-
Notifications
You must be signed in to change notification settings - Fork 3.8k
/
closed_timestamp_test.go
1293 lines (1189 loc) · 46.1 KB
/
closed_timestamp_test.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
// Copyright 2018 The Cockroach Authors.
//
// Use of this software is governed by the Business Source License
// included in the file licenses/BSL.txt.
//
// As of the Change Date specified in that file, in accordance with
// the Business Source License, use of this software will be governed
// by the Apache License, Version 2.0, included in the file
// licenses/APL.txt.
package kvserver_test
import (
"context"
gosql "database/sql"
"fmt"
"math/rand"
"strconv"
"sync"
"sync/atomic"
"testing"
"time"
"github.com/cockroachdb/cockroach/pkg/base"
"github.com/cockroachdb/cockroach/pkg/keys"
"github.com/cockroachdb/cockroach/pkg/kv"
"github.com/cockroachdb/cockroach/pkg/kv/kvclient/kvcoord"
"github.com/cockroachdb/cockroach/pkg/kv/kvserver"
"github.com/cockroachdb/cockroach/pkg/kv/kvserver/closedts/ctpb"
"github.com/cockroachdb/cockroach/pkg/roachpb"
"github.com/cockroachdb/cockroach/pkg/sql/catalog/descpb"
"github.com/cockroachdb/cockroach/pkg/sql/rowenc"
"github.com/cockroachdb/cockroach/pkg/sql/sem/tree"
"github.com/cockroachdb/cockroach/pkg/testutils"
"github.com/cockroachdb/cockroach/pkg/testutils/serverutils"
"github.com/cockroachdb/cockroach/pkg/testutils/skip"
"github.com/cockroachdb/cockroach/pkg/testutils/testcluster"
"github.com/cockroachdb/cockroach/pkg/util"
"github.com/cockroachdb/cockroach/pkg/util/encoding"
"github.com/cockroachdb/cockroach/pkg/util/hlc"
"github.com/cockroachdb/cockroach/pkg/util/leaktest"
"github.com/cockroachdb/cockroach/pkg/util/log"
"github.com/cockroachdb/cockroach/pkg/util/retry"
"github.com/cockroachdb/cockroach/pkg/util/syncutil"
"github.com/cockroachdb/cockroach/pkg/util/timeutil"
"github.com/cockroachdb/errors"
"github.com/stretchr/testify/require"
"golang.org/x/sync/errgroup"
)
var aggressiveResolvedTimestampClusterArgs = base.TestClusterArgs{
ServerArgs: base.TestServerArgs{
Knobs: base.TestingKnobs{
Store: aggressiveResolvedTimestampPushKnobs(),
},
},
}
func TestClosedTimestampCanServe(t *testing.T) {
defer leaktest.AfterTest(t)()
defer log.Scope(t).Close(t)
// Limiting how long transactions can run does not work
// well with race unless we're extremely lenient, which
// drives up the test duration.
skip.UnderRace(t)
ctx := context.Background()
tc, db0, desc := setupClusterForClosedTsTesting(ctx, t, testingTargetDuration, testingCloseFraction, aggressiveResolvedTimestampClusterArgs, "cttest")
defer tc.Stopper().Stop(ctx)
repls := replsForRange(ctx, t, tc, desc, numNodes)
if _, err := db0.Exec(`INSERT INTO cttest.kv VALUES(1, $1)`, "foo"); err != nil {
t.Fatal(err)
}
ts := hlc.Timestamp{WallTime: timeutil.Now().UnixNano()}
baRead := makeReadBatchRequestForDesc(desc, ts)
testutils.SucceedsSoon(t, func() error {
return verifyCanReadFromAllRepls(ctx, t, baRead, repls, expectRows(1))
})
// We just served a follower read. As a sanity check, make sure that we can't write at
// that same timestamp.
{
var baWrite roachpb.BatchRequest
r := &roachpb.DeleteRequest{}
r.Key = desc.StartKey.AsRawKey()
txn := roachpb.MakeTransaction("testwrite", r.Key, roachpb.NormalUserPriority, ts, 100)
baWrite.Txn = &txn
baWrite.Add(r)
baWrite.RangeID = repls[0].RangeID
if err := baWrite.SetActiveTimestamp(tc.Server(0).Clock().Now); err != nil {
t.Fatal(err)
}
var found bool
for _, repl := range repls {
resp, pErr := repl.Send(ctx, baWrite)
if errors.HasType(pErr.GoError(), (*roachpb.NotLeaseHolderError)(nil)) {
continue
} else if pErr != nil {
t.Fatal(pErr)
}
found = true
if resp.Txn.WriteTimestamp.LessEq(ts) || resp.Txn.ReadTimestamp == resp.Txn.WriteTimestamp {
t.Fatal("timestamp did not get bumped")
}
break
}
if !found {
t.Fatal("unable to send to any replica")
}
}
}
// TestClosedTimestampCanServerThroughoutLeaseTransfer verifies that lease
// transfers does not prevent reading a value from a follower that was
// previously readable.
func TestClosedTimestampCanServeThroughoutLeaseTransfer(t *testing.T) {
defer leaktest.AfterTest(t)()
defer log.Scope(t).Close(t)
// Limiting how long transactions can run does not work
// well with race unless we're extremely lenient, which
// drives up the test duration.
skip.UnderRace(t)
ctx := context.Background()
tc, db0, desc := setupClusterForClosedTsTesting(ctx, t, testingTargetDuration, testingCloseFraction, aggressiveResolvedTimestampClusterArgs, "cttest")
defer tc.Stopper().Stop(ctx)
repls := replsForRange(ctx, t, tc, desc, numNodes)
if _, err := db0.Exec(`INSERT INTO cttest.kv VALUES(1, $1)`, "foo"); err != nil {
t.Fatal(err)
}
ts := hlc.Timestamp{WallTime: timeutil.Now().UnixNano()}
baRead := makeReadBatchRequestForDesc(desc, ts)
testutils.SucceedsSoon(t, func() error {
return verifyCanReadFromAllRepls(ctx, t, baRead, repls, expectRows(1))
})
// Once we know that we can read safely at this timestamp, we want to ensure
// that we can always read from this timestamp from all replicas even while
// lease transfers are ongoing. The test launches a goroutine to randomly
// trigger transfers at random intervals up to 50ms and ensures that there
// are no errors reading the same value from any replica throughout the
// duration of the test (testTime).
const testTime = 500 * time.Millisecond
const maxTransferWait = 50 * time.Millisecond
deadline := timeutil.Now().Add(testTime)
g, gCtx := errgroup.WithContext(ctx)
transferLeasesRandomlyUntilDeadline := func() error {
for timeutil.Now().Before(deadline) {
lh := getCurrentLeaseholder(t, tc, desc)
target := pickRandomTarget(tc, lh, desc)
if err := tc.TransferRangeLease(desc, target); err != nil {
return err
}
time.Sleep(time.Duration(rand.Intn(int(maxTransferWait))))
}
return nil
}
g.Go(transferLeasesRandomlyUntilDeadline)
// Attempt to send read requests to a replica in a tight loop until deadline
// is reached. If an error is seen on any replica then it is returned to the
// errgroup.
baRead = makeReadBatchRequestForDesc(desc, ts)
ensureCanReadFromReplicaUntilDeadline := func(r *kvserver.Replica) {
g.Go(func() error {
for timeutil.Now().Before(deadline) {
resp, pErr := r.Send(gCtx, baRead)
if pErr != nil {
return errors.Wrapf(pErr.GoError(), "on %s", r)
}
rows := resp.Responses[0].GetInner().(*roachpb.ScanResponse).Rows
// Should see the write.
if len(rows) != 1 {
return fmt.Errorf("expected one row, but got %d", len(rows))
}
}
return nil
})
}
for _, r := range repls {
ensureCanReadFromReplicaUntilDeadline(r)
}
if err := g.Wait(); err != nil {
t.Fatal(err)
}
}
// TestClosedTimestampCanServeWithConflictingIntent validates that a read served
// from a follower replica will wait on conflicting intents and ensure that they
// are cleaned up if necessary to allow the read to proceed.
func TestClosedTimestampCanServeWithConflictingIntent(t *testing.T) {
defer leaktest.AfterTest(t)()
defer log.Scope(t).Close(t)
ctx := context.Background()
tc, _, desc := setupClusterForClosedTsTesting(ctx, t, testingTargetDuration, testingCloseFraction, aggressiveResolvedTimestampClusterArgs, "cttest")
defer tc.Stopper().Stop(ctx)
repls := replsForRange(ctx, t, tc, desc, numNodes)
ds := tc.Server(0).DistSenderI().(*kvcoord.DistSender)
// Write N different intents for the same transaction, where N is the number
// of replicas in the testing range. Each intent will be read and eventually
// resolved by a read on a different replica.
txnKey := desc.StartKey.AsRawKey()
txnKey = txnKey[:len(txnKey):len(txnKey)] // avoid aliasing
txn := roachpb.MakeTransaction("txn", txnKey, 0, tc.Server(0).Clock().Now(), 0)
var keys []roachpb.Key
for i := range repls {
key := append(txnKey, []byte(strconv.Itoa(i))...)
keys = append(keys, key)
put := putArgs(key, []byte("val"))
resp, err := kv.SendWrappedWith(ctx, ds, roachpb.Header{Txn: &txn}, put)
if err != nil {
t.Fatal(err)
}
txn.Update(resp.Header().Txn)
}
// Read a different intent on each replica. All should begin waiting on the
// intents by pushing the transaction that wrote them. None should complete.
ts := txn.WriteTimestamp
respCh := make(chan struct{}, len(keys))
for i, key := range keys {
go func(repl *kvserver.Replica, key roachpb.Key) {
var baRead roachpb.BatchRequest
r := &roachpb.ScanRequest{}
r.Key = key
r.EndKey = key.Next()
baRead.Add(r)
baRead.Timestamp = ts
baRead.RangeID = desc.RangeID
testutils.SucceedsSoon(t, func() error {
// Expect 0 rows, because the intents will be aborted.
_, err := expectRows(0)(repl.Send(ctx, baRead))
return err
})
respCh <- struct{}{}
}(repls[i], key)
}
select {
case <-respCh:
t.Fatal("request unexpectedly succeeded, should block")
case <-time.After(20 * time.Millisecond):
}
// Abort the transaction. All pushes should succeed and all intents should
// be resolved, allowing all reads (on the leaseholder and on followers) to
// proceed and finish.
endTxn := &roachpb.EndTxnRequest{
RequestHeader: roachpb.RequestHeader{Key: txn.Key},
Commit: false,
}
if _, err := kv.SendWrappedWith(ctx, ds, roachpb.Header{Txn: &txn}, endTxn); err != nil {
t.Fatal(err)
}
for range keys {
<-respCh
}
}
// TestClosedTimestampCanServeAfterSplitsAndMerges validates the invariant that
// if a timestamp is safe for reading on both the left side and right side of a
// a merge then it will be safe after the merge and that if a timestamp is safe
// for reading before the beginning of a split it will be safe on both sides of
// of the split.
func TestClosedTimestampCanServeAfterSplitAndMerges(t *testing.T) {
defer leaktest.AfterTest(t)()
defer log.Scope(t).Close(t)
// Limiting how long transactions can run does not work
// well with race unless we're extremely lenient, which
// drives up the test duration.
skip.UnderRace(t)
ctx := context.Background()
tc, db0, desc := setupClusterForClosedTsTesting(ctx, t, testingTargetDuration, testingCloseFraction, aggressiveResolvedTimestampClusterArgs, "cttest")
repls := replsForRange(ctx, t, tc, desc, numNodes)
// Disable the automatic merging.
if _, err := db0.Exec("SET CLUSTER SETTING kv.range_merge.queue_enabled = false"); err != nil {
t.Fatal(err)
}
defer tc.Stopper().Stop(ctx)
if _, err := db0.Exec(`INSERT INTO cttest.kv VALUES(1, $1)`, "foo"); err != nil {
t.Fatal(err)
}
if _, err := db0.Exec(`INSERT INTO cttest.kv VALUES(3, $1)`, "foo"); err != nil {
t.Fatal(err)
}
// Start by ensuring that the values can be read from all replicas at ts.
ts := hlc.Timestamp{WallTime: timeutil.Now().UnixNano()}
baRead := makeReadBatchRequestForDesc(desc, ts)
testutils.SucceedsSoon(t, func() error {
return verifyCanReadFromAllRepls(ctx, t, baRead, repls, expectRows(2))
})
// Manually split the table to have easier access to descriptors.
tableID, err := getTableID(db0, "cttest", "kv")
if err != nil {
t.Fatalf("failed to lookup ids: %+v", err)
}
// Split the table at key 2.
idxPrefix := keys.SystemSQLCodec.IndexPrefix(uint32(tableID), 1)
k, err := rowenc.EncodeTableKey(idxPrefix, tree.NewDInt(2), encoding.Ascending)
if err != nil {
t.Fatalf("failed to encode key: %+v", err)
}
lr, rr, err := tc.Server(0).SplitRange(k)
if err != nil {
t.Fatalf("failed to split range at key %v: %+v", roachpb.Key(k), err)
}
// Ensure that we can perform follower reads from all replicas.
lRepls := replsForRange(ctx, t, tc, lr, numNodes)
rRepls := replsForRange(ctx, t, tc, rr, numNodes)
// Now immediately query both the ranges and there's 1 value per range.
// We need to tolerate RangeNotFound as the split range may not have been
// created yet.
baReadL := makeReadBatchRequestForDesc(lr, ts)
require.Nil(t, verifyCanReadFromAllRepls(ctx, t, baReadL, lRepls,
respFuncs(retryOnRangeNotFound, expectRows(1))))
baReadR := makeReadBatchRequestForDesc(rr, ts)
require.Nil(t, verifyCanReadFromAllRepls(ctx, t, baReadR, rRepls,
respFuncs(retryOnRangeNotFound, expectRows(1))))
// Now merge the ranges back together and ensure that there's two values in
// the merged range.
merged, err := tc.Server(0).MergeRanges(lr.StartKey.AsRawKey())
require.Nil(t, err)
mergedRepls := replsForRange(ctx, t, tc, merged, numNodes)
// The hazard here is that a follower is not yet aware of the merge and will
// return an error. We'll accept that because a client wouldn't see that error
// from distsender.
baReadMerged := makeReadBatchRequestForDesc(merged, ts)
require.Nil(t, verifyCanReadFromAllRepls(ctx, t, baReadMerged, mergedRepls,
respFuncs(retryOnRangeKeyMismatch, expectRows(2))))
}
func getTableID(db *gosql.DB, dbName, tableName string) (tableID descpb.ID, err error) {
err = db.QueryRow(`SELECT table_id FROM crdb_internal.tables WHERE database_name = $1 AND name = $2`,
dbName, tableName).Scan(&tableID)
return
}
func TestClosedTimestampCantServeBasedOnMaxTimestamp(t *testing.T) {
defer leaktest.AfterTest(t)()
defer log.Scope(t).Close(t)
// Limiting how long transactions can run does not work
// well with race unless we're extremely lenient, which
// drives up the test duration.
skip.UnderRace(t)
ctx := context.Background()
// Set up the target duration to be very long and rely on lease transfers to
// drive MaxClosed.
tc, db0, desc := setupClusterForClosedTsTesting(ctx, t, time.Hour, testingCloseFraction, aggressiveResolvedTimestampClusterArgs, "cttest")
defer tc.Stopper().Stop(ctx)
repls := replsForRange(ctx, t, tc, desc, numNodes)
if _, err := db0.Exec(`INSERT INTO cttest.kv VALUES(1, $1)`, "foo"); err != nil {
t.Fatal(err)
}
// Grab a timestamp before initiating a lease transfer, transfer the lease,
// then ensure that reads at that timestamp can occur from all the replicas.
ts := hlc.Timestamp{WallTime: timeutil.Now().UnixNano()}
lh := getCurrentLeaseholder(t, tc, desc)
target := pickRandomTarget(tc, lh, desc)
require.Nil(t, tc.TransferRangeLease(desc, target))
baRead := makeReadBatchRequestForDesc(desc, ts)
testutils.SucceedsSoon(t, func() error {
return verifyCanReadFromAllRepls(ctx, t, baRead, repls, expectRows(1))
})
// Make a non-writing transaction that has a MaxTimestamp after the lease
// transfer but a timestamp before.
roTxn := roachpb.MakeTransaction("test", nil, roachpb.NormalUserPriority, ts,
timeutil.Now().UnixNano()-ts.WallTime)
baRead.Header.Txn = &roTxn
// Send the request to all three replicas. One should succeed and
// the other two should return NotLeaseHolderErrors.
verifyNotLeaseHolderErrors(t, baRead, repls, 2)
}
func TestClosedTimestampCantServeForWritingTransaction(t *testing.T) {
defer leaktest.AfterTest(t)()
defer log.Scope(t).Close(t)
// Limiting how long transactions can run does not work
// well with race unless we're extremely lenient, which
// drives up the test duration.
skip.UnderRace(t)
ctx := context.Background()
tc, db0, desc := setupClusterForClosedTsTesting(ctx, t, testingTargetDuration, testingCloseFraction, aggressiveResolvedTimestampClusterArgs, "cttest")
defer tc.Stopper().Stop(ctx)
repls := replsForRange(ctx, t, tc, desc, numNodes)
if _, err := db0.Exec(`INSERT INTO cttest.kv VALUES(1, $1)`, "foo"); err != nil {
t.Fatal(err)
}
// Verify that we can serve a follower read at a timestamp. Wait if necessary.
ts := hlc.Timestamp{WallTime: timeutil.Now().UnixNano()}
baRead := makeReadBatchRequestForDesc(desc, ts)
testutils.SucceedsSoon(t, func() error {
return verifyCanReadFromAllRepls(ctx, t, baRead, repls, expectRows(1))
})
// Create a read-only batch and attach a read-write transaction.
rwTxn := roachpb.MakeTransaction("test", []byte("key"), roachpb.NormalUserPriority, ts, 0)
baRead.Txn = &rwTxn
// Send the request to all three replicas. One should succeed and
// the other two should return NotLeaseHolderErrors.
verifyNotLeaseHolderErrors(t, baRead, repls, 2)
}
func TestClosedTimestampCantServeForNonTransactionalReadRequest(t *testing.T) {
defer leaktest.AfterTest(t)()
defer log.Scope(t).Close(t)
// Limiting how long transactions can run does not work
// well with race unless we're extremely lenient, which
// drives up the test duration.
skip.UnderRace(t)
ctx := context.Background()
tc, db0, desc := setupClusterForClosedTsTesting(ctx, t, testingTargetDuration, testingCloseFraction, aggressiveResolvedTimestampClusterArgs, "cttest")
defer tc.Stopper().Stop(ctx)
repls := replsForRange(ctx, t, tc, desc, numNodes)
if _, err := db0.Exec(`INSERT INTO cttest.kv VALUES(1, $1)`, "foo"); err != nil {
t.Fatal(err)
}
// Verify that we can serve a follower read at a timestamp. Wait if necessary
ts := hlc.Timestamp{WallTime: timeutil.Now().UnixNano()}
baRead := makeReadBatchRequestForDesc(desc, ts)
testutils.SucceedsSoon(t, func() error {
return verifyCanReadFromAllRepls(ctx, t, baRead, repls, expectRows(1))
})
// Create a "nontransactional" read-only batch.
var baQueryTxn roachpb.BatchRequest
baQueryTxn.Header.RangeID = desc.RangeID
r := &roachpb.QueryTxnRequest{}
r.Key = desc.StartKey.AsRawKey()
r.Txn.Key = r.Key
r.Txn.MinTimestamp = ts
baQueryTxn.Add(r)
baQueryTxn.Timestamp = ts
// Send the request to all three replicas. One should succeed and
// the other two should return NotLeaseHolderErrors.
verifyNotLeaseHolderErrors(t, baQueryTxn, repls, 2)
}
// TestClosedTimestampInactiveAfterSubsumption verifies that, during a merge,
// replicas of the subsumed range (RHS) cannot serve follower reads for
// timestamps after the subsumption time.
func TestClosedTimestampInactiveAfterSubsumption(t *testing.T) {
defer leaktest.AfterTest(t)()
// Skipping under short because this test pauses for a few seconds in order to
// trigger a node liveness expiration.
skip.UnderShort(t)
// TODO(aayush): After #51087, we're seeing some regression in the initial
// setup of this test that causes it to fail there. There are some
// improvements for that PR in-flight. Revisit at a later date and re-enable
// under race.
skip.UnderRace(t)
type postSubsumptionCallback func(
ctx context.Context,
t *testing.T,
tc serverutils.TestClusterInterface,
g *errgroup.Group,
rightDesc roachpb.RangeDescriptor,
rightLeaseholder roachpb.ReplicationTarget,
freezeStartTimestamp hlc.Timestamp,
leaseAcquisitionTrap *atomic.Value,
) (roachpb.ReplicationTarget, hlc.Timestamp, error)
type testCase struct {
name string
callback postSubsumptionCallback
}
tests := []testCase{
{
name: "without lease transfer",
callback: nil,
},
{
name: "with intervening lease transfer",
callback: forceLeaseTransferOnSubsumedRange,
},
}
runTest := func(t *testing.T, callback postSubsumptionCallback) {
ctx := context.Background()
// Range merges can be internally retried by the coordinating node (the
// leaseholder of the left hand side range). If this happens, the right hand
// side can get re-subsumed. However, in the current implementation, even if
// the merge txn gets retried, the follower replicas should not be able to
// activate any closed timestamp updates succeeding the timestamp the RHS
// was subsumed _for the first time_.
st := mergeFilter{}
var leaseAcquisitionTrap atomic.Value
clusterArgs := base.TestClusterArgs{
ServerArgs: base.TestServerArgs{
RaftConfig: base.RaftConfig{
// We set the raft election timeout to a small duration. This should
// result in the node liveness duration being ~3.6 seconds. Note that
// if we set this too low, the test may flake due to the test
// cluster's nodes frequently missing their liveness heartbeats.
RaftHeartbeatIntervalTicks: 5,
RaftElectionTimeoutTicks: 6,
},
Knobs: base.TestingKnobs{
Store: &kvserver.StoreTestingKnobs{
// This test suspends the merge txn right before it can apply the
// commit trigger and can lead to the merge txn taking longer than
// the defaults specified in aggressiveResolvedTimestampPushKnobs().
// We use really high values here in order to avoid the merge txn
// being pushed due to resolved timestamps.
RangeFeedPushTxnsInterval: 5 * time.Second,
RangeFeedPushTxnsAge: 60 * time.Second,
TestingRequestFilter: st.SuspendMergeTrigger,
LeaseRequestEvent: func(ts hlc.Timestamp, storeID roachpb.StoreID, rangeID roachpb.RangeID) *roachpb.Error {
val := leaseAcquisitionTrap.Load()
if val == nil {
return nil
}
leaseAcquisitionCallback := val.(func(storeID roachpb.StoreID, rangeID roachpb.RangeID) *roachpb.Error)
if err := leaseAcquisitionCallback(storeID, rangeID); err != nil {
return err
}
return nil
},
DisableMergeQueue: true,
// A subtest wants to force a lease change by stopping the liveness
// heartbeats on the old leaseholder and sending a request to
// another replica. If we didn't use this knob, we'd have to
// architect a Raft leadership change too in order to let the
// replica get the lease.
AllowLeaseRequestProposalsWhenNotLeader: true,
},
},
},
}
// If the initial phase of the merge txn takes longer than the closed
// timestamp target duration, its initial CPuts can have their write
// timestamps bumped due to an intervening closed timestamp update. This
// causes the entire merge txn to retry. So we use a long closed timestamp
// duration at the beginning of the test until we have the merge txn
// suspended at its commit trigger, and then change it back down to
// `testingTargetDuration`.
tc, leftDesc, rightDesc := setupClusterForClosedTsTestingWithSplitRanges(ctx, t, 5*time.Second, testingCloseFraction, clusterArgs)
defer tc.Stopper().Stop(ctx)
leftLeaseholder := getCurrentLeaseholder(t, tc, leftDesc)
rightLeaseholder := getCurrentLeaseholder(t, tc, rightDesc)
g, ctx := errgroup.WithContext(ctx)
// Merge the ranges back together. The LHS leaseholder should block right
// before the merge trigger request is sent.
leftLeaseholderStore := getTargetStoreOrFatal(t, tc, leftLeaseholder)
blocker := st.BlockNextMerge()
mergeErrCh := make(chan error, 1)
g.Go(func() error {
err := mergeTxn(ctx, leftLeaseholderStore, leftDesc)
mergeErrCh <- err
return err
})
defer func() {
// Unblock the rightLeaseholder so it can finally commit the merge.
blocker.Unblock()
if err := g.Wait(); err != nil {
t.Error(err)
}
}()
var freezeStartTimestamp hlc.Timestamp
// We now have the RHS in its subsumed state.
select {
case freezeStartTimestamp = <-blocker.WaitCh():
case err := <-mergeErrCh:
t.Fatal(err)
case <-time.After(45 * time.Second):
t.Fatal("did not receive merge commit trigger as expected")
}
// Reduce the closed timestamp target duration in order to make the rest of
// the test faster.
db := tc.ServerConn(0)
if _, err := db.Exec(fmt.Sprintf(`SET CLUSTER SETTING kv.closed_timestamp.target_duration = '%s';`,
testingTargetDuration)); err != nil {
t.Fatal(err)
}
// inactiveClosedTSBoundary indicates the low water mark for closed
// timestamp updates beyond which we expect none of the followers to be able
// to serve follower reads until the merge is complete.
inactiveClosedTSBoundary := freezeStartTimestamp
if callback != nil {
newRightLeaseholder, ts, err := callback(ctx, t, tc, g, rightDesc, rightLeaseholder,
freezeStartTimestamp, &leaseAcquisitionTrap)
if err != nil {
t.Fatal(err)
}
rightLeaseholder, inactiveClosedTSBoundary = newRightLeaseholder, ts
}
// Poll the store for closed timestamp updates for timestamps greater than
// our `inactiveClosedTSBoundary`.
closedTimestampCh := make(chan ctpb.Entry, 1)
g.Go(func() (e error) {
pollForGreaterClosedTimestamp(t, tc, rightLeaseholder, rightDesc, inactiveClosedTSBoundary, closedTimestampCh)
return
})
// We expect that none of the closed timestamp updates greater than
// `inactiveClosedTSBoundary` will be actionable by the RHS follower
// replicas.
log.Infof(ctx, "waiting for next closed timestamp update for the RHS")
select {
case <-closedTimestampCh:
case <-time.After(30 * time.Second):
t.Fatal("failed to receive next closed timestamp update")
}
baReadAfterLeaseTransfer := makeReadBatchRequestForDesc(rightDesc, inactiveClosedTSBoundary.Next())
rightReplFollowers := getFollowerReplicas(ctx, t, tc, rightDesc, rightLeaseholder)
log.Infof(ctx, "sending read requests from followers after the inactiveClosedTSBoundary")
verifyNotLeaseHolderErrors(t, baReadAfterLeaseTransfer, rightReplFollowers, 2 /* expectedNLEs */)
}
for _, test := range tests {
t.Run(test.name, func(t *testing.T) {
runTest(t, test.callback)
})
}
}
// forceLeaseTransferOnSubsumedRange triggers a lease transfer on `rightDesc` by
// pausing the liveness heartbeats of the store that holds the lease for it.
func forceLeaseTransferOnSubsumedRange(
ctx context.Context,
t *testing.T,
tc serverutils.TestClusterInterface,
g *errgroup.Group,
rightDesc roachpb.RangeDescriptor,
rightLeaseholder roachpb.ReplicationTarget,
freezeStartTimestamp hlc.Timestamp,
leaseAcquisitionTrap *atomic.Value,
) (newLeaseholder roachpb.ReplicationTarget, leaseStart hlc.Timestamp, err error) {
oldLeaseholderStore := getTargetStoreOrFatal(t, tc, rightLeaseholder)
// Co-operative lease transfers will block while a range is subsumed, so we
// pause the node liveness heartbeats until a lease transfer occurs.
oldLease, _ := oldLeaseholderStore.LookupReplica(rightDesc.StartKey).GetLease()
require.True(t, oldLease.Replica.StoreID == oldLeaseholderStore.StoreID())
// Instantiate the lease acquisition callback right before we pause the node
// liveness heartbeats. We do this here because leases may be requested at
// any time for any reason, even before we pause the heartbeats.
leaseAcquisitionCh := make(chan roachpb.StoreID)
newRightLeaseholder := getFollowerReplicas(ctx, t, tc, rightDesc, rightLeaseholder)[0]
var once sync.Once
leaseAcquisitionTrap.Store(func(storeID roachpb.StoreID, rangeID roachpb.RangeID) *roachpb.Error {
if rangeID == rightDesc.RangeID {
if expectedStoreID := newRightLeaseholder.StoreID(); expectedStoreID != storeID {
return roachpb.NewError(&roachpb.NotLeaseHolderError{
CustomMsg: fmt.Sprintf("only store %d must acquire the RHS's lease", expectedStoreID),
})
}
once.Do(func() {
log.Infof(ctx, "received lease request from store %d for RHS range %d",
storeID, rangeID)
leaseAcquisitionCh <- storeID
})
}
return nil
})
restartHeartbeats := oldLeaseholderStore.NodeLiveness().PauseAllHeartbeatsForTest()
defer restartHeartbeats()
log.Infof(ctx, "test: paused RHS rightLeaseholder's liveness heartbeats")
time.Sleep(oldLeaseholderStore.NodeLiveness().GetLivenessThreshold())
// Send a read request from one of the followers of RHS so that it notices
// that the current rightLeaseholder has stopped heartbeating. This will prompt
// it to acquire the range lease for itself.
g.Go(func() error {
leaseAcquisitionRequest := makeReadBatchRequestForDesc(rightDesc, freezeStartTimestamp)
log.Infof(ctx,
"sending a read request from a follower of RHS (store %d) in order to trigger lease acquisition",
newRightLeaseholder.StoreID())
_, pErr := newRightLeaseholder.Send(ctx, leaseAcquisitionRequest)
log.Infof(ctx, "test: RHS read returned err: %v", pErr)
// After the merge commits, the RHS will cease to exist and this read
// request will return a RangeNotFoundError. But we cannot guarantee that
// the merge will always successfully commit on its first attempt
// (especially under race). In this case, this blocked read request might be
// let through and be successful. Thus, we cannot make any assertions about
// the result of this read request.
return nil
})
select {
case storeID := <-leaseAcquisitionCh:
if storeID != newRightLeaseholder.StoreID() {
err = errors.Newf("expected store %d to try to acquire the lease; got a request from store %d instead",
newRightLeaseholder.StoreID(), storeID)
return roachpb.ReplicationTarget{}, hlc.Timestamp{}, err
}
case <-time.After(30 * time.Second):
err = errors.New("failed to receive lease acquisition request")
return roachpb.ReplicationTarget{}, hlc.Timestamp{}, err
}
rightLeaseholder = roachpb.ReplicationTarget{
NodeID: newRightLeaseholder.NodeID(),
StoreID: newRightLeaseholder.StoreID(),
}
oldLeaseholderStore = getTargetStoreOrFatal(t, tc, rightLeaseholder)
err = retry.ForDuration(testutils.DefaultSucceedsSoonDuration, func() error {
newLease, _ := oldLeaseholderStore.LookupReplica(rightDesc.StartKey).GetLease()
if newLease.Sequence == oldLease.Sequence {
return errors.New("RHS lease not updated")
}
leaseStart = newLease.Start
return nil
})
if err != nil {
return
}
if !freezeStartTimestamp.LessEq(leaseStart) {
err = errors.New("freeze timestamp greater than the start time of the new lease")
return roachpb.ReplicationTarget{}, hlc.Timestamp{}, err
}
return rightLeaseholder, leaseStart, nil
}
// mergeFilter provides a method (SuspendMergeTrigger) that can be installed as
// a TestingRequestFilter, blocking commits with the MergeTrigger set.
type mergeFilter struct {
mu struct {
syncutil.Mutex
// blocker is set when the next merge commit is to be trapped.
blocker *mergeBlocker
}
}
// mergeBlocker represents the blocker that the mergeFilter installs. The
// blocker encapsulates the communication of a blocked merge to tests, and the
// unblocking of that merge by the test.
type mergeBlocker struct {
unblockCh chan struct{}
mu struct {
syncutil.Mutex
// mergeCh is the channel on which the merge is signaled. If nil, means that
// the reader is not interested in receiving the notification any more.
mergeCh chan hlc.Timestamp
}
}
// WaitCh returns the channel on which the blocked merge will be signaled. The
// channel will carry the freeze start timestamp for the RHS.
func (mb *mergeBlocker) WaitCh() <-chan hlc.Timestamp {
mb.mu.Lock()
defer mb.mu.Unlock()
return mb.mu.mergeCh
}
// Unblock unblocks the blocked merge, if any. It's legal to call this even if
// no merge is currently blocked, in which case the next merge trigger will no
// longer block.
//
// Calls to Unblock() need to be synchronized with reading from the channel
// returned by WaitCh().
func (mb *mergeBlocker) Unblock() {
close(mb.unblockCh)
mb.mu.Lock()
defer mb.mu.Unlock()
mb.mu.mergeCh = nil
}
// signal sends a freezeTs to someone waiting for a blocked merge.
func (mb *mergeBlocker) signal(freezeTs hlc.Timestamp) {
mb.mu.Lock()
defer mb.mu.Unlock()
ch := mb.mu.mergeCh
if ch == nil {
// Nobody's waiting on this merge any more.
return
}
ch <- freezeTs
}
// BlockNextMerge arms the merge filter state, installing a blocker for the next
// merge commit trigger it sees. The blocker is returned, to be be used for waiting
// on the upcoming merge.
//
// After calling BlockNextMerge(), the next merge will be merge blocked and, at
// that point, the filter will be automatically disarmed again. Once the next
// merge has been trapped, BlockNextMerge() can be called again.
func (filter *mergeFilter) BlockNextMerge() *mergeBlocker {
filter.mu.Lock()
defer filter.mu.Unlock()
if filter.mu.blocker != nil {
panic("next merge already blocked")
}
filter.mu.blocker = &mergeBlocker{
unblockCh: make(chan struct{}),
}
// This channel is buffered because we don't force the caller to read from it;
// the caller can call mergeBlocker.Unblock() instead.
filter.mu.blocker.mu.mergeCh = make(chan hlc.Timestamp, 1)
return filter.mu.blocker
}
// resetBlocker disarms the filter. If the filter had been armed, it returns the
// blocker that had been installed by BlockNextMerge(), if any. If a blocker had
// been installed, it is returned and the bool retval is true.
func (filter *mergeFilter) resetBlocker() (*mergeBlocker, bool) {
filter.mu.Lock()
defer filter.mu.Unlock()
blocker := filter.mu.blocker
filter.mu.blocker = nil
return blocker, blocker != nil
}
// SuspendMergeTrigger is a request filter that can block merge transactions.
// This is intended to get the RHS range suspended in its subsumed state.
// Communication with actors interested in blocked merges is done through
// BlockNextMerge().
func (filter *mergeFilter) SuspendMergeTrigger(
ctx context.Context, ba roachpb.BatchRequest,
) *roachpb.Error {
for _, req := range ba.Requests {
if et := req.GetEndTxn(); et != nil && et.Commit &&
et.InternalCommitTrigger.GetMergeTrigger() != nil {
// Disarm the mergeFilterState because we do _not_ want to block any other
// merges in the system, or the future retries of this merge txn.
blocker, ok := filter.resetBlocker()
if !ok {
continue
}
freezeStart := et.InternalCommitTrigger.MergeTrigger.FreezeStart
log.Infof(ctx, "suspending the merge txn with FreezeStart: %s", freezeStart)
// We block the LHS leaseholder from applying the merge trigger. Note
// that RHS followers will have already caught up to the leaseholder
// well before this point.
blocker.signal(freezeStart)
// Wait for the merge to be unblocked.
<-blocker.unblockCh
}
}
return nil
}
func mergeTxn(ctx context.Context, store *kvserver.Store, leftDesc roachpb.RangeDescriptor) error {
mergeArgs := adminMergeArgs(leftDesc.StartKey.AsRawKey())
_, err := kv.SendWrapped(ctx, store.TestSender(), mergeArgs)
return err.GoError()
}
func setupClusterForClosedTsTestingWithSplitRanges(
ctx context.Context,
t *testing.T,
targetDuration time.Duration,
closeFraction float64,
clusterArgs base.TestClusterArgs,
) (serverutils.TestClusterInterface, roachpb.RangeDescriptor, roachpb.RangeDescriptor) {
dbName := "cttest"
tc, _, _ := setupClusterForClosedTsTesting(ctx, t, targetDuration, closeFraction, clusterArgs, dbName)
leftDesc, rightDesc := splitDummyRangeInTestCluster(t, tc, dbName)
return tc, leftDesc, rightDesc
}
// splitDummyRangeInTestCluster is supposed to be used in conjunction with the
// dummy table created in setupTestClusterWithDummyRange. It adds two rows to
// the {dbname}.kv table and performs splits on the table's range such that the
// 2 resulting ranges contain exactly one of the rows each.
func splitDummyRangeInTestCluster(
t *testing.T, tc serverutils.TestClusterInterface, dbName string,
) (roachpb.RangeDescriptor, roachpb.RangeDescriptor) {
db0 := tc.ServerConn(0)
if _, err := db0.Exec(fmt.Sprintf(`INSERT INTO %s.kv VALUES(1, '%s')`, dbName, "foo")); err != nil {
t.Fatal(err)
}
if _, err := db0.Exec(fmt.Sprintf(`INSERT INTO %s.kv VALUES(3, '%s')`, dbName, "foo")); err != nil {
t.Fatal(err)
}
// Manually split the table to have easier access to descriptors.
tableID, err := getTableID(db0, dbName, "kv")
if err != nil {
t.Fatalf("failed to lookup ids: %+v", err)
}
idxPrefix := keys.SystemSQLCodec.IndexPrefix(uint32(tableID), 1)
k, err := rowenc.EncodeTableKey(idxPrefix, tree.NewDInt(1), encoding.Ascending)
if err != nil {
t.Fatalf("failed to encode split key: %+v", err)
}
tcImpl := tc.(*testcluster.TestCluster)
// Split at `k` so that the `kv` table has exactly two ranges: [1,2) and [2,
// Max). This split will never be merged by the merge queue so the expiration
// time doesn't matter here.
tcImpl.SplitRangeOrFatal(t, k)
idxPrefix = keys.SystemSQLCodec.IndexPrefix(uint32(tableID), 1)
k, err = rowenc.EncodeTableKey(idxPrefix, tree.NewDInt(2), encoding.Ascending)
if err != nil {
t.Fatalf("failed to encode split key: %+v", err)
}
leftDesc, rightDesc := tcImpl.SplitRangeOrFatal(t, k)
if tc.ReplicationMode() != base.ReplicationManual {
if err := tcImpl.WaitForFullReplication(); err != nil {
t.Fatal(err)
}
}
return leftDesc, rightDesc
}
func getCurrentMaxClosed(
t *testing.T,
tc serverutils.TestClusterInterface,
target roachpb.ReplicationTarget,
desc roachpb.RangeDescriptor,
) ctpb.Entry {
deadline := timeutil.Now().Add(2 * testingTargetDuration)
store := getTargetStoreOrFatal(t, tc, target)
var maxClosed ctpb.Entry
attempts := 0
for attempts == 0 || timeutil.Now().Before(deadline) {
attempts++
store.ClosedTimestamp().Storage.VisitDescending(target.NodeID, func(entry ctpb.Entry) (done bool) {
if _, ok := entry.MLAI[desc.RangeID]; ok {
maxClosed = entry
return true
}
return false
})
if _, ok := maxClosed.MLAI[desc.RangeID]; !ok {
// We ran out of closed timestamps to visit without finding one that
// corresponds to rightDesc. It is likely that no closed timestamps have
// been broadcast for desc yet, try again.
continue
}
return maxClosed
}
return ctpb.Entry{}
}
func pollForGreaterClosedTimestamp(
t *testing.T,
tc serverutils.TestClusterInterface,
target roachpb.ReplicationTarget,
desc roachpb.RangeDescriptor,
lowerBound hlc.Timestamp,
returnCh chan<- ctpb.Entry,
) {
for {
if t.Failed() {
return
}
maxClosed := getCurrentMaxClosed(t, tc, target, desc)
if _, ok := maxClosed.MLAI[desc.RangeID]; ok && lowerBound.LessEq(maxClosed.ClosedTimestamp) {
returnCh <- maxClosed
return
}
}
}
func getFollowerReplicas(
ctx context.Context,
t *testing.T,
tc serverutils.TestClusterInterface,
rangeDesc roachpb.RangeDescriptor,
leaseholder roachpb.ReplicationTarget,
) []*kvserver.Replica {
repls := replsForRange(ctx, t, tc, rangeDesc, numNodes)
followers := make([]*kvserver.Replica, 0, len(repls)-1)
for _, repl := range repls {
if repl.StoreID() == leaseholder.StoreID && repl.NodeID() == leaseholder.NodeID {
continue
}
followers = append(followers, repl)
}
return followers
}
func getTargetStoreOrFatal(
t *testing.T, tc serverutils.TestClusterInterface, target roachpb.ReplicationTarget,
) (store *kvserver.Store) {
for i := 0; i < tc.NumServers(); i++ {