-
Notifications
You must be signed in to change notification settings - Fork 3.8k
/
Copy pathfold_constants_funcs.go
623 lines (561 loc) · 21.9 KB
/
fold_constants_funcs.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
// Copyright 2019 The Cockroach Authors.
//
// Use of this software is governed by the Business Source License
// included in the file licenses/BSL.txt.
//
// As of the Change Date specified in that file, in accordance with
// the Business Source License, use of this software will be governed
// by the Apache License, Version 2.0, included in the file
// licenses/APL.txt.
package norm
import (
"github.com/cockroachdb/cockroach/pkg/sql/opt"
"github.com/cockroachdb/cockroach/pkg/sql/opt/cat"
"github.com/cockroachdb/cockroach/pkg/sql/opt/memo"
"github.com/cockroachdb/cockroach/pkg/sql/parser"
"github.com/cockroachdb/cockroach/pkg/sql/privilege"
"github.com/cockroachdb/cockroach/pkg/sql/sem/cast"
"github.com/cockroachdb/cockroach/pkg/sql/sem/eval"
"github.com/cockroachdb/cockroach/pkg/sql/sem/tree"
"github.com/cockroachdb/cockroach/pkg/sql/sem/volatility"
"github.com/cockroachdb/cockroach/pkg/sql/types"
"github.com/cockroachdb/errors"
"github.com/lib/pq/oid"
)
// FoldingControl is used to control whether normalization rules allow constant
// folding of volatility.Stable operators.
//
// FoldingControl can be initialized in either "allow stable folds" or "disallow
// stable folds" state.
//
// For a query with placeholders, we don't want to fold stable operators when
// building the reusable normalized expression; we want to fold them at
// AssignPlaceholder time.
//
// For a query without placeholders, we build and optimize the expression
// allowing stable folds; we need to know if any stable folds occurred so we can
// prevent caching the resulting plan.
//
// Examples illustrating the various cases:
//
// 1) Prepare and execute query with placeholders
//
// SELECT * FROM t WHERE time > now() - $1
//
// During prepare, we disable stable folds, so the now() call is not folded.
// At execution time, we enable stable folds before running
// AssignPlaceholders; when the expression is recreated, now() will be
// folded, along with the subtraction. If we have an index on time, we will
// use it.
//
// 2) Prepare and execute query without placeholders
//
// SELECT * FROM t WHERE time > now() - '1 minute'::INTERVAL
//
// During prepare, we disable stable folds. After building the expression,
// we check if we actually prevented any stable folds; in this case we did.
// Because of that, we don't fully optimize the memo at prepare time. At
// execution time we will take the same path as in example 1, running
// AssignPlaceholders with stable folds enabled. We don't have any
// placeholders here, but AssignPlaceholders will nevertheless recreate the
// expression, allowing folding to happen.
//
// 3) Execute query without placeholders
//
// SELECT * FROM t WHERE time > now() - '1 minute'::INTERVAL
//
// To execute a query that is not prepared in advance, we build the
// expression with stable folds enabled. Afterwards, we check if we actually
// had any stable folds, in which case we don't put the resulting plan in
// the plan cache. In the future, we may want to detect queries that are
// re-executed frequently and cache a non-folded version like in the prepare
// case.
//
type FoldingControl struct {
// allowStable controls whether canFoldOperator returns true or false for
// volatility.Stable.
allowStable bool
// encounteredStableFold is true if canFoldOperator was called with
// volatility.Stable.
encounteredStableFold bool
}
// AllowStableFolds initializes the FoldingControl in "allow stable folds"
// state.
func (fc *FoldingControl) AllowStableFolds() {
fc.allowStable = true
fc.encounteredStableFold = false
}
// DisallowStableFolds initializes the FoldingControl in "disallow stable folds"
// state.
func (fc *FoldingControl) DisallowStableFolds() {
fc.allowStable = false
fc.encounteredStableFold = false
}
// TemporarilyDisallowStableFolds disallows stable folds, runs
// the given function, and restores the original FoldingControl state.
//
// This is used when building expressions like computed column expressions and
// we want to be able to check whether the expression contains stable operators.
func (fc *FoldingControl) TemporarilyDisallowStableFolds(fn func()) {
save := *fc
defer func() { *fc = save }()
fc.DisallowStableFolds()
fn()
}
func (fc *FoldingControl) canFoldOperator(v volatility.V) bool {
if v < volatility.Stable {
return true
}
if v > volatility.Stable {
return false
}
fc.encounteredStableFold = true
return fc.allowStable
}
// PreventedStableFold returns true if we disallowed a stable fold; can only be
// called if DisallowStableFolds() was called.
func (fc *FoldingControl) PreventedStableFold() bool {
if fc.allowStable {
panic(errors.AssertionFailedf("called in allow-stable state"))
}
return fc.encounteredStableFold
}
// PermittedStableFold returns true if we allowed a stable fold; can only be
// called if AllowStableFolds() was called.
//
// Note that this does not guarantee that folding actually occurred - it is
// possible for folding to fail (e.g. due to the operator hitting an error).
func (fc *FoldingControl) PermittedStableFold() bool {
if !fc.allowStable {
panic(errors.AssertionFailedf("called in disallow-stable state"))
}
return fc.encounteredStableFold
}
// CanFoldOperator returns true if we should fold an operator with the given
// volatility. This depends on the foldingVolatility setting of the factory
// (which can be either volatility.Immutable or volatility.Stable).
func (c *CustomFuncs) CanFoldOperator(v volatility.V) bool {
return c.f.foldingControl.canFoldOperator(v)
}
// FoldNullUnary replaces the unary operator with a typed null value having the
// same type as the unary operator would have.
func (c *CustomFuncs) FoldNullUnary(op opt.Operator, input opt.ScalarExpr) opt.ScalarExpr {
return c.f.ConstructNull(memo.InferUnaryType(op, input.DataType()))
}
// FoldNullBinary replaces the binary operator with a typed null value having
// the same type as the binary operator would have.
func (c *CustomFuncs) FoldNullBinary(op opt.Operator, left, right opt.ScalarExpr) opt.ScalarExpr {
return c.f.ConstructNull(memo.InferBinaryType(op, left.DataType(), right.DataType()))
}
// AllowNullArgs returns true if the binary operator with the given inputs
// allows one of those inputs to be null. If not, then the binary operator will
// simply be replaced by null.
func (c *CustomFuncs) AllowNullArgs(op opt.Operator, left, right opt.ScalarExpr) bool {
return memo.BinaryAllowsNullArgs(op, left.DataType(), right.DataType())
}
// IsListOfConstants returns true if elems is a list of constant values or
// tuples.
func (c *CustomFuncs) IsListOfConstants(elems memo.ScalarListExpr) bool {
for _, elem := range elems {
if !c.IsConstValueOrGroupOfConstValues(elem) {
return false
}
}
return true
}
// FoldArray evaluates an Array expression with constant inputs. It returns the
// array as a Const datum with type TArray.
func (c *CustomFuncs) FoldArray(elems memo.ScalarListExpr, typ *types.T) opt.ScalarExpr {
elemType := typ.ArrayContents()
a := tree.NewDArray(elemType)
a.Array = make(tree.Datums, len(elems))
for i := range a.Array {
a.Array[i] = memo.ExtractConstDatum(elems[i])
if a.Array[i] == tree.DNull {
a.HasNulls = true
} else {
a.HasNonNulls = true
}
}
return c.f.ConstructConst(a, typ)
}
// IsConstValueOrGroupOfConstValues returns true if the input is a constant,
// or an array or tuple with only constant elements.
func (c *CustomFuncs) IsConstValueOrGroupOfConstValues(input opt.ScalarExpr) bool {
return memo.CanExtractConstDatum(input)
}
// IsNeverNull returns true if the input is a non-null constant value,
// any tuple, or any array.
func (c *CustomFuncs) IsNeverNull(input opt.ScalarExpr) bool {
switch input.Op() {
case opt.TrueOp, opt.FalseOp, opt.ConstOp, opt.TupleOp, opt.ArrayOp:
return true
}
return false
}
// HasNullElement returns true if the input tuple has at least one constant,
// null element. Note that it only returns true if one element is known to be
// null. For example, given the tuple (1, x), it will return false because x is
// not guaranteed to be null.
func (c *CustomFuncs) HasNullElement(tup *memo.TupleExpr) bool {
for _, e := range tup.Elems {
if e.Op() == opt.NullOp {
return true
}
}
return false
}
// HasAllNullElements returns true if the input tuple has only constant, null
// elements, or if the tuple is empty (has 0 elements). Note that it only
// returns true if all elements are known to be null. For example, given the
// tuple (NULL, x), it will return false because x is not guaranteed to be
// null.
func (c *CustomFuncs) HasAllNullElements(tup *memo.TupleExpr) bool {
for _, e := range tup.Elems {
if e.Op() != opt.NullOp {
return false
}
}
return true
}
// HasNonNullElement returns true if the input tuple has at least one constant,
// non-null element. Note that it only returns true if one element is known to
// be non-null. For example, given the tuple (NULL, x), it will return false
// because x is not guaranteed to be non-null.
func (c *CustomFuncs) HasNonNullElement(tup *memo.TupleExpr) bool {
for _, e := range tup.Elems {
// It is guaranteed that the input has at least one non-null element if
// e is not null and it is either a constant value, array, or tuple.
// Note that it doesn't matter whether a nested tuple has non-null
// elements or not. For example, (NULL, (NULL, NULL)) IS NULL evaluates
// to false because one first-level element is not null - the second is
// a tuple.
if e.Op() != opt.NullOp && (opt.IsConstValueOp(e) || e.Op() == opt.TupleOp || e.Op() == opt.ArrayOp) {
return true
}
}
return false
}
// HasAllNonNullElements returns true if the input tuple has all constant,
// non-null elements, or if the tuple is empty (has 0 elements). Note that it
// only returns true if all elements are known to be non-null. For example,
// given the tuple (1, x), it will return false because x is not guaranteed to
// be non-null.
func (c *CustomFuncs) HasAllNonNullElements(tup *memo.TupleExpr) bool {
for _, e := range tup.Elems {
// It is not guaranteed that the input has all non-null elements if e
// is null or it is neither a constant value, array, nor tuple. Note
// that it doesn't matter whether a nested tuple has non-null elements
// or not. For example, (1, (NULL, NULL)) IS NOT NULL evaluates to true
// because all first-level elements are not null.
if e.Op() == opt.NullOp || !(opt.IsConstValueOp(e) || e.Op() == opt.TupleOp || e.Op() == opt.ArrayOp) {
return false
}
}
return true
}
// FoldBinary evaluates a binary expression with constant inputs. It returns
// a constant expression as long as it finds an appropriate overload function
// for the given operator and input types, and the evaluation causes no error.
// Otherwise, it returns ok=false.
func (c *CustomFuncs) FoldBinary(
op opt.Operator, left, right opt.ScalarExpr,
) (_ opt.ScalarExpr, ok bool) {
o, ok := memo.FindBinaryOverload(op, left.DataType(), right.DataType())
if !ok || !c.CanFoldOperator(o.Volatility) {
return nil, false
}
lDatum, rDatum := memo.ExtractConstDatum(left), memo.ExtractConstDatum(right)
result, err := eval.BinaryOp(c.f.evalCtx, o.EvalOp, lDatum, rDatum)
if err != nil {
return nil, false
}
return c.f.ConstructConstVal(result, o.ReturnType), true
}
// FoldUnary evaluates a unary expression with a constant input. It returns
// a constant expression as long as it finds an appropriate overload function
// for the given operator and input type, and the evaluation causes no error.
// Otherwise, it returns ok=false.
func (c *CustomFuncs) FoldUnary(op opt.Operator, input opt.ScalarExpr) (_ opt.ScalarExpr, ok bool) {
datum := memo.ExtractConstDatum(input)
o, ok := memo.FindUnaryOverload(op, input.DataType())
if !ok {
return nil, false
}
result, err := eval.UnaryOp(c.f.evalCtx, o.EvalOp, datum)
if err != nil {
return nil, false
}
return c.f.ConstructConstVal(result, o.ReturnType), true
}
// foldStringToRegclassCast resolves a string that is a table name into an OID
// by resolving the table name and returning its table ID. This permits the
// optimizer to do intelligent things like push down filters that look like:
// ... WHERE oid = 'my_table'::REGCLASS
func (c *CustomFuncs) foldStringToRegclassCast(
input opt.ScalarExpr, typ *types.T,
) (opt.ScalarExpr, error) {
// Special case: we're casting a string to a REGCLASS oid, which is a
// table id lookup.
flags := cat.Flags{AvoidDescriptorCaches: false, NoTableStats: true}
datum := memo.ExtractConstDatum(input)
s := tree.MustBeDString(datum)
tn, err := parser.ParseQualifiedTableName(string(s))
if err != nil {
return nil, err
}
ds, resName, err := c.f.catalog.ResolveDataSource(c.f.evalCtx.Context, flags, tn)
if err != nil {
return nil, err
}
c.mem.Metadata().AddDependency(opt.DepByName(&resName), ds, privilege.SELECT)
regclassOid := tree.NewDOidWithName(oid.Oid(ds.PostgresDescriptorID()), types.RegClass, string(tn.ObjectName))
return c.f.ConstructConstVal(regclassOid, typ), nil
}
// FoldCast evaluates a cast expression with a constant input. It returns a
// constant expression as long as the evaluation causes no error. Otherwise, it
// returns ok=false.
func (c *CustomFuncs) FoldCast(input opt.ScalarExpr, typ *types.T) (_ opt.ScalarExpr, ok bool) {
if typ.Family() == types.OidFamily {
if typ.Oid() == types.RegClass.Oid() && input.DataType().Family() == types.StringFamily {
expr, err := c.foldStringToRegclassCast(input, typ)
if err == nil {
return expr, true
}
}
// Save this cast for the execbuilder.
return nil, false
}
volatility, ok := cast.LookupCastVolatility(input.DataType(), typ)
if !ok || !c.CanFoldOperator(volatility) {
return nil, false
}
datum := memo.ExtractConstDatum(input)
texpr := tree.NewTypedCastExpr(datum, typ)
result, err := eval.Expr(c.f.evalCtx, texpr)
if err != nil {
return nil, false
}
return c.f.ConstructConstVal(result, typ), true
}
// FoldAssignmentCast evaluates an assignment cast expression with a constant
// input. It returns a constant expression as long as the evaluation causes no
// error. Otherwise, it returns ok=false.
//
// It is similar to FoldCast, but differs because it performs an assignment cast
// which has slightly different semantics than an explicit cast (see
// tree.PerformAssignmentCast). Also, it does not have special logic for casts
// from strings to OIDs because such casts are not allowed in assignment
// contexts.
func (c *CustomFuncs) FoldAssignmentCast(
input opt.ScalarExpr, typ *types.T,
) (_ opt.ScalarExpr, ok bool) {
volatility, ok := cast.LookupCastVolatility(input.DataType(), typ)
if !ok || !c.CanFoldOperator(volatility) {
return nil, false
}
datum := memo.ExtractConstDatum(input)
result, err := eval.PerformAssignmentCast(c.f.evalCtx, datum, typ)
if err != nil {
return nil, false
}
return c.f.ConstructConstVal(result, typ), true
}
// isMonotonicConversion returns true if conversion of a value from FROM to
// TO is monotonic.
// That is, if a and b are values of type FROM, then
//
// 1. a = b implies a::TO = b::TO and
// 2. a < b implies a::TO <= b::TO
//
// Property (1) can be violated by cases like:
//
// '-0'::FLOAT = '0'::FLOAT, but '-0'::FLOAT::STRING != '0'::FLOAT::STRING
//
// Property (2) can be violated by cases like:
//
// 2 < 10, but 2::STRING > 10::STRING.
//
// Note that the stronger version of (2),
//
// a < b implies a::TO < b::TO
//
// is not required, for instance this is not generally true of conversion from
// a TIMESTAMP to a DATE, but certain such conversions can still generate spans
// in some cases where values under FROM and TO are "the same" (such as where a
// TIMESTAMP precisely falls on a date boundary). We don't need this property
// because we will subsequently check that the values can round-trip to ensure
// that we don't lose any information by doing the conversion.
// TODO(justin): fill this out with the complete set of such conversions.
func isMonotonicConversion(from, to *types.T) bool {
switch from.Family() {
case types.TimestampFamily, types.TimestampTZFamily, types.DateFamily:
switch to.Family() {
case types.TimestampFamily, types.TimestampTZFamily, types.DateFamily:
return true
}
return false
case types.IntFamily, types.FloatFamily, types.DecimalFamily:
switch to.Family() {
case types.IntFamily, types.FloatFamily, types.DecimalFamily:
return true
}
return false
}
return false
}
// FoldComparison evaluates a comparison expression with constant inputs. It
// returns a constant expression as long as it finds an appropriate overload
// function for the given operator and input types, and the evaluation causes
// no error. Otherwise, it returns ok=false.
func (c *CustomFuncs) FoldComparison(
op opt.Operator, left, right opt.ScalarExpr,
) (_ opt.ScalarExpr, ok bool) {
var flipped, not bool
o, flipped, not, ok := memo.FindComparisonOverload(op, left.DataType(), right.DataType())
if !ok || !c.CanFoldOperator(o.Volatility) {
return nil, false
}
lDatum, rDatum := memo.ExtractConstDatum(left), memo.ExtractConstDatum(right)
if flipped {
lDatum, rDatum = rDatum, lDatum
}
result, err := eval.BinaryOp(c.f.evalCtx, o.EvalOp, lDatum, rDatum)
if err != nil {
return nil, false
}
if b, ok := result.(*tree.DBool); ok && not {
result = tree.MakeDBool(!*b)
}
return c.f.ConstructConstVal(result, types.Bool), true
}
// FoldIndirection evaluates an array indirection operator with constant inputs.
// It returns the referenced array element as a constant value, or ok=false if
// the evaluation results in an error.
func (c *CustomFuncs) FoldIndirection(input, index opt.ScalarExpr) (_ opt.ScalarExpr, ok bool) {
// Index is 1-based, so convert to 0-based.
indexD := memo.ExtractConstDatum(index)
// Case 1: The input is a static array constructor.
if arr, ok := input.(*memo.ArrayExpr); ok {
if indexInt, ok := indexD.(*tree.DInt); ok {
indexI := int(*indexInt) - 1
if indexI >= 0 && indexI < len(arr.Elems) {
return arr.Elems[indexI], true
}
return c.f.ConstructNull(arr.Typ.ArrayContents()), true
}
if indexD == tree.DNull {
return c.f.ConstructNull(arr.Typ.ArrayContents()), true
}
return nil, false
}
// Case 2: The input is a constant DArray or DJSON.
if memo.CanExtractConstDatum(input) {
var resolvedType *types.T
switch input.DataType().Family() {
case types.JsonFamily:
resolvedType = input.DataType()
case types.ArrayFamily:
resolvedType = input.DataType().ArrayContents()
default:
panic(errors.AssertionFailedf("expected array or json; found %s", input.DataType().SQLString()))
}
inputD := memo.ExtractConstDatum(input)
texpr := tree.NewTypedIndirectionExpr(inputD, indexD, resolvedType)
result, err := eval.Expr(c.f.evalCtx, texpr)
if err == nil {
return c.f.ConstructConstVal(result, texpr.ResolvedType()), true
}
}
return nil, false
}
// FoldColumnAccess tries to evaluate a tuple column access operator with a
// constant tuple input (though tuple field values do not need to be constant).
// It returns the referenced tuple field value, or ok=false if folding is not
// possible or results in an error.
func (c *CustomFuncs) FoldColumnAccess(
input opt.ScalarExpr, idx memo.TupleOrdinal,
) (_ opt.ScalarExpr, ok bool) {
// Case 1: The input is NULL. This is possible when FoldIndirection has
// already folded an Indirection expression with an out-of-bounds index to
// Null.
if n, ok := input.(*memo.NullExpr); ok {
return c.f.ConstructNull(n.Typ.TupleContents()[idx]), true
}
// Case 2: The input is a static tuple constructor.
if tup, ok := input.(*memo.TupleExpr); ok {
return tup.Elems[idx], true
}
// Case 3: The input is a constant DTuple.
if memo.CanExtractConstDatum(input) {
datum := memo.ExtractConstDatum(input)
texpr := tree.NewTypedColumnAccessExpr(datum, "" /* by-index access */, int(idx))
result, err := eval.Expr(c.f.evalCtx, texpr)
if err == nil {
return c.f.ConstructConstVal(result, texpr.ResolvedType()), true
}
}
return nil, false
}
// CanFoldFunctionWithNullArg returns true if the given function can be folded
// to Null when any of its arguments are Null. A function can be folded to Null
// in this case if all of the following are true:
//
// 1. It is not evaluated when any of its arguments are null
// (CalledOnNullInput=false).
// 2. It is a normal function, not an aggregate, window, or generator.
//
// See FoldFunctionWithNullArg for more details.
func (c *CustomFuncs) CanFoldFunctionWithNullArg(private *memo.FunctionPrivate) bool {
return !private.Overload.CalledOnNullInput &&
private.Properties.Class == tree.NormalClass
}
// HasNullArg returns true if one of args is Null.
func (c *CustomFuncs) HasNullArg(args memo.ScalarListExpr) bool {
for i := range args {
if args[i].Op() == opt.NullOp {
return true
}
}
return false
}
// FunctionReturnType returns the return type of the given function.
func (c *CustomFuncs) FunctionReturnType(private *memo.FunctionPrivate) *types.T {
return private.Typ
}
// FoldFunction evaluates a function expression with constant inputs. It returns
// a constant expression as long as the function is contained in the
// FoldFunctionAllowlist, and the evaluation causes no error. Otherwise, it
// returns ok=false.
func (c *CustomFuncs) FoldFunction(
args memo.ScalarListExpr, private *memo.FunctionPrivate,
) (_ opt.ScalarExpr, ok bool) {
// Non-normal function classes (aggregate, window, generator) cannot be
// folded into a single constant.
if private.Properties.Class != tree.NormalClass {
return nil, false
}
if !c.CanFoldOperator(private.Overload.Volatility) {
return nil, false
}
exprs := make(tree.TypedExprs, len(args))
for i := range exprs {
exprs[i] = memo.ExtractConstDatum(args[i])
}
funcRef := tree.WrapFunction(private.Name)
fn := tree.NewTypedFuncExpr(
funcRef,
0, /* aggQualifier */
exprs,
nil, /* filter */
nil, /* windowDef */
private.Typ,
private.Properties,
private.Overload,
)
result, err := eval.Expr(c.f.evalCtx, fn)
if err != nil {
return nil, false
}
return c.f.ConstructConstVal(result, private.Typ), true
}