID,
analyzed constraint.AnalyzedConstraints,
) (valid bool, necessary bool) {
// All stores are valid when there are no constraints.
if len(analyzed.Constraints) == 0 {
return true, false
}
// Check the store against all the constraints. If it matches a constraint at
// all, it's valid. If it matches a constraint that is not already fully
// satisfied by existing replicas or that is only fully satisfied because of