-
Notifications
You must be signed in to change notification settings - Fork 3.8k
/
Copy pathreplica_proposal.go
954 lines (849 loc) · 33.5 KB
/
replica_proposal.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
// Copyright 2016 The Cockroach Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
// implied. See the License for the specific language governing
// permissions and limitations under the License.
//
// Author: Tobias Schottdorf ([email protected])
package storage
import (
"fmt"
"io/ioutil"
"os"
"path/filepath"
"time"
"github.com/coreos/etcd/raft"
"github.com/kr/pretty"
"github.com/pkg/errors"
"golang.org/x/net/context"
"github.com/cockroachdb/cockroach/pkg/keys"
"github.com/cockroachdb/cockroach/pkg/roachpb"
"github.com/cockroachdb/cockroach/pkg/storage/engine"
"github.com/cockroachdb/cockroach/pkg/storage/engine/enginepb"
"github.com/cockroachdb/cockroach/pkg/storage/storagebase"
"github.com/cockroachdb/cockroach/pkg/util"
"github.com/cockroachdb/cockroach/pkg/util/hlc"
"github.com/cockroachdb/cockroach/pkg/util/log"
"github.com/cockroachdb/cockroach/pkg/util/timeutil"
)
// leaseMetricsType is used to distinguish between various lease
// operations and potentially outcomes.
type leaseMetricsType int
const (
leaseRequestSuccess leaseMetricsType = iota
leaseRequestError
leaseTransferSuccess
leaseTransferError
)
// ProposalData is data about a command which allows it to be
// evaluated, proposed to raft, and for the result of the command to
// be returned to the caller.
type ProposalData struct {
// The caller's context, used for logging proposals and reproposals.
ctx context.Context
// idKey uniquely identifies this proposal.
// TODO(andreimatei): idKey is legacy at this point: We could easily key
// commands by their MaxLeaseIndex, and doing so should be ok with a stop-
// the-world migration. However, various test facilities depend on the
// command ID for e.g. replay protection.
idKey storagebase.CmdIDKey
// proposedAtTicks is the (logical) time at which this command was
// last (re-)proposed.
proposedAtTicks int
// command is serialized and proposed to raft. In the event of
// reproposals its MaxLeaseIndex field is mutated.
command storagebase.RaftCommand
// endCmds.finish is called after command execution to update the timestamp cache &
// command queue.
endCmds *endCmds
// doneCh is used to signal the waiting RPC handler (the contents of
// proposalResult come from LocalEvalResult).
// Attention: this channel is not to be signaled directly downstream of Raft.
// Always use ProposalData.finishRaftApplication().
doneCh chan proposalResult
// Local contains the results of evaluating the request
// tying the upstream evaluation of the request to the
// downstream application of the command.
Local *LocalEvalResult
// Request is the client's original BatchRequest.
// TODO(tschottdorf): tests which use TestingCommandFilter use this.
// Decide how that will work in the future, presumably the
// CommandFilter would run at proposal time or we allow an opaque
// struct to be attached to a proposal which is then available as it
// applies. Other than tests, we only need a few bits of the request
// here; this could be replaced with isLease and isChangeReplicas
// booleans.
Request *roachpb.BatchRequest
}
// finishRaftApplication is called downstream of Raft when a command application
// has finished. proposal.doneCh is signaled with pr so that the proposer is
// unblocked.
//
// It first invokes the endCmds function and then sends the specified
// proposalResult on the proposal's done channel. endCmds is invoked here in
// order to allow the original client to be cancelled and possibly no longer
// listening to this done channel, and so can't be counted on to invoke endCmds
// itself.
//
// Note: this should not be called upstream of Raft because, in case pr.Err is
// set, it clears the intents from pr before sending it on the channel. This
// clearing should not be done upstream of Raft because, in cases of errors
// encountered upstream of Raft, we might still want to resolve intents:
// upstream of Raft, pr.intents represent intents encountered by a request, not
// the current txn's intents.
func (proposal *ProposalData) finishRaftApplication(pr proposalResult) {
if pr.Err != nil {
// Clear the intents so that the intent resolution process does not take
// place: if an EndTransaction fails, we don't want to commit the txn's
// writes. In principle we'd still want to resolve any intents ancountered
// by the EndTransaction's batch of requests, other than the current txn's
// intents, but we don't make an attempt to separate the two categories of
// intents.
// TODO(tschottdorf,bdarnell): refactor this so there are two Intents
// fields, one for intents to be resolved if the command applies
// successfully, and one for intents to be resolved no matter what.
pr.Intents = nil
}
if proposal.endCmds != nil {
proposal.endCmds.done(pr.Reply, pr.Err, pr.ProposalRetry)
proposal.endCmds = nil
}
proposal.doneCh <- pr
close(proposal.doneCh)
}
// LocalEvalResult is data belonging to an evaluated command that is
// only used on the node on which the command was proposed. Note that
// the proposing node may die before the local results are processed,
// so any side effects here are only best-effort.
//
// TODO(tschottdorf): once the WriteBatch is available in the replicated
// proposal data (i.e. once we really do proposer-evaluted KV), experiment with
// holding on to the proposer's constructed engine.Batch in this struct, which
// could give a performance gain.
type LocalEvalResult struct {
// The error resulting from the proposal. Most failing proposals will
// fail-fast, i.e. will return an error to the client above Raft. However,
// some proposals need to commit data even on error, and in that case we
// treat the proposal like a successful one, except that the error stored
// here will be sent to the client when the associated batch commits. In
// the common case, this field is nil.
Err *roachpb.Error
Reply *roachpb.BatchResponse
// intents stores any intents encountered but not conflicted with. They
// should be handed off to asynchronous intent processing on the proposer,
// so that an attempt to resolve them is made.
// In particular, this is the pathway used by EndTransaction to communicate
// its non-local intents up the stack.
//
// This is a pointer to allow the zero (and as an unwelcome side effect,
// all) values to be compared.
intents *[]intentsWithArg
// Whether we successfully or non-successfully requested a lease.
//
// TODO(tschottdorf): Update this counter correctly with prop-eval'ed KV
// in the following case:
// - proposal does not fail fast and goes through Raft
// - downstream-of-Raft logic identifies a conflict and returns an error
// The downstream-of-Raft logic does not exist at time of writing.
leaseMetricsResult *leaseMetricsType
// When set (in which case we better be the first range), call
// gossipFirstRange if the Replica holds the lease.
gossipFirstRange bool
// Call maybeGossipSystemConfig.
maybeGossipSystemConfig bool
// Call maybeAddToSplitQueue.
maybeAddToSplitQueue bool
// Call maybeGossipNodeLiveness with the specified Span, if set.
maybeGossipNodeLiveness *roachpb.Span
// Set when a transaction record is updated, after a call to
// EndTransaction or PushTxn.
updatedTxn *roachpb.Transaction
}
func (lResult *LocalEvalResult) detachIntents() []intentsWithArg {
if lResult == nil || lResult.intents == nil {
return nil
}
intents := *lResult.intents
lResult.intents = nil
return intents
}
// EvalResult is the result of evaluating a KV request. That is, the
// proposer (which holds the lease, at least in the case in which the command
// will complete successfully) has evaluated the request and is holding on to:
//
// a) changes to be written to disk when applying the command
// b) changes to the state which may require special handling (i.e. code
// execution) on all Replicas
// c) data which isn't sent to the followers but the proposer needs for tasks
// it must run when the command has applied (such as resolving intents).
type EvalResult struct {
Local LocalEvalResult
Replicated storagebase.ReplicatedEvalResult
WriteBatch *storagebase.WriteBatch
}
// IsZero reports whether p is the zero value.
func (p *EvalResult) IsZero() bool {
if p.Local != (LocalEvalResult{}) {
return false
}
if !p.Replicated.Equal(storagebase.ReplicatedEvalResult{}) {
return false
}
if p.WriteBatch != nil {
return false
}
return true
}
// coalesceBool ORs rhs into lhs and then zeroes rhs.
func coalesceBool(lhs *bool, rhs *bool) {
*lhs = *lhs || *rhs
*rhs = false
}
// MergeAndDestroy absorbs the supplied EvalResult while validating that the
// resulting EvalResult makes sense. For example, it is forbidden to absorb
// two lease updates or log truncations, or multiple splits and/or merges.
//
// The passed EvalResult must not be used once passed to Merge.
func (p *EvalResult) MergeAndDestroy(q EvalResult) error {
if q.Replicated.State.RaftAppliedIndex != 0 {
return errors.New("must not specify RaftApplyIndex")
}
if q.Replicated.State.LeaseAppliedIndex != 0 {
return errors.New("must not specify RaftApplyIndex")
}
if p.Replicated.State.Desc == nil {
p.Replicated.State.Desc = q.Replicated.State.Desc
} else if q.Replicated.State.Desc != nil {
return errors.New("conflicting RangeDescriptor")
}
q.Replicated.State.Desc = nil
if p.Replicated.State.Lease == nil {
p.Replicated.State.Lease = q.Replicated.State.Lease
} else if q.Replicated.State.Lease != nil {
return errors.New("conflicting Lease")
}
q.Replicated.State.Lease = nil
if p.Replicated.State.TruncatedState == nil {
p.Replicated.State.TruncatedState = q.Replicated.State.TruncatedState
} else if q.Replicated.State.TruncatedState != nil {
return errors.New("conflicting TruncatedState")
}
q.Replicated.State.TruncatedState = nil
p.Replicated.State.GCThreshold.Forward(q.Replicated.State.GCThreshold)
q.Replicated.State.GCThreshold = hlc.Timestamp{}
p.Replicated.State.TxnSpanGCThreshold.Forward(q.Replicated.State.TxnSpanGCThreshold)
q.Replicated.State.TxnSpanGCThreshold = hlc.Timestamp{}
if (q.Replicated.State.Stats != enginepb.MVCCStats{}) {
return errors.New("must not specify Stats")
}
p.Replicated.BlockReads = p.Replicated.BlockReads || q.Replicated.BlockReads
q.Replicated.BlockReads = false
if p.Replicated.Split == nil {
p.Replicated.Split = q.Replicated.Split
} else if q.Replicated.Split != nil {
return errors.New("conflicting Split")
}
q.Replicated.Split = nil
if p.Replicated.Merge == nil {
p.Replicated.Merge = q.Replicated.Merge
} else if q.Replicated.Merge != nil {
return errors.New("conflicting Merge")
}
q.Replicated.Merge = nil
if p.Replicated.ChangeReplicas == nil {
p.Replicated.ChangeReplicas = q.Replicated.ChangeReplicas
} else if q.Replicated.ChangeReplicas != nil {
return errors.New("conflicting ChangeReplicas")
}
q.Replicated.ChangeReplicas = nil
if p.Replicated.ComputeChecksum == nil {
p.Replicated.ComputeChecksum = q.Replicated.ComputeChecksum
} else if q.Replicated.ComputeChecksum != nil {
return errors.New("conflicting ComputeChecksum")
}
q.Replicated.ComputeChecksum = nil
if p.Replicated.RaftLogDelta == nil {
p.Replicated.RaftLogDelta = q.Replicated.RaftLogDelta
} else if q.Replicated.RaftLogDelta != nil {
return errors.New("conflicting RaftLogDelta")
}
q.Replicated.RaftLogDelta = nil
if p.Replicated.AddSSTable == nil {
p.Replicated.AddSSTable = q.Replicated.AddSSTable
} else if q.Replicated.AddSSTable != nil {
return errors.New("conflicting AddSSTable")
}
q.Replicated.AddSSTable = nil
if q.Local.intents != nil {
if p.Local.intents == nil {
p.Local.intents = q.Local.intents
} else {
*p.Local.intents = append(*p.Local.intents, *q.Local.intents...)
}
}
q.Local.intents = nil
if p.Local.leaseMetricsResult == nil {
p.Local.leaseMetricsResult = q.Local.leaseMetricsResult
} else if q.Local.leaseMetricsResult != nil {
return errors.New("conflicting leaseMetricsResult")
}
q.Local.leaseMetricsResult = nil
if p.Local.maybeGossipNodeLiveness == nil {
p.Local.maybeGossipNodeLiveness = q.Local.maybeGossipNodeLiveness
} else if q.Local.maybeGossipNodeLiveness != nil {
return errors.New("conflicting maybeGossipNodeLiveness")
}
q.Local.maybeGossipNodeLiveness = nil
coalesceBool(&p.Local.gossipFirstRange, &q.Local.gossipFirstRange)
coalesceBool(&p.Local.maybeGossipSystemConfig, &q.Local.maybeGossipSystemConfig)
coalesceBool(&p.Local.maybeAddToSplitQueue, &q.Local.maybeAddToSplitQueue)
if p.Local.updatedTxn == nil {
p.Local.updatedTxn = q.Local.updatedTxn
} else if q.Local.updatedTxn != nil {
return errors.New("conflicting updatedTxn")
}
q.Local.updatedTxn = nil
if !q.IsZero() {
log.Fatalf(context.TODO(), "unhandled EvalResult: %s", pretty.Diff(q, EvalResult{}))
}
return nil
}
// TODO(tschottdorf): we should find new homes for the checksum, lease
// code, and various others below to leave here only the core logic.
// Not moving anything right now to avoid awkward diffs.
func (r *Replica) gcOldChecksumEntriesLocked(now time.Time) {
for id, val := range r.mu.checksums {
// The timestamp is valid only if set.
if !val.gcTimestamp.IsZero() && now.After(val.gcTimestamp) {
delete(r.mu.checksums, id)
}
}
}
func (r *Replica) computeChecksumPostApply(
ctx context.Context, args roachpb.ComputeChecksumRequest,
) {
stopper := r.store.Stopper()
id := args.ChecksumID
now := timeutil.Now()
r.mu.Lock()
var notify chan struct{}
if c, ok := r.mu.checksums[id]; !ok {
// There is no record of this ID. Make a new notification.
notify = make(chan struct{})
} else if !c.started {
// A CollectChecksumRequest is waiting on the existing notification.
notify = c.notify
} else {
// A previous attempt was made to compute the checksum.
r.mu.Unlock()
return
}
r.gcOldChecksumEntriesLocked(now)
// Create an entry with checksum == nil and gcTimestamp unset.
r.mu.checksums[id] = replicaChecksum{started: true, notify: notify}
desc := *r.mu.state.Desc
r.mu.Unlock()
snap := r.store.NewSnapshot()
// Compute SHA asynchronously and store it in a map by UUID.
if err := stopper.RunAsyncTask(ctx, "storage.Replica: computing checksum", func(ctx context.Context) {
defer snap.Close()
var snapshot *roachpb.RaftSnapshotData
if args.Snapshot {
snapshot = &roachpb.RaftSnapshotData{}
}
sha, err := r.sha512(desc, snap, snapshot)
if err != nil {
log.Errorf(ctx, "%v", err)
sha = nil
}
r.computeChecksumDone(ctx, id, sha, snapshot)
}); err != nil {
defer snap.Close()
log.Error(ctx, errors.Wrapf(err, "could not run async checksum computation (ID = %s)", id))
// Set checksum to nil.
r.computeChecksumDone(ctx, id, nil, nil)
}
}
// leasePostApply is called when a RequestLease or TransferLease
// request is executed for a range.
func (r *Replica) leasePostApply(
ctx context.Context, newLease roachpb.Lease, replicaID roachpb.ReplicaID, prevLease roachpb.Lease,
) {
iAmTheLeaseHolder := newLease.Replica.ReplicaID == replicaID
leaseChangingHands := prevLease.Replica.StoreID != newLease.Replica.StoreID
if iAmTheLeaseHolder {
// Always log lease acquisition for epoch-based leases which are
// infrequent.
if newLease.Type() == roachpb.LeaseEpoch || (log.V(1) && leaseChangingHands) {
log.Infof(ctx, "new range lease %s following %s", newLease, prevLease)
}
}
if leaseChangingHands && iAmTheLeaseHolder {
// If this replica is a new holder of the lease, update the low water
// mark of the timestamp cache. Note that clock offset scenarios are
// handled via a stasis period inherent in the lease which is documented
// in the Lease struct.
//
// The introduction of lease transfers implies that the previous lease
// may have been shortened and we are now applying a formally overlapping
// lease (since the old lease holder has promised not to serve any more
// requests, this is kosher). This means that we don't use the old
// lease's expiration but instead use the new lease's start to initialize
// the timestamp cache low water.
desc := r.Desc()
r.store.tsCacheMu.Lock()
for _, keyRange := range makeReplicatedKeyRanges(desc) {
for _, readOnly := range []bool{true, false} {
r.store.tsCacheMu.cache.add(
keyRange.start.Key, keyRange.end.Key,
newLease.Start, lowWaterTxnIDMarker, readOnly)
}
}
r.store.tsCacheMu.Unlock()
// Reset the request counts used to make lease placement decisions whenever
// starting a new lease.
if r.leaseholderStats != nil {
r.leaseholderStats.resetRequestCounts()
}
// Gossip the first range whenever its lease is acquired. We check to
// make sure the lease is active so that a trailing replica won't process
// an old lease request and attempt to gossip the first range.
if r.IsFirstRange() && r.IsLeaseValid(newLease, r.store.Clock().Now()) {
r.gossipFirstRange(ctx)
}
}
if leaseChangingHands && !iAmTheLeaseHolder {
// Also clear and disable the push transaction queue. Any waiters
// must be redirected to the new lease holder.
r.pushTxnQueue.Clear(true /* disable */)
}
if !iAmTheLeaseHolder && r.IsLeaseValid(newLease, r.store.Clock().Now()) {
// If this replica is the raft leader but it is not the new lease holder,
// then try to transfer the raft leadership to match the lease. We like it
// when leases and raft leadership are collocated because that facilitates
// quick command application (requests generally need to make it to both the
// lease holder and the raft leader before being applied by other replicas).
// Note that this condition is also checked periodically when computing
// replica metrics.
r.maybeTransferRaftLeadership(ctx, newLease.Replica.ReplicaID)
}
// Notify the store that a lease change occurred and it may need to
// gossip the updated store descriptor (with updated capacity).
if leaseChangingHands && (prevLease.OwnedBy(r.store.StoreID()) ||
newLease.OwnedBy(r.store.StoreID())) {
r.store.maybeGossipOnCapacityChange(ctx, leaseChangeEvent)
}
// Potentially re-gossip if the range contains system data (e.g. system
// config or node liveness). We need to perform this gossip at startup as
// soon as possible. Trying to minimize how often we gossip is a fool's
// errand. The node liveness info will be gossiped frequently (every few
// seconds) in any case due to the liveness heartbeats. And the system config
// will be gossiped rarely because it falls on a range with an epoch-based
// range lease that is only reacquired extremely infrequently.
if iAmTheLeaseHolder {
if err := r.maybeGossipSystemConfig(ctx); err != nil {
log.Error(ctx, err)
}
if err := r.maybeGossipNodeLiveness(ctx, keys.NodeLivenessSpan); err != nil {
log.Error(ctx, err)
}
// Make sure the push transaction queue is enabled.
r.pushTxnQueue.Enable()
}
// Mark the new lease in the replica's lease history.
if r.leaseHistory != nil {
r.leaseHistory.add(newLease)
}
}
func addSSTablePreApply(
ctx context.Context,
eng engine.Engine,
sideloaded sideloadStorage,
term, index uint64,
startKey, endKey roachpb.RKey,
sst storagebase.ReplicatedEvalResult_AddSSTable,
) {
checksum := util.CRC32(sst.Data)
if checksum != sst.CRC32 {
log.Fatalf(
ctx,
"checksum for AddSSTable at index term %d, index %d does not match; at proposal time %x (%d), now %x (%d)",
term, index, sst.CRC32, sst.CRC32, checksum, checksum,
)
}
// TODO(danhhz,tschottdorf): we can hardlink directly to the sideloaded
// SSTable and ingest that if we also put a "sanitizer" in the
// implementation of sideloadedStorage that undoes the serial number that
// RocksDB may add to the SSTable. This avoids copying the file entirely.
path, err := sideloaded.Filename(ctx, index, term)
if err != nil {
log.Fatalf(ctx, "sideloaded SSTable at term %d, index %d is missing", term, index)
}
path += ".ingested"
var move bool
if inmem, ok := eng.(engine.InMem); ok {
path = fmt.Sprintf("%x", checksum)
move = false
if err := inmem.WriteFile(path, sst.Data); err != nil {
panic(err)
}
} else {
move = true
// TODO(tschottdorf): remove this once sideloaded storage guarantees its
// existence.
if err := os.MkdirAll(filepath.Dir(path), 0700); err != nil {
panic(err)
}
if _, err := os.Stat(path); os.IsNotExist(err) {
if err := ioutil.WriteFile(path, sst.Data, 0600); err != nil {
log.Fatalf(ctx, "while ingesting %s: %s", path, err)
}
} else if err != nil {
log.Fatalf(ctx, "while ingesting %s: %s", path, err)
}
}
if err := eng.IngestExternalFile(ctx, path, move); err != nil {
panic(err)
}
log.Eventf(ctx, "ingested SSTable at index %d, term %d: %s", index, term, path)
}
// maybeTransferRaftLeadership attempts to transfer the leadership
// away from this node to target, if this node is the current raft
// leader. We don't attempt to transfer leadership if the transferee
// is behind on applying the log.
func (r *Replica) maybeTransferRaftLeadership(ctx context.Context, target roachpb.ReplicaID) {
err := r.withRaftGroup(func(raftGroup *raft.RawNode) (bool, error) {
// Only the raft leader can attempt a leadership transfer.
if status := raftGroup.Status(); status.RaftState == raft.StateLeader {
// Only attempt this if the target has all the log entries.
if pr, ok := status.Progress[uint64(target)]; ok && pr.Match == r.mu.lastIndex {
log.VEventf(ctx, 1, "transferring raft leadership to replica ID %v", target)
r.store.metrics.RangeRaftLeaderTransfers.Inc(1)
raftGroup.TransferLeader(uint64(target))
}
}
return true, nil
})
if err != nil {
// An error here indicates that this Replica has been destroyed
// while lacking the necessary synchronization (or even worse, it
// fails spuriously - could be a storage error), and so we avoid
// sweeping that under the rug.
//
// TODO(tschottdorf): this error is not handled any more
// at this level.
log.Fatal(ctx, NewReplicaCorruptionError(err))
}
}
func (r *Replica) handleReplicatedEvalResult(
ctx context.Context, rResult storagebase.ReplicatedEvalResult,
) (shouldAssert bool) {
// Fields for which no action is taken in this method are zeroed so that
// they don't trigger an assertion at the end of the method (which checks
// that all fields were handled).
{
rResult.IsLeaseRequest = false
rResult.Timestamp = hlc.Timestamp{}
rResult.StartKey = nil
rResult.EndKey = nil
}
if rResult.BlockReads {
r.readOnlyCmdMu.Lock()
defer r.readOnlyCmdMu.Unlock()
rResult.BlockReads = false
}
// Update MVCC stats and Raft portion of ReplicaState.
r.mu.Lock()
r.mu.state.Stats.Add(rResult.Delta)
if rResult.State.RaftAppliedIndex != 0 {
r.mu.state.RaftAppliedIndex = rResult.State.RaftAppliedIndex
}
if rResult.State.LeaseAppliedIndex != 0 {
r.mu.state.LeaseAppliedIndex = rResult.State.LeaseAppliedIndex
}
needsSplitBySize := r.needsSplitBySizeRLocked()
r.mu.Unlock()
r.store.metrics.addMVCCStats(rResult.Delta)
rResult.Delta = enginepb.MVCCStats{}
if needsSplitBySize {
r.store.splitQueue.MaybeAdd(r, r.store.Clock().Now())
}
rResult.State.Stats = enginepb.MVCCStats{}
rResult.State.LeaseAppliedIndex = 0
rResult.State.RaftAppliedIndex = 0
// The above are always present, so we assert only if there are
// "nontrivial" actions below.
shouldAssert = !rResult.Equal(storagebase.ReplicatedEvalResult{})
// Process Split or Merge. This needs to happen after stats update because
// of the ContainsEstimates hack.
if rResult.Split != nil {
// TODO(tschottdorf): We want to let the usual MVCCStats-delta
// machinery update our stats for the left-hand side. But there is no
// way to pass up an MVCCStats object that will clear out the
// ContainsEstimates flag. We should introduce one, but the migration
// makes this worth a separate effort (ContainsEstimates would need to
// have three possible values, 'UNCHANGED', 'NO', and 'YES').
// Until then, we're left with this rather crude hack.
{
r.mu.Lock()
r.mu.state.Stats.ContainsEstimates = false
stats := r.mu.state.Stats
r.mu.Unlock()
if err := r.raftMu.stateLoader.setMVCCStats(ctx, r.store.Engine(), &stats); err != nil {
log.Fatal(ctx, errors.Wrap(err, "unable to write MVCC stats"))
}
}
splitPostApply(
r.AnnotateCtx(ctx),
rResult.Split.RHSDelta,
&rResult.Split.SplitTrigger,
r,
)
rResult.Split = nil
}
if rResult.Merge != nil {
if err := r.store.MergeRange(ctx, r, rResult.Merge.LeftDesc.EndKey,
rResult.Merge.RightDesc.RangeID,
); err != nil {
// Our in-memory state has diverged from the on-disk state.
log.Fatalf(ctx, "failed to update store after merging range: %s", err)
}
rResult.Merge = nil
}
// Update the remaining ReplicaState.
if newDesc := rResult.State.Desc; newDesc != nil {
if err := r.setDesc(newDesc); err != nil {
// Log the error. There's not much we can do because the commit may
// have already occurred at this point.
log.Fatalf(
ctx,
"failed to update range descriptor to %+v: %s",
newDesc, err,
)
}
rResult.State.Desc = nil
}
if change := rResult.ChangeReplicas; change != nil {
if change.ChangeType == roachpb.REMOVE_REPLICA &&
r.store.StoreID() == change.Replica.StoreID {
// This wants to run as late as possible, maximizing the chances
// that the other nodes have finished this command as well (since
// processing the removal from the queue looks up the Range at the
// lease holder, being too early here turns this into a no-op).
if _, err := r.store.replicaGCQueue.Add(r, replicaGCPriorityRemoved); err != nil {
// Log the error; the range should still be GC'd eventually.
log.Errorf(ctx, "unable to add to replica GC queue: %s", err)
}
}
rResult.ChangeReplicas = nil
}
if newLease := rResult.State.Lease; newLease != nil {
rResult.State.Lease = nil // for assertion
r.mu.Lock()
replicaID := r.mu.replicaID
prevLease := *r.mu.state.Lease
r.mu.state.Lease = newLease
r.mu.Unlock()
r.leasePostApply(ctx, *newLease, replicaID, prevLease)
}
if newTruncState := rResult.State.TruncatedState; newTruncState != nil {
rResult.State.TruncatedState = nil // for assertion
r.mu.Lock()
r.mu.state.TruncatedState = newTruncState
r.mu.Unlock()
// TODO(tschottdorf): everything below doesn't need to be on this
// goroutine. Worth moving out -- truncations are frequent and missing
// one of the side effects below doesn't matter. Need to be careful
// about the interaction with `evalTruncateLog` though, which computes
// some stats based on the log entries it sees. Also, sideloaded storage
// needs to hold the raft mu. Perhaps it should just get its own mutex
// (which is usually held together with raftMu, except when accessing
// the storage for a truncation). Or, even better, make use of the fact
// that all we need to synchronize is disk i/o, and there is no overlap
// between files *removed* during truncation and those active in Raft.
// Truncate the Raft log.
{
start := engine.MakeMVCCMetadataKey(keys.RaftLogKey(r.RangeID, 0))
end := engine.MakeMVCCMetadataKey(
keys.RaftLogKey(r.RangeID, newTruncState.Index).PrefixEnd(),
)
iter := r.store.engine.NewIterator(false /* !prefix */)
if err := r.store.engine.ClearIterRange(iter, start, end); err != nil {
iter.Close()
log.Errorf(ctx, "unable to clear truncated Raft entries for %+v: %s", newTruncState, err)
} else {
iter.Close()
}
}
// Clear any entries in the Raft log entry cache for this range up
// to and including the most recently truncated index.
r.store.raftEntryCache.clearTo(r.RangeID, newTruncState.Index+1)
// Truncate the sideloaded storage.
{
log.Eventf(ctx, "truncating sideloaded storage up to (and including) index %d", newTruncState.Index)
if err := r.raftMu.sideloaded.TruncateTo(ctx, newTruncState.Index+1); err != nil {
// We don't *have* to remove these entries for correctness. Log a
// loud error, but keep humming along.
log.Errorf(ctx, "while removing sideloaded files during log truncation: %s", err)
}
}
}
if newThresh := rResult.State.GCThreshold; newThresh != (hlc.Timestamp{}) {
r.mu.Lock()
r.mu.state.GCThreshold = newThresh
r.mu.Unlock()
rResult.State.GCThreshold = hlc.Timestamp{}
}
if newThresh := rResult.State.TxnSpanGCThreshold; newThresh != (hlc.Timestamp{}) {
r.mu.Lock()
r.mu.state.TxnSpanGCThreshold = newThresh
r.mu.Unlock()
rResult.State.TxnSpanGCThreshold = hlc.Timestamp{}
}
if rResult.ComputeChecksum != nil {
r.computeChecksumPostApply(ctx, *rResult.ComputeChecksum)
rResult.ComputeChecksum = nil
}
if rResult.RaftLogDelta != nil {
r.mu.Lock()
r.mu.raftLogSize += *rResult.RaftLogDelta
r.mu.raftLogLastCheckSize += *rResult.RaftLogDelta
// Ensure raftLog{,LastCheck}Size is not negative since it isn't persisted
// between server restarts.
if r.mu.raftLogSize < 0 {
r.mu.raftLogSize = 0
}
if r.mu.raftLogLastCheckSize < 0 {
r.mu.raftLogLastCheckSize = 0
}
r.mu.Unlock()
rResult.RaftLogDelta = nil
} else {
// Check for whether to queue the range for Raft log truncation if this is
// not a Raft log truncation command itself. We don't want to check the
// Raft log for truncation on every write operation or even every operation
// which occurs after the Raft log exceeds RaftLogQueueStaleSize. The logic
// below queues the replica for possible Raft log truncation whenever an
// additional RaftLogQueueStaleSize bytes have been written to the Raft
// log.
r.mu.Lock()
checkRaftLog := r.mu.raftLogSize-r.mu.raftLogLastCheckSize >= RaftLogQueueStaleSize
if checkRaftLog {
r.mu.raftLogLastCheckSize = r.mu.raftLogSize
}
r.mu.Unlock()
if checkRaftLog {
r.store.raftLogQueue.MaybeAdd(r, r.store.Clock().Now())
}
}
if !rResult.Equal(storagebase.ReplicatedEvalResult{}) {
log.Fatalf(ctx, "unhandled field in ReplicatedEvalResult: %s", pretty.Diff(rResult, storagebase.ReplicatedEvalResult{}))
}
return shouldAssert
}
func (r *Replica) handleLocalEvalResult(
ctx context.Context, lResult LocalEvalResult,
) (shouldAssert bool) {
// Enqueue failed push transactions on the pushTxnQueue.
if !r.store.cfg.DontRetryPushTxnFailures {
if tpErr, ok := lResult.Err.GetDetail().(*roachpb.TransactionPushError); ok {
r.pushTxnQueue.Enqueue(&tpErr.PusheeTxn)
}
}
// Fields for which no action is taken in this method are zeroed so that
// they don't trigger an assertion at the end of the method (which checks
// that all fields were handled).
{
lResult.Err = nil
lResult.Reply = nil
}
// ======================
// Non-state updates and actions.
// ======================
// The caller is required to detach and handle intents.
if lResult.intents != nil {
log.Fatalf(ctx, "LocalEvalResult.intents should be nil: %+v", lResult.intents)
}
// The above are present too often, so we assert only if there are
// "nontrivial" actions below.
shouldAssert = (lResult != LocalEvalResult{})
if lResult.gossipFirstRange {
// We need to run the gossip in an async task because gossiping requires
// the range lease and we'll deadlock if we try to acquire it while
// holding processRaftMu. Specifically, Replica.redirectOnOrAcquireLease
// blocks waiting for the lease acquisition to finish but it can't finish
// because we're not processing raft messages due to holding
// processRaftMu (and running on the processRaft goroutine).
if err := r.store.Stopper().RunAsyncTask(
ctx, "storage.Replica: gossipping first range",
func(ctx context.Context) {
hasLease, pErr := r.getLeaseForGossip(ctx)
if pErr != nil {
log.Infof(ctx, "unable to gossip first range; hasLease=%t, err=%s", hasLease, pErr)
} else if !hasLease {
return
}
r.gossipFirstRange(ctx)
}); err != nil {
log.Infof(ctx, "unable to gossip first range: %s", err)
}
lResult.gossipFirstRange = false
}
if lResult.maybeAddToSplitQueue {
r.store.splitQueue.MaybeAdd(r, r.store.Clock().Now())
lResult.maybeAddToSplitQueue = false
}
if lResult.maybeGossipSystemConfig {
if err := r.maybeGossipSystemConfig(ctx); err != nil {
log.Error(ctx, err)
}
lResult.maybeGossipSystemConfig = false
}
if lResult.maybeGossipNodeLiveness != nil {
if err := r.maybeGossipNodeLiveness(ctx, *lResult.maybeGossipNodeLiveness); err != nil {
log.Error(ctx, err)
}
lResult.maybeGossipNodeLiveness = nil
}
if lResult.leaseMetricsResult != nil {
switch metric := *lResult.leaseMetricsResult; metric {
case leaseRequestSuccess, leaseRequestError:
r.store.metrics.leaseRequestComplete(metric == leaseRequestSuccess)
case leaseTransferSuccess, leaseTransferError:
r.store.metrics.leaseTransferComplete(metric == leaseTransferSuccess)
}
lResult.leaseMetricsResult = nil
}
if lResult.updatedTxn != nil {
r.pushTxnQueue.UpdateTxn(ctx, lResult.updatedTxn)
lResult.updatedTxn = nil
}
if (lResult != LocalEvalResult{}) {
log.Fatalf(ctx, "unhandled field in LocalEvalResult: %s", pretty.Diff(lResult, LocalEvalResult{}))
}
return shouldAssert
}
func (r *Replica) handleEvalResultRaftMuLocked(
ctx context.Context, lResult *LocalEvalResult, rResult storagebase.ReplicatedEvalResult,
) {
shouldAssert := r.handleReplicatedEvalResult(ctx, rResult)
if lResult != nil {
// Careful: `shouldAssert = f() || g()` will not run both if `f()` is true.
shouldAssert = r.handleLocalEvalResult(ctx, *lResult) || shouldAssert
}
if shouldAssert {
// Assert that the on-disk state doesn't diverge from the in-memory
// state as a result of the side effects.
r.mu.Lock()
r.assertStateLocked(ctx, r.store.Engine())
r.mu.Unlock()
}
}