-
Notifications
You must be signed in to change notification settings - Fork 3.8k
/
Copy pathrule_solver.go
605 lines (560 loc) · 19.1 KB
/
rule_solver.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
// Copyright 2016 The Cockroach Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
// implied. See the License for the specific language governing
// permissions and limitations under the License.
//
// Author: Tristan Rice ([email protected])
package storage
import (
"bytes"
"fmt"
"math"
"sort"
"golang.org/x/net/context"
"github.com/cockroachdb/cockroach/pkg/config"
"github.com/cockroachdb/cockroach/pkg/roachpb"
"github.com/cockroachdb/cockroach/pkg/util/log"
)
// The number of random candidates to select from a larger list of possible
// candidates. Because the allocator heuristics are being run on every node it
// is actually not desirable to set this value higher. Doing so can lead to
// situations where the allocator determistically selects the "best" node for a
// decision and all of the nodes pile on allocations to that node. See "power
// of two random choices":
// https://brooker.co.za/blog/2012/01/17/two-random.html and
// https://www.eecs.harvard.edu/~michaelm/postscripts/mythesis.pdf.
const allocatorRandomCount = 2
func rebalanceFromConvergesOnMean(sl StoreList, candidate roachpb.StoreDescriptor) bool {
return float64(candidate.Capacity.RangeCount) > sl.candidateCount.mean+0.5
}
func rebalanceToConvergesOnMean(sl StoreList, candidate roachpb.StoreDescriptor) bool {
return float64(candidate.Capacity.RangeCount) < sl.candidateCount.mean-0.5
}
// candidate store for allocation.
type candidate struct {
store roachpb.StoreDescriptor
valid bool
constraintScore float64
rangeCount int
details string
}
func (c candidate) String() string {
return fmt.Sprintf("s%d, valid:%t, con:%.2f, ranges:%d, details:(%s)",
c.store.StoreID, c.valid, c.constraintScore, c.rangeCount, c.details)
}
// less first compares valid, then constraint scores, then range counts.
func (c candidate) less(o candidate) bool {
if !o.valid {
return false
}
if !c.valid {
return true
}
if c.constraintScore != o.constraintScore {
return c.constraintScore < o.constraintScore
}
return c.rangeCount > o.rangeCount
}
type candidateList []candidate
func (cl candidateList) String() string {
if len(cl) == 0 {
return "[]"
}
var buffer bytes.Buffer
buffer.WriteRune('[')
for _, c := range cl {
buffer.WriteRune('\n')
buffer.WriteString(c.String())
}
buffer.WriteRune(']')
return buffer.String()
}
// byScore implements sort.Interface to sort by scores.
type byScore candidateList
var _ sort.Interface = byScore(nil)
func (c byScore) Len() int { return len(c) }
func (c byScore) Less(i, j int) bool { return c[i].less(c[j]) }
func (c byScore) Swap(i, j int) { c[i], c[j] = c[j], c[i] }
// byScoreAndID implements sort.Interface to sort by scores and ids.
type byScoreAndID candidateList
var _ sort.Interface = byScoreAndID(nil)
func (c byScoreAndID) Len() int { return len(c) }
func (c byScoreAndID) Less(i, j int) bool {
if c[i].constraintScore == c[j].constraintScore &&
c[i].rangeCount == c[j].rangeCount &&
c[i].valid == c[j].valid {
return c[i].store.StoreID < c[j].store.StoreID
}
return c[i].less(c[j])
}
func (c byScoreAndID) Swap(i, j int) { c[i], c[j] = c[j], c[i] }
// onlyValid returns all the elements in a sorted (by score reversed) candidate
// list that are valid.
func (cl candidateList) onlyValid() candidateList {
for i := len(cl) - 1; i >= 0; i-- {
if cl[i].valid {
return cl[:i+1]
}
}
return candidateList{}
}
// best returns all the elements in a sorted (by score reversed) candidate list
// that share the highest constraint score and are valid.
func (cl candidateList) best() candidateList {
cl = cl.onlyValid()
if len(cl) <= 1 {
return cl
}
for i := 1; i < len(cl); i++ {
if cl[i].constraintScore < cl[0].constraintScore {
return cl[:i]
}
}
return cl
}
// worst returns all the elements in a sorted (by score reversed) candidate
// list that share the lowest constraint score.
func (cl candidateList) worst() candidateList {
if len(cl) <= 1 {
return cl
}
// Are there invalid candidates? If so, pick those.
if !cl[len(cl)-1].valid {
for i := len(cl) - 2; i >= 0; i-- {
if cl[i].valid {
return cl[i+1:]
}
}
}
// Find the worst constraint values.
for i := len(cl) - 2; i >= 0; i-- {
if cl[i].constraintScore > cl[len(cl)-1].constraintScore {
return cl[i+1:]
}
}
return cl
}
// betterThan returns all elements from a sorted (by score reversed) candidate
// list that have a higher score than the candidate
func (cl candidateList) betterThan(c candidate) candidateList {
for i := 0; i < len(cl); i++ {
if !c.less(cl[i]) {
return cl[:i]
}
}
return cl
}
// selectGood randomly chooses a good candidate store from a sorted (by score
// reserved) candidate list using the provided random generator.
func (cl candidateList) selectGood(randGen allocatorRand) *roachpb.StoreDescriptor {
if len(cl) == 0 {
return nil
}
cl = cl.best()
if len(cl) == 1 {
return &cl[0].store
}
randGen.Lock()
order := randGen.Perm(len(cl))
randGen.Unlock()
best := &cl[order[0]]
for i := 1; i < allocatorRandomCount; i++ {
if best.less(cl[order[i]]) {
best = &cl[order[i]]
}
}
return &best.store
}
// selectBad randomly chooses a bad candidate store from a sorted (by score
// reversed) candidate list using the provided random generator.
func (cl candidateList) selectBad(randGen allocatorRand) *roachpb.StoreDescriptor {
if len(cl) == 0 {
return nil
}
cl = cl.worst()
if len(cl) == 1 {
return &cl[0].store
}
randGen.Lock()
order := randGen.Perm(len(cl))
randGen.Unlock()
worst := &cl[order[0]]
for i := 1; i < allocatorRandomCount; i++ {
if cl[order[i]].less(*worst) {
worst = &cl[order[i]]
}
}
return &worst.store
}
// allocateCandidates creates a candidate list of all stores that can used for
// allocating a new replica ordered from the best to the worst. Only stores
// that meet the criteria are included in the list.
func allocateCandidates(
sl StoreList,
constraints config.Constraints,
existing []roachpb.ReplicaDescriptor,
existingNodeLocalities map[roachpb.NodeID]roachpb.Locality,
deterministic bool,
) candidateList {
var candidates candidateList
for _, s := range sl.stores {
if !preexistingReplicaCheck(s.Node.NodeID, existing) {
continue
}
constraintsOk, preferredMatched := constraintCheck(s, constraints)
if !constraintsOk {
continue
}
if !maxCapacityCheck(s) {
continue
}
diversityScore := diversityScore(s, existingNodeLocalities)
candidates = append(candidates, candidate{
store: s,
valid: true,
constraintScore: diversityScore + float64(preferredMatched),
rangeCount: int(s.Capacity.RangeCount),
details: fmt.Sprintf("diversity=%.2f, preferred=%d",
diversityScore, preferredMatched),
})
}
if deterministic {
sort.Sort(sort.Reverse(byScoreAndID(candidates)))
} else {
sort.Sort(sort.Reverse(byScore(candidates)))
}
return candidates
}
// removeCandidates creates a candidate list of all existing replicas' stores
// ordered from least qualified for removal to most qualified. Stores that are
// marked as not valid, are in violation of a required criteria.
func removeCandidates(
sl StoreList,
constraints config.Constraints,
existingNodeLocalities map[roachpb.NodeID]roachpb.Locality,
deterministic bool,
) candidateList {
var candidates candidateList
for _, s := range sl.stores {
constraintsOk, preferredMatched := constraintCheck(s, constraints)
if !constraintsOk {
candidates = append(candidates, candidate{
store: s,
valid: false,
details: "constraint check fail",
})
continue
}
if !maxCapacityCheck(s) {
candidates = append(candidates, candidate{
store: s,
valid: false,
details: "max capacity check fail",
})
continue
}
diversityScore := diversityRemovalScore(s.Node.NodeID, existingNodeLocalities)
var convergesScore float64
if !rebalanceFromConvergesOnMean(sl, s) {
// If removing this candidate replica does not converge the range
// counts to the mean, we make it less attractive for removal by
// adding 1 to the constraint score. Note that when selecting a
// candidate for removal the candidates with the lowest scores are
// more likely to be removed.
convergesScore = 1
}
candidates = append(candidates, candidate{
store: s,
valid: true,
constraintScore: diversityScore + float64(preferredMatched) + convergesScore,
rangeCount: int(s.Capacity.RangeCount),
details: fmt.Sprintf("diversity=%.2f, preferred=%d, converge=%.2f",
diversityScore, preferredMatched, convergesScore),
})
}
if deterministic {
sort.Sort(sort.Reverse(byScoreAndID(candidates)))
} else {
sort.Sort(sort.Reverse(byScore(candidates)))
}
return candidates
}
// rebalanceCandidates creates two candidate list. The first contains all
// existing replica's stores, order from least qualified for rebalancing to
// most qualified. The second list is of all potential stores that could be
// used as rebalancing receivers, ordered from best to worst.
func rebalanceCandidates(
ctx context.Context,
sl StoreList,
constraints config.Constraints,
existing []roachpb.ReplicaDescriptor,
existingNodeLocalities map[roachpb.NodeID]roachpb.Locality,
deterministic bool,
) (candidateList, candidateList) {
// Load the exiting storesIDs into a map to eliminate having to loop
// through the existing descriptors more than once.
existingStoreIDs := make(map[roachpb.StoreID]struct{})
for _, repl := range existing {
existingStoreIDs[repl.StoreID] = struct{}{}
}
// Go through all the stores and find all that match the constraints so that
// we can have accurate stats for rebalance calculations.
var constraintsOkStoreDescriptors []roachpb.StoreDescriptor
constraintsOkByStoreID := make(map[roachpb.StoreID]bool)
preferredMatchedByStoreID := make(map[roachpb.StoreID]int)
preferredExistingWorst := math.MaxInt32
var preferredCandidateBest int
var rebalanceConstraintsCheck bool
for _, s := range sl.stores {
constraintsOk, preferredMatched := constraintCheck(s, constraints)
constraintsOkByStoreID[s.StoreID] = constraintsOk
preferredMatchedByStoreID[s.StoreID] = preferredMatched
_, exists := existingStoreIDs[s.StoreID]
if constraintsOk {
constraintsOkStoreDescriptors = append(constraintsOkStoreDescriptors, s)
if exists && preferredMatched < preferredExistingWorst {
preferredExistingWorst = preferredMatched
} else if !exists && preferredMatched > preferredCandidateBest {
preferredCandidateBest = preferredMatched
}
} else if exists {
rebalanceConstraintsCheck = true
if log.V(2) {
log.Infof(ctx, "must rebalance from s%d due to constraint check", s.StoreID)
}
}
}
if preferredCandidateBest > preferredExistingWorst {
rebalanceConstraintsCheck = true
if log.V(2) {
log.Infof(ctx, "try to rebalance to improve preferred score from %d to %d",
preferredExistingWorst, preferredCandidateBest)
}
}
constraintsOkStoreList := makeStoreList(constraintsOkStoreDescriptors)
var shouldRebalanceCheck bool
if !rebalanceConstraintsCheck {
for _, s := range sl.stores {
if _, ok := existingStoreIDs[s.StoreID]; ok {
if shouldRebalance(ctx, s, constraintsOkStoreList) {
shouldRebalanceCheck = true
break
}
}
}
}
// Only rebalance away if the constraints don't match, the max
// capacity check fails, there's a possible candidate with a more preferred
// constraint or if should rebalance is true.
if !rebalanceConstraintsCheck && !shouldRebalanceCheck {
return nil, nil
}
var existingCandidates candidateList
var candidates candidateList
for _, s := range sl.stores {
constraintsOk := constraintsOkByStoreID[s.StoreID]
preferredMatched := preferredMatchedByStoreID[s.StoreID]
maxCapacityOK := maxCapacityCheck(s)
if _, ok := existingStoreIDs[s.StoreID]; ok {
if !constraintsOk {
existingCandidates = append(existingCandidates, candidate{
store: s,
valid: false,
details: "constraint check fail",
})
continue
}
if !maxCapacityOK {
existingCandidates = append(existingCandidates, candidate{
store: s,
valid: false,
details: "max capacity check fail",
})
continue
}
diversityScore := diversityRemovalScore(s.Node.NodeID, existingNodeLocalities)
var convergesScore float64
if !rebalanceFromConvergesOnMean(constraintsOkStoreList, s) {
// Similarly to in removeCandidates, any replica whose removal
// would not converge the range counts to the mean is given a
// constraint score boost of 1 to make it less attractive for
// removal.
convergesScore = 1
}
existingCandidates = append(existingCandidates, candidate{
store: s,
valid: true,
constraintScore: diversityScore + float64(preferredMatched) + convergesScore,
rangeCount: int(s.Capacity.RangeCount),
details: fmt.Sprintf("diversity=%.2f, preferred=%d, converge=%.2f",
diversityScore, preferredMatched, convergesScore),
})
} else {
if !constraintsOk || !maxCapacityOK {
continue
}
var convergesScore float64
if rebalanceToConvergesOnMean(constraintsOkStoreList, s) {
// This is the counterpart of !rebalanceFromConvergesOnMean from
// the existing candidates. Candidates whose addition would
// converge towards the range count mean are promoted.
convergesScore = 1
} else if !rebalanceConstraintsCheck {
// Only consider this candidate if we must rebalance due to a
// constraint check requirements.
continue
}
diversityScore := diversityScore(s, existingNodeLocalities)
candidates = append(candidates, candidate{
store: s,
valid: true,
constraintScore: diversityScore + float64(preferredMatched) + convergesScore,
rangeCount: int(s.Capacity.RangeCount),
details: fmt.Sprintf("diversity=%.2f, preferred=%d, converge=%.2f",
diversityScore, preferredMatched, convergesScore),
})
}
}
if deterministic {
sort.Sort(sort.Reverse(byScoreAndID(existingCandidates)))
sort.Sort(sort.Reverse(byScoreAndID(candidates)))
} else {
sort.Sort(sort.Reverse(byScore(existingCandidates)))
sort.Sort(sort.Reverse(byScore(candidates)))
}
return existingCandidates, candidates
}
// shouldRebalance returns whether the specified store is a candidate for
// having a replica removed from it given the candidate store list.
func shouldRebalance(ctx context.Context, store roachpb.StoreDescriptor, sl StoreList) bool {
// TODO(peter,bram,cuong): The FractionUsed check seems suspicious. When a
// node becomes fuller than maxFractionUsedThreshold we will always select it
// for rebalancing. This is currently utilized by tests.
maxCapacityUsed := store.Capacity.FractionUsed() >= maxFractionUsedThreshold
// Rebalance if we're above the rebalance target, which is
// mean*(1+rebalanceThreshold).
target := int32(math.Ceil(sl.candidateCount.mean * (1 + baseRebalanceThreshold)))
rangeCountAboveTarget := store.Capacity.RangeCount > target
// Rebalance if the candidate store has a range count above the mean, and
// there exists another store that is underfull: its range count is smaller
// than mean*(1-rebalanceThreshold).
var rebalanceToUnderfullStore bool
if float64(store.Capacity.RangeCount) > sl.candidateCount.mean {
underfullThreshold := int32(math.Floor(sl.candidateCount.mean * (1 - baseRebalanceThreshold)))
for _, desc := range sl.stores {
if desc.Capacity.RangeCount < underfullThreshold {
rebalanceToUnderfullStore = true
break
}
}
}
shouldRebalance := maxCapacityUsed || rangeCountAboveTarget || rebalanceToUnderfullStore
if log.V(2) && shouldRebalance {
log.Infof(ctx,
"s%d: should-rebalance: fraction-used=%.2f range-count=%d "+
"(mean=%.1f, target=%d, fraction-used=%t, above-target=%t, underfull=%t)",
store.StoreID, store.Capacity.FractionUsed(), store.Capacity.RangeCount,
sl.candidateCount.mean, target, maxCapacityUsed, rangeCountAboveTarget,
rebalanceToUnderfullStore)
}
return shouldRebalance
}
// preexistingReplicaCheck returns true if no existing replica is present on
// the candidate's node.
func preexistingReplicaCheck(nodeID roachpb.NodeID, existing []roachpb.ReplicaDescriptor) bool {
for _, r := range existing {
if r.NodeID == nodeID {
return false
}
}
return true
}
// storeHasConstraint returns whether a store's attributes or node's locality
// matches the key value pair in the constraint.
func storeHasConstraint(store roachpb.StoreDescriptor, c config.Constraint) bool {
if c.Key == "" {
for _, attrs := range []roachpb.Attributes{store.Attrs, store.Node.Attrs} {
for _, attr := range attrs.Attrs {
if attr == c.Value {
return true
}
}
}
} else {
for _, tier := range store.Node.Locality.Tiers {
if c.Key == tier.Key && c.Value == tier.Value {
return true
}
}
}
return false
}
// constraintCheck returns true iff all required and prohibited constraints are
// satisfied. Stores with attributes or localities that match the most positive
// constraints return higher scores.
func constraintCheck(store roachpb.StoreDescriptor, constraints config.Constraints) (bool, int) {
if len(constraints.Constraints) == 0 {
return true, 0
}
positive := 0
for _, constraint := range constraints.Constraints {
hasConstraint := storeHasConstraint(store, constraint)
switch {
case constraint.Type == config.Constraint_REQUIRED && !hasConstraint:
return false, 0
case constraint.Type == config.Constraint_PROHIBITED && hasConstraint:
return false, 0
case (constraint.Type == config.Constraint_POSITIVE && hasConstraint):
positive++
}
}
return true, positive
}
// diversityScore returns a score between 1 and 0 where higher scores are stores
// with the fewest locality tiers in common with already existing replicas.
func diversityScore(
store roachpb.StoreDescriptor, existingNodeLocalities map[roachpb.NodeID]roachpb.Locality,
) float64 {
minScore := 1.0
for _, locality := range existingNodeLocalities {
if newScore := store.Node.Locality.DiversityScore(locality); newScore < minScore {
minScore = newScore
}
}
return minScore
}
// diversityRemovalScore is similar to diversityScore but instead of calculating
// the score if a new node is added, it calculates the remaining diversity if a
// node is removed.
func diversityRemovalScore(
nodeID roachpb.NodeID, existingNodeLocalities map[roachpb.NodeID]roachpb.Locality,
) float64 {
var maxScore float64
for nodeIDx, localityX := range existingNodeLocalities {
if nodeIDx == nodeID {
continue
}
for nodeIDy, localityY := range existingNodeLocalities {
if nodeIDy == nodeID || nodeIDx >= nodeIDy {
continue
}
if newScore := localityX.DiversityScore(localityY); newScore > maxScore {
maxScore = newScore
}
}
}
return maxScore
}
// maxCapacityCheck returns true if the store has room for a new replica.
func maxCapacityCheck(store roachpb.StoreDescriptor) bool {
return store.Capacity.FractionUsed() < maxFractionUsedThreshold
}