-
Notifications
You must be signed in to change notification settings - Fork 3.9k
/
Copy pathreplica_consistency.go
814 lines (741 loc) · 29.6 KB
/
replica_consistency.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
// Copyright 2014 The Cockroach Authors.
//
// Use of this software is governed by the Business Source License
// included in the file licenses/BSL.txt.
//
// As of the Change Date specified in that file, in accordance with
// the Business Source License, use of this software will be governed
// by the Apache License, Version 2.0, included in the file
// licenses/APL.txt.
package kvserver
import (
"context"
"crypto/sha512"
"encoding/binary"
"fmt"
"sync"
"time"
"github.com/cockroachdb/cockroach/pkg/base"
"github.com/cockroachdb/cockroach/pkg/kv"
"github.com/cockroachdb/cockroach/pkg/kv/kvserver/batcheval"
"github.com/cockroachdb/cockroach/pkg/kv/kvserver/kvserverpb"
"github.com/cockroachdb/cockroach/pkg/kv/kvserver/rditer"
"github.com/cockroachdb/cockroach/pkg/kv/kvserver/stateloader"
"github.com/cockroachdb/cockroach/pkg/roachpb"
"github.com/cockroachdb/cockroach/pkg/rpc"
"github.com/cockroachdb/cockroach/pkg/storage"
"github.com/cockroachdb/cockroach/pkg/storage/enginepb"
"github.com/cockroachdb/cockroach/pkg/storage/fs"
"github.com/cockroachdb/cockroach/pkg/util/contextutil"
"github.com/cockroachdb/cockroach/pkg/util/envutil"
"github.com/cockroachdb/cockroach/pkg/util/hlc"
"github.com/cockroachdb/cockroach/pkg/util/log"
"github.com/cockroachdb/cockroach/pkg/util/protoutil"
"github.com/cockroachdb/cockroach/pkg/util/quotapool"
"github.com/cockroachdb/cockroach/pkg/util/stop"
"github.com/cockroachdb/cockroach/pkg/util/timeutil"
"github.com/cockroachdb/cockroach/pkg/util/uuid"
"github.com/cockroachdb/errors"
"github.com/cockroachdb/redact"
)
// fatalOnStatsMismatch, if true, turns stats mismatches into fatal errors. A
// stats mismatch is the event in which
// - the consistency checker finds that all replicas are consistent
// (i.e. byte-by-byte identical)
// - the (identical) stats tracked in them do not correspond to a recomputation
// via the data, i.e. the stats were incorrect
// - ContainsEstimates==false, i.e. the stats claimed they were correct.
//
// Before issuing the fatal error, the cluster bootstrap version is verified.
// Note that on clusters that originally got bootstrapped on older releases
// (definitely 19.1, and likely also more recent ones) we know of the existence
// of stats bugs, so it has to be expected to see the assertion fire there.
//
// This env var is intended solely for use in Cockroach Labs testing.
var fatalOnStatsMismatch = envutil.EnvOrDefaultBool("COCKROACH_ENFORCE_CONSISTENT_STATS", false)
// replicaChecksum contains progress on a replica checksum computation.
type replicaChecksum struct {
// started is closed when the checksum computation has started. If the start
// was successful, passes a function that can be used by the receiver to stop
// the computation, otherwise is closed immediately.
started chan context.CancelFunc
// result passes a single checksum computation result from the task.
// INVARIANT: result is written to or closed only if started is closed.
result chan CollectChecksumResponse
}
// CheckConsistency runs a consistency check on the range. It first applies a
// ComputeChecksum through Raft and then issues CollectChecksum commands to the
// other replicas. These are inspected and a CheckConsistencyResponse is assembled.
//
// When req.Mode is CHECK_VIA_QUEUE and an inconsistency is detected, the
// consistency check will be re-run to save storage engine checkpoints and
// terminate suspicious nodes. This behavior should be lifted to the consistency
// checker queue in the future.
func (r *Replica) CheckConsistency(
ctx context.Context, req roachpb.CheckConsistencyRequest,
) (roachpb.CheckConsistencyResponse, *roachpb.Error) {
return r.checkConsistencyImpl(ctx, roachpb.ComputeChecksumRequest{
RequestHeader: roachpb.RequestHeader{Key: r.Desc().StartKey.AsRawKey()},
Version: batcheval.ReplicaChecksumVersion,
Mode: req.Mode,
})
}
func (r *Replica) checkConsistencyImpl(
ctx context.Context, args roachpb.ComputeChecksumRequest,
) (roachpb.CheckConsistencyResponse, *roachpb.Error) {
isQueue := args.Mode == roachpb.ChecksumMode_CHECK_VIA_QUEUE
results, err := r.runConsistencyCheck(ctx, args)
if err != nil {
return roachpb.CheckConsistencyResponse{}, roachpb.NewError(err)
}
res := roachpb.CheckConsistencyResponse_Result{RangeID: r.RangeID}
shaToIdxs := map[string][]int{}
var missing []ConsistencyCheckResult
for i, result := range results {
if result.Err != nil {
missing = append(missing, result)
continue
}
s := string(result.Response.Checksum)
shaToIdxs[s] = append(shaToIdxs[s], i)
}
// When replicas diverge, anecdotally often the minority (usually of size
// one) is in the wrong. If there's more than one smallest minority (for
// example, if three replicas all return different hashes) we pick any of
// them.
var minoritySHA string
if len(shaToIdxs) > 1 {
for sha, idxs := range shaToIdxs {
if minoritySHA == "" || len(shaToIdxs[minoritySHA]) > len(idxs) {
minoritySHA = sha
}
}
}
// There is an inconsistency if and only if there is a minority SHA.
if minoritySHA != "" {
var buf redact.StringBuilder
buf.Printf("\n") // New line to align checksums below.
for sha, idxs := range shaToIdxs {
minority := redact.Safe("")
if sha == minoritySHA {
minority = redact.Safe(" [minority]")
}
for _, idx := range idxs {
buf.Printf("%s: checksum %x%s\n"+
"- stats: %+v\n"+
"- stats.Sub(recomputation): %+v\n",
&results[idx].Replica,
redact.Safe(sha),
minority,
&results[idx].Response.Persisted,
&results[idx].Response.Delta,
)
}
}
if isQueue {
log.Errorf(ctx, "%v", &buf)
}
res.Detail += buf.String()
} else {
// The Persisted stats are covered by the SHA computation, so if all the
// hashes match, we can take an arbitrary one that succeeded.
res.Detail += fmt.Sprintf("stats: %+v\n", results[0].Response.Persisted)
}
for _, result := range missing {
res.Detail += fmt.Sprintf("%s: error: %v\n", result.Replica, result.Err)
}
// NB: delta is examined only when minoritySHA == "", i.e. all the checksums
// match. It helps to further check that the recomputed MVCC stats match the
// stored stats.
//
// Both Persisted and Delta stats were computed deterministically from the
// data fed into the checksum, so if all checksums match, we can take the
// stats from an arbitrary replica that succeeded.
//
// TODO(pavelkalinnikov): Compare deltas to assert this assumption anyway.
delta := enginepb.MVCCStats(results[0].Response.Delta)
var haveDelta bool
{
d2 := delta
d2.AgeTo(0)
haveDelta = d2 != enginepb.MVCCStats{}
}
res.StartKey = []byte(args.Key)
res.Status = roachpb.CheckConsistencyResponse_RANGE_CONSISTENT
if minoritySHA != "" {
res.Status = roachpb.CheckConsistencyResponse_RANGE_INCONSISTENT
} else if args.Mode != roachpb.ChecksumMode_CHECK_STATS && haveDelta {
if delta.ContainsEstimates > 0 {
// When ContainsEstimates is set, it's generally expected that we'll get a different
// result when we recompute from scratch.
res.Status = roachpb.CheckConsistencyResponse_RANGE_CONSISTENT_STATS_ESTIMATED
} else {
// When ContainsEstimates is unset, we expect the recomputation to agree with the stored stats.
// If that's not the case, that's a problem: it could be a bug in the stats computation
// or stats maintenance, but it could also hint at the replica having diverged from its peers.
res.Status = roachpb.CheckConsistencyResponse_RANGE_CONSISTENT_STATS_INCORRECT
}
res.Detail += fmt.Sprintf("delta (stats-computed): %+v\n",
enginepb.MVCCStats(results[0].Response.Delta))
} else if len(missing) > 0 {
// No inconsistency was detected, but we didn't manage to inspect all replicas.
res.Status = roachpb.CheckConsistencyResponse_RANGE_INDETERMINATE
}
var resp roachpb.CheckConsistencyResponse
resp.Result = append(resp.Result, res)
// Bail out at this point except if the queue is the caller. All of the stuff
// below should really happen in the consistency queue to keep CheckConsistency
// itself self-contained.
if !isQueue {
return resp, nil
}
if minoritySHA == "" {
// The replicas were in sync. Check that the MVCCStats haven't diverged from
// what they should be. This code originated in the realization that there
// were many bugs in our stats computations. These are being fixed, but it
// is through this mechanism that existing ranges are updated. Hence, the
// logging below is relatively timid.
// If there's no delta, there's nothing else to do.
if !haveDelta {
return resp, nil
}
if delta.ContainsEstimates <= 0 && fatalOnStatsMismatch {
// We just found out that the recomputation doesn't match the persisted stats,
// so ContainsEstimates should have been strictly positive.
log.Fatalf(ctx, "found a delta of %+v", redact.Safe(delta))
}
// We've found that there's something to correct; send an RecomputeStatsRequest. Note that this
// code runs only on the lease holder (at the time of initiating the computation), so this work
// isn't duplicated except in rare leaseholder change scenarios (and concurrent invocation of
// RecomputeStats is allowed because these requests block on one another). Also, we're
// essentially paced by the consistency checker so we won't call this too often.
log.Infof(ctx, "triggering stats recomputation to resolve delta of %+v", results[0].Response.Delta)
var b kv.Batch
b.AddRawRequest(&roachpb.RecomputeStatsRequest{
RequestHeader: roachpb.RequestHeader{Key: args.Key},
})
err := r.store.db.Run(ctx, &b)
return resp, roachpb.NewError(err)
}
if args.Checkpoint {
// A checkpoint/termination request has already been sent. Return because
// all the code below will do is request another consistency check, with
// instructions to make a checkpoint and to terminate the minority nodes.
log.Errorf(ctx, "consistency check failed")
return resp, nil
}
// No checkpoint was requested, so we want to re-run the check with
// checkpoints and termination of suspicious nodes. Note that this recursive
// call will be terminated in the `args.Checkpoint` branch above.
args.Checkpoint = true
for _, idxs := range shaToIdxs[minoritySHA] {
args.Terminate = append(args.Terminate, results[idxs].Replica)
}
// args.Terminate is a slice of properly redactable values, but
// with %v `redact` will not realize that and will redact the
// whole thing. Wrap it as a ReplicaSet which is a SafeFormatter
// and will get the job done.
//
// TODO(knz): clean up after https://github.com/cockroachdb/redact/issues/5.
{
var tmp redact.SafeFormatter = roachpb.MakeReplicaSet(args.Terminate)
log.Errorf(ctx, "consistency check failed; fetching details and shutting down minority %v", tmp)
}
// We've noticed in practice that if the snapshot diff is large, the
// log file to which it is printed is promptly rotated away, so up
// the limits while the diff printing occurs.
//
// See:
// https://github.com/cockroachdb/cockroach/issues/36861
// TODO(pavelkalinnikov): remove this now that diffs are not printed?
defer log.TemporarilyDisableFileGCForMainLogger()()
if _, pErr := r.checkConsistencyImpl(ctx, args); pErr != nil {
log.Errorf(ctx, "replica inconsistency detected; second round failed: %s", pErr)
}
return resp, nil
}
// A ConsistencyCheckResult contains the outcome of a CollectChecksum call.
type ConsistencyCheckResult struct {
Replica roachpb.ReplicaDescriptor
Response CollectChecksumResponse
Err error
}
func (r *Replica) collectChecksumFromReplica(
ctx context.Context, replica roachpb.ReplicaDescriptor, id uuid.UUID,
) (CollectChecksumResponse, error) {
conn, err := r.store.cfg.NodeDialer.Dial(ctx, replica.NodeID, rpc.DefaultClass)
if err != nil {
return CollectChecksumResponse{},
errors.Wrapf(err, "could not dial node ID %d", replica.NodeID)
}
client := NewPerReplicaClient(conn)
req := &CollectChecksumRequest{
StoreRequestHeader: StoreRequestHeader{NodeID: replica.NodeID, StoreID: replica.StoreID},
RangeID: r.RangeID,
ChecksumID: id,
}
resp, err := client.CollectChecksum(ctx, req)
if err != nil {
return CollectChecksumResponse{}, err
}
return *resp, nil
}
// runConsistencyCheck carries out a round of ComputeChecksum/CollectChecksum
// for the members of this range, returning the results (which it does not act
// upon). Requires that the computation succeeds on at least one replica, and
// puts an arbitrary successful result first in the returned slice.
func (r *Replica) runConsistencyCheck(
ctx context.Context, req roachpb.ComputeChecksumRequest,
) ([]ConsistencyCheckResult, error) {
// Send a ComputeChecksum which will trigger computation of the checksum on
// all replicas.
res, pErr := kv.SendWrapped(ctx, r.store.db.NonTransactionalSender(), &req)
if pErr != nil {
return nil, pErr.GoError()
}
ccRes := res.(*roachpb.ComputeChecksumResponse)
replicas := r.Desc().Replicas().Descriptors()
resultCh := make(chan ConsistencyCheckResult, len(replicas))
results := make([]ConsistencyCheckResult, 0, len(replicas))
var wg sync.WaitGroup
ctx, cancel := context.WithCancel(ctx)
defer close(resultCh) // close the channel when
defer wg.Wait() // writers have terminated
defer cancel() // but cancel them first
// P.S. Have you noticed the Haiku?
for _, replica := range replicas {
wg.Add(1)
replica := replica // per-iteration copy for the goroutine
if err := r.store.Stopper().RunAsyncTask(ctx, "storage.Replica: checking consistency",
func(ctx context.Context) {
defer wg.Done()
resp, err := r.collectChecksumFromReplica(ctx, replica, ccRes.ChecksumID)
resultCh <- ConsistencyCheckResult{
Replica: replica,
Response: resp,
Err: err,
}
},
); err != nil {
// If we can't start tasks, the node is likely draining. Return the error
// verbatim, after all the started tasks are stopped.
wg.Done()
return nil, err
}
}
// Collect the results from all replicas, while the tasks are running.
for result := range resultCh {
results = append(results, result)
// If it was the last request, don't wait on the channel anymore.
if len(results) == len(replicas) {
break
}
}
// Find any successful result, and put it first.
for i, res := range results {
if res.Err == nil {
results[0], results[i] = res, results[0]
return results, nil
}
}
return nil, errors.New("could not collect checksum from any replica")
}
// trackReplicaChecksum returns replicaChecksum tracker for the given ID, and
// the corresponding cleanup function that the caller must invoke when finished
// working on this tracker.
func (r *Replica) trackReplicaChecksum(id uuid.UUID) (*replicaChecksum, func()) {
r.mu.Lock()
defer r.mu.Unlock()
c := r.mu.checksums[id]
if c == nil {
c = &replicaChecksum{
started: make(chan context.CancelFunc), // require send/recv sync
result: make(chan CollectChecksumResponse, 1), // allow an async send
}
r.mu.checksums[id] = c
}
return c, func() {
r.mu.Lock()
defer r.mu.Unlock()
// Delete from the map only if it still holds the same record. Otherwise,
// someone has already deleted and/or replaced it. This should not happen, but
// we guard against it anyway, for clearer semantics.
if r.mu.checksums[id] == c {
delete(r.mu.checksums, id)
}
}
}
// getChecksum waits for the result of ComputeChecksum and returns it. Returns
// an error if there is no checksum being computed for the ID, it has already
// been GC-ed, or an error happened during the computation.
func (r *Replica) getChecksum(ctx context.Context, id uuid.UUID) (CollectChecksumResponse, error) {
now := timeutil.Now()
c, cleanup := r.trackReplicaChecksum(id)
defer cleanup()
// Wait for the checksum computation to start.
dur := r.checksumInitialWait(ctx)
t := timeutil.NewTimer()
t.Reset(dur)
defer t.Stop()
var taskCancel context.CancelFunc
select {
case <-ctx.Done():
return CollectChecksumResponse{},
errors.Wrapf(ctx.Err(), "while waiting for compute checksum (ID = %s)", id)
case <-t.C:
t.Read = true
return CollectChecksumResponse{},
errors.Errorf("checksum computation did not start in time for (ID = %s, wait=%s)", id, dur)
case taskCancel = <-c.started:
// Happy case, the computation has started.
}
if taskCancel == nil { // but it may have started with an error
return CollectChecksumResponse{}, errors.Errorf("checksum task failed to start (ID = %s)", id)
}
// Wait for the computation result.
select {
case <-ctx.Done():
taskCancel()
return CollectChecksumResponse{},
errors.Wrapf(ctx.Err(), "while waiting for compute checksum (ID = %s)", id)
case c, ok := <-c.result:
if log.V(1) {
log.Infof(ctx, "waited for compute checksum for %s", timeutil.Since(now))
}
if !ok || c.Checksum == nil {
return CollectChecksumResponse{}, errors.Errorf("no checksum found (ID = %s)", id)
}
return c, nil
}
}
// checksumInitialWait returns the amount of time to wait until the checksum
// computation has started. It is set to min of consistencyCheckSyncTimeout and
// 10% of the remaining time in the passed-in context (if it has a deadline).
//
// If it takes longer, chances are that the replica is being restored from
// snapshots, or otherwise too busy to handle this request soon.
func (*Replica) checksumInitialWait(ctx context.Context) time.Duration {
wait := consistencyCheckSyncTimeout
if d, ok := ctx.Deadline(); ok {
if dur := time.Duration(timeutil.Until(d).Nanoseconds() / 10); dur < wait {
wait = dur
}
}
return wait
}
// computeChecksumDone sends the checksum computation result to the receiver.
func (*Replica) computeChecksumDone(rc *replicaChecksum, result *ReplicaDigest) {
var c CollectChecksumResponse
if result != nil {
c.Checksum = result.SHA512[:]
delta := result.PersistedMS
delta.Subtract(result.RecomputedMS)
c.Delta = enginepb.MVCCStatsDelta(delta)
c.Persisted = result.PersistedMS
}
// Sending succeeds because the channel is buffered, and there is at most one
// computeChecksumDone per replicaChecksum. In case of a bug, another writer
// closes the channel, so this send panics instead of deadlocking. By design.
rc.result <- c
close(rc.result)
}
// ReplicaDigest holds a summary of the replicated state on a replica.
type ReplicaDigest struct {
SHA512 [sha512.Size]byte
PersistedMS enginepb.MVCCStats
RecomputedMS enginepb.MVCCStats
}
// CalcReplicaDigest computes the SHA512 hash and MVCC stats of the replica data
// at the given snapshot. Depending on the mode, it either considers the full
// replicated state, or only RangeAppliedState (including MVCC stats).
func CalcReplicaDigest(
ctx context.Context,
desc roachpb.RangeDescriptor,
snap storage.Reader,
mode roachpb.ChecksumMode,
limiter *quotapool.RateLimiter,
) (*ReplicaDigest, error) {
statsOnly := mode == roachpb.ChecksumMode_CHECK_STATS
// Iterate over all the data in the range.
var intBuf [8]byte
var legacyTimestamp hlc.LegacyTimestamp
var timestampBuf []byte
hasher := sha512.New()
// Request quota from the limiter in chunks of at least targetBatchSize, to
// amortize the overhead of the limiter when reading many small KVs.
var batchSize int64
const targetBatchSize = int64(256 << 10) // 256 KiB
wait := func(size int64) error {
if batchSize += size; batchSize < targetBatchSize {
return nil
}
tokens := batchSize
batchSize = 0
return limiter.WaitN(ctx, tokens)
}
pointKeyVisitor := func(unsafeKey storage.MVCCKey, unsafeValue []byte) error {
// Rate limit the scan through the range.
if err := wait(int64(len(unsafeKey.Key) + len(unsafeValue))); err != nil {
return err
}
// Encode the length of the key and value.
binary.LittleEndian.PutUint64(intBuf[:], uint64(len(unsafeKey.Key)))
if _, err := hasher.Write(intBuf[:]); err != nil {
return err
}
binary.LittleEndian.PutUint64(intBuf[:], uint64(len(unsafeValue)))
if _, err := hasher.Write(intBuf[:]); err != nil {
return err
}
if _, err := hasher.Write(unsafeKey.Key); err != nil {
return err
}
legacyTimestamp = unsafeKey.Timestamp.ToLegacyTimestamp()
if size := legacyTimestamp.Size(); size > cap(timestampBuf) {
timestampBuf = make([]byte, size)
} else {
timestampBuf = timestampBuf[:size]
}
if _, err := protoutil.MarshalTo(&legacyTimestamp, timestampBuf); err != nil {
return err
}
if _, err := hasher.Write(timestampBuf); err != nil {
return err
}
_, err := hasher.Write(unsafeValue)
return err
}
rangeKeyVisitor := func(rangeKV storage.MVCCRangeKeyValue) error {
// Rate limit the scan through the range.
err := wait(
int64(len(rangeKV.RangeKey.StartKey) + len(rangeKV.RangeKey.EndKey) + len(rangeKV.Value)))
if err != nil {
return err
}
// Encode the length of the start key and end key.
binary.LittleEndian.PutUint64(intBuf[:], uint64(len(rangeKV.RangeKey.StartKey)))
if _, err := hasher.Write(intBuf[:]); err != nil {
return err
}
binary.LittleEndian.PutUint64(intBuf[:], uint64(len(rangeKV.RangeKey.EndKey)))
if _, err := hasher.Write(intBuf[:]); err != nil {
return err
}
binary.LittleEndian.PutUint64(intBuf[:], uint64(len(rangeKV.Value)))
if _, err := hasher.Write(intBuf[:]); err != nil {
return err
}
if _, err := hasher.Write(rangeKV.RangeKey.StartKey); err != nil {
return err
}
if _, err := hasher.Write(rangeKV.RangeKey.EndKey); err != nil {
return err
}
legacyTimestamp = rangeKV.RangeKey.Timestamp.ToLegacyTimestamp()
if size := legacyTimestamp.Size(); size > cap(timestampBuf) {
timestampBuf = make([]byte, size)
} else {
timestampBuf = timestampBuf[:size]
}
if _, err := protoutil.MarshalTo(&legacyTimestamp, timestampBuf); err != nil {
return err
}
if _, err := hasher.Write(timestampBuf); err != nil {
return err
}
_, err = hasher.Write(rangeKV.Value)
return err
}
// In statsOnly mode, we hash only the RangeAppliedState. In regular mode, hash
// all of the replicated key space.
var result ReplicaDigest
if !statsOnly {
ms, err := rditer.ComputeStatsForRangeWithVisitors(&desc, snap, 0, /* nowNanos */
pointKeyVisitor, rangeKeyVisitor)
// Consume the remaining quota borrowed in the visitors. Do it even on
// iteration error, but prioritize returning the latter if it occurs.
if wErr := limiter.WaitN(ctx, batchSize); wErr != nil && err == nil {
err = wErr
}
if err != nil {
return nil, err
}
result.RecomputedMS = ms
}
rangeAppliedState, err := stateloader.Make(desc.RangeID).LoadRangeAppliedState(ctx, snap)
if err != nil {
return nil, err
}
result.PersistedMS = rangeAppliedState.RangeStats.ToStats()
if statsOnly {
b, err := protoutil.Marshal(rangeAppliedState)
if err != nil {
return nil, err
}
if _, err := hasher.Write(b); err != nil {
return nil, err
}
}
hasher.Sum(result.SHA512[:0])
// We're not required to do so, but it looks nicer if both stats are aged to
// the same timestamp.
result.RecomputedMS.AgeTo(result.PersistedMS.LastUpdateNanos)
return &result, nil
}
func (r *Replica) computeChecksumPostApply(
ctx context.Context, cc kvserverpb.ComputeChecksum,
) (err error) {
c, cleanup := r.trackReplicaChecksum(cc.ChecksumID)
defer func() {
if err != nil {
close(c.started) // send nothing to signal that the task failed to start
cleanup()
}
}()
if req, have := cc.Version, uint32(batcheval.ReplicaChecksumVersion); req != have {
return errors.Errorf("incompatible versions (requested: %d, have: %d)", req, have)
}
var shouldFatal bool
for _, rDesc := range cc.Terminate {
if rDesc.StoreID == r.store.StoreID() && rDesc.ReplicaID == r.replicaID {
shouldFatal = true
break
}
}
// Capture the current range descriptor, as it may change by the time the
// async task below runs.
desc := *r.Desc()
// Caller is holding raftMu, so an engine snapshot is automatically
// Raft-consistent (i.e. not in the middle of an AddSSTable).
snap := r.store.engine.NewSnapshot()
if cc.Checkpoint {
sl := stateloader.Make(r.RangeID)
as, err := sl.LoadRangeAppliedState(ctx, snap)
if err != nil {
log.Warningf(ctx, "unable to load applied index, continuing anyway")
}
// NB: the names here will match on all nodes, which is nice for debugging.
tag := fmt.Sprintf("r%d_at_%d", r.RangeID, as.RaftAppliedIndex)
// If the node is about to be killed, create a full checkpoint, otherwise
// create a smaller partial checkpoint including this Replica and maybe a
// few neighbouring replicas.
desc := &desc
if shouldFatal {
desc = nil
}
if dir, err := r.store.checkpoint(tag, desc); err != nil {
log.Warningf(ctx, "unable to create checkpoint %s: %+v", dir, err)
} else {
log.Warningf(ctx, "created checkpoint %s", dir)
}
}
// Compute SHA asynchronously and store it in a map by UUID. Concurrent checks
// share the rate limit in r.store.consistencyLimiter, so if too many run at
// the same time, chances are they will time out.
//
// Each node's consistency queue runs a check for one range at a time, which
// it broadcasts to all replicas, so the average number of incoming in-flight
// collection requests per node is equal to the replication factor (typ. 3-7).
// Abandoned tasks are canceled eagerly within a few seconds, so there is very
// limited room for running above this figure. Thus we don't limit the number
// of concurrent tasks here.
//
// NB: CHECK_STATS checks are cheap and the DistSender will parallelize them
// across all ranges (notably when calling crdb_internal.check_consistency()).
const taskName = "kvserver.Replica: computing checksum"
stopper := r.store.Stopper()
// Don't use the proposal's context, as it is likely to be canceled very soon.
taskCtx, taskCancel := stopper.WithCancelOnQuiesce(r.AnnotateCtx(context.Background()))
if err := stopper.RunAsyncTaskEx(taskCtx, stop.TaskOpts{
TaskName: taskName,
}, func(ctx context.Context) {
defer taskCancel()
defer snap.Close()
defer cleanup()
// Wait until the CollectChecksum request handler joins in and learns about
// the starting computation, and then start it.
if err := contextutil.RunWithTimeout(ctx, taskName, consistencyCheckSyncTimeout,
func(ctx context.Context) error {
// There is only one writer to c.started (this task), buf if by mistake
// there is another writer, one of us closes the channel eventually, and
// other writes to c.started will crash. By design.
defer close(c.started)
select {
case <-ctx.Done():
return ctx.Err()
case c.started <- taskCancel:
return nil
}
},
); err != nil {
log.Errorf(ctx, "checksum collection did not join: %v", err)
} else {
result, err := CalcReplicaDigest(ctx, desc, snap, cc.Mode, r.store.consistencyLimiter)
if err != nil {
log.Errorf(ctx, "checksum computation failed: %v", err)
result = nil
}
r.computeChecksumDone(c, result)
}
if !shouldFatal {
return
}
// This node should fatal as a result of a previous consistency check (i.e.
// this round only saves checkpoints and kills some nodes). If we fatal too
// early, the reply won't make it back to the leaseholder, so it will not be
// certain of completing the check. Since we're already in a goroutine
// that's about to end, just sleep for a few seconds and then terminate.
auxDir := r.store.engine.GetAuxiliaryDir()
_ = r.store.engine.MkdirAll(auxDir)
path := base.PreventedStartupFile(auxDir)
const attentionFmt = `ATTENTION:
This node is terminating because a replica inconsistency was detected between %s
and its other replicas: %v. Please check your cluster-wide log files for more
information and contact the CockroachDB support team. It is not necessarily safe
to replace this node; cluster data may still be at risk of corruption.
A checkpoints directory to aid (expert) debugging should be present in:
%s
A file preventing this node from restarting was placed at:
%s
Checkpoints are created on each node/store hosting this range, to help
investigate the cause. Only nodes that are more likely to have incorrect data
are terminated, and usually a majority of replicas continue running.
Checkpoints on the terminated nodes are created for the entire storage engine.
On the surviving nodes, checkpoints are partial, i.e. contain only the data
specific to the inconsistent range, and possibly its neighbouring ranges.
The storage checkpoint directories MUST be deleted or moved away eventually, on
the nodes that continue operating. Over time the storage engine gets updated and
compacted, which leads to checkpoints becoming a full copy of a past state. This
is not time critical because the checkpoints are localized to a single / few
range(s), and over time may grow to consume only O(GB) disk space. There is no
automatic garbage collection of checkpoints, for the reason below.
Checkpoints are very helpful in debugging this issue, so before deleting them,
please consider alternative actions:
- If the store has enough capacity, hold off deleting the checkpoint until CRDB
staff has diagnosed the issue.
- Consider backing up the checkpoints before removing them, e.g. by snapshotting
the disk.
- If the stores are nearly full, but the cluster has enough capacity, consider
gradually decommissioning the affected nodes, to retain the checkpoints.
To inspect the checkpoints, one can use the cockroach debug range-data tool, and
command line tools like diff. For example:
$ cockroach debug range-data --replicated data/auxiliary/checkpoints/rN_at_M N
`
attentionArgs := []any{r, desc.Replicas(), auxDir, path}
preventStartupMsg := fmt.Sprintf(attentionFmt, attentionArgs...)
if err := fs.WriteFile(r.store.engine, path, []byte(preventStartupMsg)); err != nil {
log.Warningf(ctx, "%v", err)
}
if p := r.store.cfg.TestingKnobs.ConsistencyTestingKnobs.OnBadChecksumFatal; p != nil {
p(*r.store.Ident)
} else {
time.Sleep(10 * time.Second)
log.Fatalf(r.AnnotateCtx(context.Background()), attentionFmt, attentionArgs...)
}
}); err != nil {
taskCancel()
snap.Close()
return err
}
return nil
}