-
Notifications
You must be signed in to change notification settings - Fork 3.8k
/
constraint_builder.go
670 lines (626 loc) · 24.9 KB
/
constraint_builder.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
// Copyright 2022 The Cockroach Authors.
//
// Use of this software is governed by the Business Source License
// included in the file licenses/BSL.txt.
//
// As of the Change Date specified in that file, in accordance with
// the Business Source License, use of this software will be governed
// by the Apache License, Version 2.0, included in the file
// licenses/APL.txt.
package lookupjoin
import (
"fmt"
"github.com/cockroachdb/cockroach/pkg/sql/opt"
"github.com/cockroachdb/cockroach/pkg/sql/opt/cat"
"github.com/cockroachdb/cockroach/pkg/sql/opt/constraint"
"github.com/cockroachdb/cockroach/pkg/sql/opt/memo"
"github.com/cockroachdb/cockroach/pkg/sql/opt/norm"
"github.com/cockroachdb/cockroach/pkg/sql/opt/props"
"github.com/cockroachdb/cockroach/pkg/sql/sem/eval"
"github.com/cockroachdb/cockroach/pkg/sql/types"
"github.com/cockroachdb/cockroach/pkg/util"
"github.com/cockroachdb/errors"
)
// Constraint is used to constrain a lookup join. There are two types of
// constraints:
//
// 1. Constraints with KeyCols use columns from the input to directly
// constrain lookups into a target index.
// 2. Constraints with a LookupExpr build multiple spans from an expression
// that is evaluated for each input row. These spans are used to perform
// lookups into a target index.
//
// A constraint is not constraining if both KeyCols and LookupExpr are empty.
// See IsUnconstrained.
type Constraint struct {
// KeyCols is an ordered list of columns from the left side of the join to
// be used as lookup join key columns. This list corresponds to the columns
// in RightSideCols. It will be nil if LookupExpr is non-nil.
KeyCols opt.ColList
// DerivedKeyCols is the set of lookup join key columns which are part of
// synthesized equality constraints based on another equality join condition
// and a computed index key column in the lookup table. Since these key
// columns are not reducing the selectivity of the join, but are just added to
// facilitate index lookups, they should not be used in determining join
// selectivity.
DerivedKeyCols opt.ColSet
// RightSideCols is an ordered list of prefix index columns that are
// constrained by this constraint. It corresponds 1:1 with the columns in
// KeyCols if KeyCols is non-nil. Otherwise, it includes the prefix of index
// columns constrained by LookupExpr.
RightSideCols opt.ColList
// LookupExpr is a lookup expression for multi-span lookup joins. It is used
// when some index columns were constrained to multiple constant values or a
// range expression, making it impossible to construct a lookup join with
// KeyCols. LookupExpr is used to construct multiple lookup spans for each
// input row at execution time.
//
// For example, if the index cols are (region, id) and the
// LookupExpr is `region in ('east', 'west') AND id = input.id`,
// each input row will generate two spans to be scanned in the
// lookup:
//
// [/'east'/<id> - /'east'/<id>]
// [/'west'/<id> - /'west'/<id>]
//
// Where <id> is the value of input.id for the current input row.
//
// LookupExpr will be nil if KeyCols is non-nil.
LookupExpr memo.FiltersExpr
// InputProjections contains constant values and computed columns that must
// be projected on the lookup join's input.
InputProjections memo.ProjectionsExpr
// ConstFilters contains constant equalities and ranges in either KeyCols or
// LookupExpr that are used to aid selectivity estimation. See
// memo.LookupJoinPrivate.ConstFilters.
ConstFilters memo.FiltersExpr
// RemainingFilters contains explicit ON filters that are not represented by
// KeyCols or LookupExpr. These filters must be included as ON filters in
// the lookup join.
RemainingFilters memo.FiltersExpr
}
// IsUnconstrained returns true if the constraint does not constrain a lookup
// join.
func (c *Constraint) IsUnconstrained() bool {
return len(c.KeyCols) == 0 && len(c.LookupExpr) == 0
}
// ConstraintBuilder determines how to constrain index key columns for a lookup
// join. See Build for more details.
type ConstraintBuilder struct {
f *norm.Factory
md *opt.Metadata
evalCtx *eval.Context
// The table on the right side of the join to perform the lookup into.
table opt.TableID
// The columns on the left and right side of the join.
leftCols, rightCols opt.ColSet
// A map of columns in rightEq to their corresponding columns in leftEq.
// This is used to remap computed column expressions, and is only
// initialized if needed.
eqColMap opt.ColMap
}
// Init initializes a ConstraintBuilder. Once initialized, a ConstraintBuilder
// can be reused to build lookup join constraints for all indexes in the given
// table, as long as the join input and ON condition do not change.
func (b *ConstraintBuilder) Init(
f *norm.Factory,
md *opt.Metadata,
evalCtx *eval.Context,
table opt.TableID,
leftCols, rightCols opt.ColSet,
) {
// This initialization pattern ensures that fields are not unwittingly
// reused. Field reuse must be explicit.
*b = ConstraintBuilder{
f: f,
md: md,
evalCtx: evalCtx,
table: table,
leftCols: leftCols,
rightCols: rightCols,
}
}
// Build returns a Constraint that constrains a lookup join on the given index.
// The constraint returned may be unconstrained if no constraint could be built.
// foundEqualityCols indicates whether any equality conditions were used to
// constrain the index columns; this can be used to decide whether to build a
// lookup join.
func (b *ConstraintBuilder) Build(
index cat.Index, onFilters, optionalFilters memo.FiltersExpr,
) (_ Constraint, foundEqualityCols bool) {
// Extract the equality columns from onFilters. We cannot use the results of
// the extraction in Init because onFilters may be reduced by the caller
// after Init due to partial index implication. If the filters are reduced,
// eqFilterOrds calculated during Init would no longer be valid because the
// ordinals of the filters will have changed.
leftEq, rightEq, eqFilterOrds :=
memo.ExtractJoinEqualityColumns(b.leftCols, b.rightCols, onFilters)
rightEqSet := rightEq.ToSet()
// Retrieve the inequality columns from onFilters.
_, rightCmp, inequalityFilterOrds := memo.ExtractJoinConditionColumns(
b.leftCols, b.rightCols, onFilters, true, /* inequality */
)
allFilters := append(onFilters, optionalFilters...)
// Check if the first column in the index either:
//
// 1. Has an equality constraint.
// 2. Is a computed column for which an equality constraint can be
// generated.
// 3. Is constrained to a constant value or values.
// 4. Has an inequality constraint between input and index columns.
//
// This check doesn't guarantee that we will find lookup join key
// columns, but it avoids unnecessary work in most cases.
firstIdxCol := b.table.IndexColumnID(index, 0)
if _, ok := rightEq.Find(firstIdxCol); !ok {
if _, ok := b.findComputedColJoinEquality(b.table, firstIdxCol, rightEqSet); !ok {
if _, _, ok := FindJoinFilterConstants(allFilters, firstIdxCol, b.evalCtx); !ok {
if _, ok := rightCmp.Find(firstIdxCol); !ok {
return Constraint{}, false
}
}
}
}
// Find the longest prefix of index key columns that are constrained by
// an equality with another column or a constant.
numIndexKeyCols := index.LaxKeyColumnCount()
keyCols := make(opt.ColList, 0, numIndexKeyCols)
var derivedKeyCols opt.ColSet
rightSideCols := make(opt.ColList, 0, numIndexKeyCols)
var inputProjections memo.ProjectionsExpr
var lookupExpr memo.FiltersExpr
var constFilters memo.FiltersExpr
var filterOrdsToExclude util.FastIntSet
foundLookupCols := false
lookupExprRequired := false
remainingFilters := make(memo.FiltersExpr, 0, len(onFilters))
// addEqualityColumns adds the given columns as an equality in keyCols if
// lookupExprRequired is false. Otherwise, the equality is added as an
// expression in lookupExpr. In both cases, rightCol is added to
// rightSideCols so the caller of Build can determine if the right equality
// columns form a key.
addEqualityColumns := func(leftCol, rightCol, derivedKeyCol opt.ColumnID) {
if derivedKeyCol != 0 {
derivedKeyCols.Add(derivedKeyCol)
}
if !lookupExprRequired {
keyCols = append(keyCols, leftCol)
} else {
lookupExpr = append(lookupExpr, b.constructColEquality(leftCol, rightCol))
}
rightSideCols = append(rightSideCols, rightCol)
}
// convertToLookupExpr converts previously collected keyCols and
// rightSideCols to equality expressions in lookupExpr. It is used when it
// is discovered that a lookup expression is required to build a constraint,
// and keyCols and rightSideCols have already been collected. After building
// expressions, keyCols is reset to nil.
convertToLookupExpr := func() {
if lookupExprRequired {
// Return early if we've already converted the key columns to a
// lookup expression.
return
}
lookupExprRequired = true
for i := range keyCols {
lookupExpr = append(lookupExpr, b.constructColEquality(keyCols[i], rightSideCols[i]))
}
keyCols = nil
}
// All the lookup conditions must apply to the prefix of the index and so
// the projected columns created must be created in order.
for j := 0; j < numIndexKeyCols; j++ {
idxCol := b.table.IndexColumnID(index, j)
idxColIsDesc := index.Column(j).Descending
if eqIdx, ok := rightEq.Find(idxCol); ok {
addEqualityColumns(leftEq[eqIdx], idxCol, opt.ColumnID(0))
filterOrdsToExclude.Add(eqFilterOrds[eqIdx])
foundEqualityCols = true
foundLookupCols = true
continue
}
// If the column is computed and an equality constraint can be
// synthesized for it, we can project a column from the join's input
// that can be used as a key column. We create the projection here,
// and construct a Project expression that wraps the join's input
// below. See findComputedColJoinEquality for the requirements to
// synthesize a computed column equality constraint.
if expr, ok := b.findComputedColJoinEquality(b.table, idxCol, rightEqSet); ok {
colMeta := b.md.ColumnMeta(idxCol)
compEqCol := b.md.AddColumn(fmt.Sprintf("%s_eq", colMeta.Alias), colMeta.Type)
// Lazily initialize eqColMap.
if b.eqColMap.Empty() {
for i := range rightEq {
b.eqColMap.Set(int(rightEq[i]), int(leftEq[i]))
}
}
// Project the computed column expression, mapping all columns
// in rightEq to corresponding columns in leftEq.
projection := b.f.ConstructProjectionsItem(b.f.RemapCols(expr, b.eqColMap), compEqCol)
inputProjections = append(inputProjections, projection)
addEqualityColumns(compEqCol, idxCol, compEqCol)
foundEqualityCols = true
foundLookupCols = true
continue
}
// Try to find a filter that constrains this column to non-NULL
// constant values. We cannot use a NULL value because the lookup
// join implements logic equivalent to simple equality between
// columns (where NULL never equals anything).
foundVals, allIdx, ok := FindJoinFilterConstants(allFilters, idxCol, b.evalCtx)
// If a single constant value was found, project it in the input
// and use it as an equality column.
if ok && len(foundVals) == 1 {
idxColType := b.md.ColumnMeta(idxCol).Type
constColID := b.md.AddColumn(
fmt.Sprintf("lookup_join_const_col_@%d", idxCol),
idxColType,
)
inputProjections = append(inputProjections, b.f.ConstructProjectionsItem(
b.f.ConstructConstVal(foundVals[0], idxColType),
constColID,
))
constFilters = append(constFilters, allFilters[allIdx])
addEqualityColumns(constColID, idxCol, opt.ColumnID(0))
filterOrdsToExclude.Add(allIdx)
continue
}
// If multiple constant values were found, we must use a lookup
// expression.
if ok {
// Convert previously collected keyCols and rightSideCols to
// expressions in lookupExpr and clear keyCols.
convertToLookupExpr()
valsFilter := allFilters[allIdx]
if !isCanonicalFilter(valsFilter) {
// Disable normalization rules when constructing the lookup
// expression so that it does not get normalized into a
// non-canonical expression.
b.f.DisableOptimizationsTemporarily(func() {
valsFilter = b.f.ConstructConstFilter(idxCol, foundVals)
})
}
lookupExpr = append(lookupExpr, valsFilter)
constFilters = append(constFilters, valsFilter)
filterOrdsToExclude.Add(allIdx)
continue
}
// If constant equality values were not found, try to find filters that
// constrain this index column to a range on input columns.
startIdx, endIdx, foundStart, foundEnd := b.findJoinVariableRangeFilters(
rightCmp, inequalityFilterOrds, allFilters, idxCol, idxColIsDesc,
)
if foundStart {
convertToLookupExpr()
lookupExpr = append(lookupExpr, allFilters[startIdx])
filterOrdsToExclude.Add(startIdx)
foundLookupCols = true
}
if foundEnd {
convertToLookupExpr()
lookupExpr = append(lookupExpr, allFilters[endIdx])
filterOrdsToExclude.Add(endIdx)
foundLookupCols = true
}
if foundStart && foundEnd {
// The column is constrained above and below by an inequality; no further
// expressions can be added to the lookup.
break
}
// If no variable range expressions were found, try to find a filter that
// constrains this index column to a range on constant values. It may be the
// case that only the start or end bound could be constrained with
// an input column; in this case, it still may be possible to use a constant
// to form the other bound.
rangeFilter, remaining, filterIdx := b.findJoinConstantRangeFilter(
allFilters, idxCol, idxColIsDesc, !foundStart, !foundEnd,
)
if rangeFilter != nil {
// A constant range filter could be found.
convertToLookupExpr()
lookupExpr = append(lookupExpr, *rangeFilter)
constFilters = append(constFilters, *rangeFilter)
filterOrdsToExclude.Add(filterIdx)
if remaining != nil {
remainingFilters = append(remainingFilters, *remaining)
}
}
// Either a range was found, or the index column cannot be constrained.
// In both cases, we cannot continue on to the next index column, so we
// break out of the loop.
break
}
// Lookup join constraints that contain no lookup columns (e.g., a lookup
// expression x=1) are not useful.
if !foundLookupCols {
return Constraint{}, false
}
if len(keyCols) > 0 && len(lookupExpr) > 0 {
panic(errors.AssertionFailedf("expected lookup constraint to have either KeyCols or LookupExpr, not both"))
}
c := Constraint{
KeyCols: keyCols,
DerivedKeyCols: derivedKeyCols,
RightSideCols: rightSideCols,
LookupExpr: lookupExpr,
InputProjections: inputProjections,
ConstFilters: constFilters,
}
// Reduce the remaining filters.
for i := range onFilters {
if !filterOrdsToExclude.Contains(i) {
remainingFilters = append(remainingFilters, onFilters[i])
}
}
c.RemainingFilters = remainingFilters
return c, foundEqualityCols
}
// findComputedColJoinEquality returns the computed column expression of col and
// ok=true when a join equality constraint can be generated for the column. This
// is possible when:
//
// 1. col is non-nullable.
// 2. col is a computed column.
// 3. Columns referenced in the computed expression are a subset of columns
// that already have equality constraints.
//
// For example, consider the table and query:
//
// CREATE TABLE a (
// a INT
// )
//
// CREATE TABLE bc (
// b INT,
// c INT NOT NULL AS (b + 1) STORED
// )
//
// SELECT * FROM a JOIN b ON a = b
//
// We can add an equality constraint for c because c is a function of b and b
// has an equality constraint in the join predicate:
//
// SELECT * FROM a JOIN b ON a = b AND a + 1 = c
//
// Condition (1) is required to prevent generating invalid equality constraints
// for computed column expressions that can evaluate to NULL even when the
// columns referenced in the expression are non-NULL. For example, consider the
// table and query:
//
// CREATE TABLE a (
// a INT
// )
//
// CREATE TABLE bc (
// b INT,
// c INT AS (CASE WHEN b > 0 THEN NULL ELSE -1 END) STORED
// )
//
// SELECT a, b FROM a JOIN b ON a = b
//
// The following is an invalid transformation: a row such as (a=1, b=1) would no
// longer be returned because NULL=NULL is false.
//
// SELECT a, b FROM a JOIN b ON a = b AND (CASE WHEN a > 0 THEN NULL ELSE -1 END) = c
//
// TODO(mgartner): We can relax condition (1) to allow nullable columns if it
// can be proven that the expression will never evaluate to NULL. We can use
// memo.ExprIsNeverNull to determine this, passing both NOT NULL and equality
// columns as notNullCols.
func (b *ConstraintBuilder) findComputedColJoinEquality(
tabID opt.TableID, col opt.ColumnID, eqCols opt.ColSet,
) (_ opt.ScalarExpr, ok bool) {
tabMeta := b.md.TableMeta(tabID)
tab := b.md.Table(tabID)
if tab.Column(tabID.ColumnOrdinal(col)).IsNullable() {
return nil, false
}
expr, ok := tabMeta.ComputedColExpr(col)
if !ok {
return nil, false
}
var sharedProps props.Shared
memo.BuildSharedProps(expr, &sharedProps, b.evalCtx)
if !sharedProps.OuterCols.SubsetOf(eqCols) {
return nil, false
}
return expr, true
}
// findJoinVariableRangeFilters attempts to find inequality constraints for the
// given index column that reference input columns (not constants). If either
// (or both) start and end bounds are found, findJoinVariableInequalityFilter
// returns the corresponding filter indices.
func (b *ConstraintBuilder) findJoinVariableRangeFilters(
rightCmp opt.ColList,
inequalityFilterOrds []int,
filters memo.FiltersExpr,
idxCol opt.ColumnID,
idxColIsDesc bool,
) (startIdx, endIdx int, foundStart, foundEnd bool) {
// Iterate through the extracted variable inequality filters to see if any
// can be used to constrain the index column.
for i := range rightCmp {
if foundStart && foundEnd {
break
}
if rightCmp[i] != idxCol {
continue
}
cond := filters[inequalityFilterOrds[i]].Condition
op := cond.Op()
if cond.Child(0).(*memo.VariableExpr).Col != idxCol {
// Normalize the condition so the index column is on the left side.
op = opt.CommuteEqualityOrInequalityOp(op)
}
if idxColIsDesc && op == opt.LtOp {
// We have to ensure that any value from this column can always be
// advanced to the first value that orders immediately before it. This is
// only possible for a subset of types. We have already ensured that both
// sides of the inequality are of identical types, so it doesn't matter
// which one we check here.
typ := cond.Child(0).(*memo.VariableExpr).Typ
switch typ.Family() {
case types.BoolFamily, types.FloatFamily, types.INetFamily,
types.IntFamily, types.OidFamily, types.TimeFamily, types.TimeTZFamily,
types.TimestampFamily, types.TimestampTZFamily, types.UuidFamily:
default:
continue
}
}
isStartBound := op == opt.GtOp || op == opt.GeOp
if !foundStart && isStartBound {
foundStart = true
startIdx = inequalityFilterOrds[i]
} else if !foundEnd && !isStartBound {
foundEnd = true
endIdx = inequalityFilterOrds[i]
}
}
return startIdx, endIdx, foundStart, foundEnd
}
// findJoinConstantRangeFilter tries to find a constant inequality range for this
// column. If no such range filter can be found, rangeFilter is nil. If
// remaining is non-nil, it should be appended to the RemainingFilters field of
// the resulting Constraint. filterIdx is the index of the filter used to
// constrain the index column. needStart and needEnd indicate whether the index
// column's start and end bounds are still unconstrained respectively. At least
// one of needStart and needEnd must be true.
func (b *ConstraintBuilder) findJoinConstantRangeFilter(
filters memo.FiltersExpr, col opt.ColumnID, idxColIsDesc, needStart, needEnd bool,
) (rangeFilter, remaining *memo.FiltersItem, filterIdx int) {
for i := range filters {
props := filters[i].ScalarProps()
if props.TightConstraints && props.Constraints.Length() == 1 {
constraintObj := props.Constraints.Constraint(0)
constraintCol := constraintObj.Columns.Get(0)
// Non-canonical filters aren't yet supported for range spans like
// they are for const spans so filter those out here (const spans
// from non-canonical filters can be turned into a canonical filter,
// see makeConstFilter). We only support 1 span in the execution
// engine so check that. Additionally, inequality filter constraints
// should be constructed so that the column is ascending
// (see buildSingleColumnConstraint in memo.constraint_builder.go), so we
// can ignore the descending case.
if constraintCol.ID() != col || constraintObj.Spans.Count() != 1 ||
constraintCol.Descending() || !isCanonicalFilter(filters[i]) {
continue
}
span := constraintObj.Spans.Get(0)
var canUseFilter bool
if needStart && !span.StartKey().IsEmpty() && !span.StartKey().IsNull() {
canUseFilter = true
}
if needEnd && !span.EndKey().IsEmpty() && !span.EndKey().IsNull() {
val := span.EndKey().Value(0)
if span.EndBoundary() == constraint.ExcludeBoundary && idxColIsDesc {
// If we have a datum for the end of a span and the index column is
// DESC, we have to ensure that it can be "advanced" to the immediate
// previous value if the corresponding span boundary is exclusive.
//
// This limitation comes from the execution that must be able to
// "advance" the end boundary to the previous value in order to make
// it inclusive. This operation cannot be directly performed on the
// encoded key, so the Datum.Prev method is necessary here.
if val.IsMin(b.evalCtx) {
continue
}
if _, ok := val.Prev(b.evalCtx); !ok {
continue
}
}
canUseFilter = true
}
if !canUseFilter {
continue
}
if (!needStart || !needEnd) && !span.StartKey().IsEmpty() && !span.EndKey().IsEmpty() &&
!span.StartKey().IsNull() && !span.EndKey().IsNull() {
// The filter supplies both start and end bounds, but we only need one
// of them. Construct a new filter to be used in the lookup, and another
// filter with the unused bound to be included in the ON condition. The
// original filter should still be removed from the ON condition.
//
// We've already filtered cases where the column isn't constrained by a
// single span, so we only need to consider start and end bounds.
indexVariable := b.f.ConstructVariable(col)
startDatum, endDatum := span.StartKey().Value(0), span.EndKey().Value(0)
startBound := b.f.ConstructConstVal(startDatum, startDatum.ResolvedType())
endBound := b.f.ConstructConstVal(endDatum, endDatum.ResolvedType())
startOp, endOp := opt.GtOp, opt.LtOp
if span.StartBoundary() == constraint.IncludeBoundary {
startOp = opt.GeOp
}
if span.EndBoundary() == constraint.IncludeBoundary {
endOp = opt.LeOp
}
startFilter := b.f.ConstructFiltersItem(
b.f.DynamicConstruct(startOp, indexVariable, startBound).(opt.ScalarExpr),
)
endFilter := b.f.ConstructFiltersItem(
b.f.DynamicConstruct(endOp, indexVariable, endBound).(opt.ScalarExpr),
)
if !needStart {
rangeFilter, remaining = &endFilter, &startFilter
} else if !needEnd {
rangeFilter, remaining = &startFilter, &endFilter
}
} else {
// The filter can be used as-is in the lookup expression. No remaining
// filter needs to be added to the ON condition.
rangeFilter = &filters[i]
}
return rangeFilter, remaining, i
}
}
return nil, nil, -1
}
// constructColEquality returns a FiltersItem representing equality between the
// given columns.
func (b *ConstraintBuilder) constructColEquality(leftCol, rightCol opt.ColumnID) memo.FiltersItem {
var filters memo.FiltersItem
// Disable normalization rules when constructing the lookup expression so
// that it does not get normalized into a non-canonical expression.
b.f.DisableOptimizationsTemporarily(func() {
filters = b.f.ConstructFiltersItem(
b.f.ConstructEq(
b.f.ConstructVariable(leftCol),
b.f.ConstructVariable(rightCol),
),
)
})
return filters
}
// isCanonicalFilter returns true for the limited set of expr's that are
// supported by the lookup joiner at execution time.
func isCanonicalFilter(filter memo.FiltersItem) bool {
isVar := func(expr opt.Expr) bool {
_, ok := expr.(*memo.VariableExpr)
return ok
}
var isCanonicalInequality func(expr opt.Expr) bool
isCanonicalInequality = func(expr opt.Expr) bool {
switch t := expr.(type) {
case *memo.RangeExpr:
return isCanonicalInequality(t.And)
case *memo.AndExpr:
return isCanonicalInequality(t.Left) && isCanonicalInequality(t.Right)
case *memo.GeExpr:
return isCanonicalInequality(t.Left) && isCanonicalInequality(t.Right)
case *memo.GtExpr:
return isCanonicalInequality(t.Left) && isCanonicalInequality(t.Right)
case *memo.LeExpr:
return isCanonicalInequality(t.Left) && isCanonicalInequality(t.Right)
case *memo.LtExpr:
return isCanonicalInequality(t.Left) && isCanonicalInequality(t.Right)
}
return isVar(expr) || opt.IsConstValueOp(expr)
}
switch t := filter.Condition.(type) {
case *memo.EqExpr:
return isVar(t.Left) && opt.IsConstValueOp(t.Right)
case *memo.InExpr:
return isVar(t.Left) && memo.CanExtractConstTuple(t.Right)
default:
return isCanonicalInequality(t)
}
}