-
Notifications
You must be signed in to change notification settings - Fork 3.8k
/
Copy pathupdate.go
437 lines (378 loc) · 15.4 KB
/
update.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
// Copyright 2015 The Cockroach Authors.
//
// Use of this software is governed by the Business Source License
// included in the file licenses/BSL.txt.
//
// As of the Change Date specified in that file, in accordance with
// the Business Source License, use of this software will be governed
// by the Apache License, Version 2.0, included in the file
// licenses/APL.txt.
package sql
import (
"context"
"sync"
"github.com/cockroachdb/cockroach/pkg/sql/catalog"
"github.com/cockroachdb/cockroach/pkg/sql/catalog/colinfo"
"github.com/cockroachdb/cockroach/pkg/sql/catalog/schemaexpr"
"github.com/cockroachdb/cockroach/pkg/sql/row"
"github.com/cockroachdb/cockroach/pkg/sql/rowcontainer"
"github.com/cockroachdb/cockroach/pkg/sql/sem/tree"
"github.com/cockroachdb/cockroach/pkg/sql/sqlerrors"
"github.com/cockroachdb/errors"
)
var updateNodePool = sync.Pool{
New: func() interface{} {
return &updateNode{}
},
}
type updateNode struct {
source planNode
// columns is set if this UPDATE is returning any rows, to be
// consumed by a renderNode upstream. This occurs when there is a
// RETURNING clause with some scalar expressions.
columns colinfo.ResultColumns
run updateRun
}
var _ mutationPlanNode = &updateNode{}
// updateRun contains the run-time state of updateNode during local execution.
type updateRun struct {
tu tableUpdater
rowsNeeded bool
checkOrds checkSet
// done informs a new call to BatchedNext() that the previous call to
// BatchedNext() has completed the work already.
done bool
// traceKV caches the current KV tracing flag.
traceKV bool
// computedCols are the columns that need to be (re-)computed as
// the result of updating some of the columns in updateCols.
computedCols []catalog.Column
// computeExprs are the expressions to evaluate to re-compute the
// columns in computedCols.
computeExprs []tree.TypedExpr
// iVarContainerForComputedCols is used as a temporary buffer that
// holds the updated values for every column in the source, to
// serve as input for indexed vars contained in the computeExprs.
iVarContainerForComputedCols schemaexpr.RowIndexedVarContainer
// sourceSlots is the helper that maps RHS expressions to LHS targets.
// This is necessary because there may be fewer RHS expressions than
// LHS targets. For example, SET (a, b) = (SELECT 1,2) has:
// - 2 targets (a, b)
// - 1 source slot, the subquery (SELECT 1, 2).
// Each call to extractValues() on a sourceSlot will return 1 or more
// datums suitable for assignments. In the example above, the
// method would return 2 values.
sourceSlots []sourceSlot
// updateValues will hold the new values for every column
// mentioned in the LHS of the SET expressions, in the
// order specified by those SET expressions (thus potentially
// a different order than the source).
updateValues tree.Datums
// During the update, the expressions provided by the source plan
// contain the columns that are being assigned in the order
// specified by the table descriptor.
//
// For example, with UPDATE kv SET v=3, k=2, the source plan will
// provide the values in the order k, v (assuming this is the order
// the columns are defined in kv's descriptor).
//
// Then during the update, the columns are updated in the order of
// the setExprs (or, equivalently, the order of the sourceSlots),
// for the example above that would be v, k. The results
// are stored in updateValues above.
//
// Then at the end of the update, the values need to be presented
// back to the TableRowUpdater in the order of the table descriptor
// again.
//
// updateVals is the buffer for this 2nd stage.
// updateColsIdx maps the order of the 2nd stage into the order of the 3rd stage.
// This provides the inverse mapping of sourceSlots.
//
updateColsIdx catalog.TableColMap
// rowIdxToRetIdx is the mapping from the columns in ru.FetchCols to the
// columns in the resultRowBuffer. A value of -1 is used to indicate
// that the column at that index is not part of the resultRowBuffer
// of the mutation. Otherwise, the value at the i-th index refers to the
// index of the resultRowBuffer where the i-th column is to be returned.
rowIdxToRetIdx []int
// numPassthrough is the number of columns in addition to the set of
// columns of the target table being returned, that we must pass through
// from the input node.
numPassthrough int
}
func (u *updateNode) startExec(params runParams) error {
// cache traceKV during execution, to avoid re-evaluating it for every row.
u.run.traceKV = params.p.ExtendedEvalContext().Tracing.KVTracingEnabled()
if u.run.rowsNeeded {
u.run.tu.rows = rowcontainer.NewRowContainer(
params.EvalContext().Mon.MakeBoundAccount(),
colinfo.ColTypeInfoFromResCols(u.columns),
)
}
return u.run.tu.init(params.ctx, params.p.txn, params.EvalContext(), ¶ms.EvalContext().Settings.SV)
}
// Next is required because batchedPlanNode inherits from planNode, but
// batchedPlanNode doesn't really provide it. See the explanatory comments
// in plan_batch.go.
func (u *updateNode) Next(params runParams) (bool, error) { panic("not valid") }
// Values is required because batchedPlanNode inherits from planNode, but
// batchedPlanNode doesn't really provide it. See the explanatory comments
// in plan_batch.go.
func (u *updateNode) Values() tree.Datums { panic("not valid") }
// BatchedNext implements the batchedPlanNode interface.
func (u *updateNode) BatchedNext(params runParams) (bool, error) {
if u.run.done {
return false, nil
}
// Advance one batch. First, clear the last batch.
u.run.tu.clearLastBatch(params.ctx)
// Now consume/accumulate the rows for this batch.
lastBatch := false
for {
if err := params.p.cancelChecker.Check(); err != nil {
return false, err
}
// Advance one individual row.
if next, err := u.source.Next(params); !next {
lastBatch = true
if err != nil {
return false, err
}
break
}
// Process the update for the current source row, potentially
// accumulating the result row for later.
if err := u.processSourceRow(params, u.source.Values()); err != nil {
return false, err
}
// Are we done yet with the current batch?
if u.run.tu.currentBatchSize >= u.run.tu.maxBatchSize ||
u.run.tu.b.ApproximateMutationBytes() >= u.run.tu.maxBatchByteSize {
break
}
}
if u.run.tu.currentBatchSize > 0 {
if !lastBatch {
// We only run/commit the batch if there were some rows processed
// in this batch.
if err := u.run.tu.flushAndStartNewBatch(params.ctx); err != nil {
return false, err
}
}
}
if lastBatch {
u.run.tu.setRowsWrittenLimit(params.extendedEvalCtx.SessionData())
if err := u.run.tu.finalize(params.ctx); err != nil {
return false, err
}
// Remember we're done for the next call to BatchedNext().
u.run.done = true
}
// Possibly initiate a run of CREATE STATISTICS.
params.ExecCfg().StatsRefresher.NotifyMutation(u.run.tu.tableDesc(), u.run.tu.lastBatchSize)
return u.run.tu.lastBatchSize > 0, nil
}
// processSourceRow processes one row from the source for update and, if
// result rows are needed, saves it in the result row container.
func (u *updateNode) processSourceRow(params runParams, sourceVals tree.Datums) error {
// sourceVals contains values for the columns from the table, in the order of the
// table descriptor. (One per column in u.tw.ru.FetchCols)
//
// And then after that, all the extra expressions potentially added via
// a renderNode for the RHS of the assignments.
// oldValues is the prefix of sourceVals that corresponds to real
// stored columns in the table, that is, excluding the RHS assignment
// expressions.
oldValues := sourceVals[:len(u.run.tu.ru.FetchCols)]
// valueIdx is used in the loop below to map sourceSlots to
// entries in updateValues.
valueIdx := 0
// Propagate the values computed for the RHS expressions into
// updateValues at the right positions. The positions in
// updateValues correspond to the columns named in the LHS
// operands for SET.
for _, slot := range u.run.sourceSlots {
for _, value := range slot.extractValues(sourceVals) {
u.run.updateValues[valueIdx] = value
valueIdx++
}
}
// At this point, we have populated updateValues with the result of
// computing the RHS for every assignment.
//
if len(u.run.computeExprs) > 0 {
// We now need to (re-)compute the computed column values, using
// the updated values above as input.
//
// This needs to happen in the context of a row containing all the
// table's columns as if they had been updated already. This is not
// yet reflected neither by oldValues (which contain non-updated values)
// nor updateValues (which contain only those columns mentioned in the SET LHS).
//
// So we need to construct a buffer that groups them together.
// iVarContainerForComputedCols does this.
copy(u.run.iVarContainerForComputedCols.CurSourceRow, oldValues)
for i := range u.run.tu.ru.UpdateCols {
id := u.run.tu.ru.UpdateCols[i].GetID()
idx := u.run.tu.ru.FetchColIDtoRowIndex.GetDefault(id)
u.run.iVarContainerForComputedCols.CurSourceRow[idx] = u.run.
updateValues[i]
}
// Now (re-)compute the computed columns.
// Note that it's safe to do this in any order, because we currently
// prevent computed columns from depending on other computed columns.
params.EvalContext().PushIVarContainer(&u.run.iVarContainerForComputedCols)
for i := range u.run.computedCols {
d, err := u.run.computeExprs[i].Eval(params.EvalContext())
if err != nil {
params.EvalContext().IVarContainer = nil
name := u.run.computedCols[i].GetName()
return errors.Wrapf(err, "computed column %s", tree.ErrString((*tree.Name)(&name)))
}
idx := u.run.updateColsIdx.GetDefault(u.run.computedCols[i].GetID())
u.run.updateValues[idx] = d
}
params.EvalContext().PopIVarContainer()
}
// Verify the schema constraints. For consistency with INSERT/UPSERT
// and compatibility with PostgreSQL, we must do this before
// processing the CHECK constraints.
if err := enforceLocalColumnConstraints(u.run.updateValues, u.run.tu.ru.UpdateCols); err != nil {
return err
}
// Run the CHECK constraints, if any. CheckHelper will either evaluate the
// constraints itself, or else inspect boolean columns from the input that
// contain the results of evaluation.
if !u.run.checkOrds.Empty() {
checkVals := sourceVals[len(u.run.tu.ru.FetchCols)+len(u.run.tu.ru.UpdateCols)+u.run.numPassthrough:]
if err := checkMutationInput(
params.ctx, ¶ms.p.semaCtx, u.run.tu.tableDesc(), u.run.checkOrds, checkVals,
); err != nil {
return err
}
}
// Create a set of partial index IDs to not add entries or remove entries
// from.
var pm row.PartialIndexUpdateHelper
if n := len(u.run.tu.tableDesc().PartialIndexes()); n > 0 {
offset := len(u.run.tu.ru.FetchCols) + len(u.run.tu.ru.UpdateCols) + u.run.checkOrds.Len() + u.run.numPassthrough
partialIndexVals := sourceVals[offset:]
partialIndexPutVals := partialIndexVals[:n]
partialIndexDelVals := partialIndexVals[n : n*2]
err := pm.Init(partialIndexPutVals, partialIndexDelVals, u.run.tu.tableDesc())
if err != nil {
return err
}
}
// Queue the insert in the KV batch.
newValues, err := u.run.tu.rowForUpdate(params.ctx, oldValues, u.run.updateValues, pm, u.run.traceKV)
if err != nil {
return err
}
// If result rows need to be accumulated, do it.
if u.run.tu.rows != nil {
// The new values can include all columns, the construction of the
// values has used execinfra.ScanVisibilityPublicAndNotPublic so the
// values may contain additional columns for every newly added column
// not yet visible. We do not want them to be available for RETURNING.
//
// MakeUpdater guarantees that the first columns of the new values
// are those specified u.columns.
resultValues := make([]tree.Datum, len(u.columns))
largestRetIdx := -1
for i := range u.run.rowIdxToRetIdx {
retIdx := u.run.rowIdxToRetIdx[i]
if retIdx >= 0 {
if retIdx >= largestRetIdx {
largestRetIdx = retIdx
}
resultValues[retIdx] = newValues[i]
}
}
// At this point we've extracted all the RETURNING values that are part
// of the target table. We must now extract the columns in the RETURNING
// clause that refer to other tables (from the FROM clause of the update).
if u.run.numPassthrough > 0 {
passthroughBegin := len(u.run.tu.ru.FetchCols) + len(u.run.tu.ru.UpdateCols)
passthroughEnd := passthroughBegin + u.run.numPassthrough
passthroughValues := sourceVals[passthroughBegin:passthroughEnd]
for i := 0; i < u.run.numPassthrough; i++ {
largestRetIdx++
resultValues[largestRetIdx] = passthroughValues[i]
}
}
if _, err := u.run.tu.rows.AddRow(params.ctx, resultValues); err != nil {
return err
}
}
return nil
}
// BatchedCount implements the batchedPlanNode interface.
func (u *updateNode) BatchedCount() int { return u.run.tu.lastBatchSize }
// BatchedCount implements the batchedPlanNode interface.
func (u *updateNode) BatchedValues(rowIdx int) tree.Datums { return u.run.tu.rows.At(rowIdx) }
func (u *updateNode) Close(ctx context.Context) {
u.source.Close(ctx)
u.run.tu.close(ctx)
*u = updateNode{}
updateNodePool.Put(u)
}
func (u *updateNode) rowsWritten() int64 {
return u.run.tu.rowsWritten
}
func (u *updateNode) enableAutoCommit() {
u.run.tu.enableAutoCommit()
}
// sourceSlot abstracts the idea that our update sources can either be tuples
// or scalars. Tuples are for cases such as SET (a, b) = (1, 2) or SET (a, b) =
// (SELECT 1, 2), and scalars are for situations like SET a = b. A sourceSlot
// represents how to extract and type-check the results of the right-hand side
// of a single SET statement. We could treat everything as tuples, including
// scalars as tuples of size 1, and eliminate this indirection, but that makes
// the query plan more complex.
type sourceSlot interface {
// extractValues returns a slice of the values this slot is responsible for,
// as extracted from the row of results.
extractValues(resultRow tree.Datums) tree.Datums
// checkColumnTypes compares the types of the results that this slot refers to to the types of
// the columns those values will be assigned to. It returns an error if those types don't match up.
checkColumnTypes(row []tree.TypedExpr) error
}
type scalarSlot struct {
column catalog.Column
sourceIndex int
}
func (ss scalarSlot) extractValues(row tree.Datums) tree.Datums {
return row[ss.sourceIndex : ss.sourceIndex+1]
}
func (ss scalarSlot) checkColumnTypes(row []tree.TypedExpr) error {
renderedResult := row[ss.sourceIndex]
typ := renderedResult.ResolvedType()
return colinfo.CheckDatumTypeFitsColumnType(ss.column, typ)
}
// enforceLocalColumnConstraints asserts the column constraints that
// do not require data validation from other sources than the row data
// itself. This includes:
// - rejecting null values in non-nullable columns;
// - checking width constraints from the column type;
// - truncating results to the requested precision (not width).
// Note: the second point is what distinguishes this operation
// from a regular SQL cast -- here widths are checked, not
// used to truncate the value silently.
//
// The row buffer is modified in-place with the result of the
// checks.
func enforceLocalColumnConstraints(row tree.Datums, cols []catalog.Column) error {
for i, col := range cols {
if !col.IsNullable() && row[i] == tree.DNull {
return sqlerrors.NewNonNullViolationError(col.GetName())
}
outVal, err := tree.AdjustValueToType(col.GetType(), row[i])
if err != nil {
return err
}
row[i] = outVal
}
return nil
}