-
Notifications
You must be signed in to change notification settings - Fork 3.8k
/
Copy pathnode.go
1272 lines (1166 loc) · 43.3 KB
/
node.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
// Copyright 2014 The Cockroach Authors.
//
// Use of this software is governed by the Business Source License
// included in the file licenses/BSL.txt.
//
// As of the Change Date specified in that file, in accordance with
// the Business Source License, use of this software will be governed
// by the Apache License, Version 2.0, included in the file
// licenses/APL.txt.
package server
import (
"context"
"fmt"
"net"
"sort"
"time"
"github.com/cockroachdb/cockroach/pkg/base"
"github.com/cockroachdb/cockroach/pkg/build"
"github.com/cockroachdb/cockroach/pkg/clusterversion"
"github.com/cockroachdb/cockroach/pkg/config"
"github.com/cockroachdb/cockroach/pkg/config/zonepb"
"github.com/cockroachdb/cockroach/pkg/gossip"
"github.com/cockroachdb/cockroach/pkg/keys"
"github.com/cockroachdb/cockroach/pkg/kv"
"github.com/cockroachdb/cockroach/pkg/kv/kvclient/kvcoord"
"github.com/cockroachdb/cockroach/pkg/kv/kvclient/kvtenant"
"github.com/cockroachdb/cockroach/pkg/kv/kvserver"
"github.com/cockroachdb/cockroach/pkg/roachpb"
"github.com/cockroachdb/cockroach/pkg/rpc"
"github.com/cockroachdb/cockroach/pkg/server/status"
"github.com/cockroachdb/cockroach/pkg/settings"
"github.com/cockroachdb/cockroach/pkg/settings/cluster"
"github.com/cockroachdb/cockroach/pkg/sql"
"github.com/cockroachdb/cockroach/pkg/sql/catalog/bootstrap"
"github.com/cockroachdb/cockroach/pkg/storage"
"github.com/cockroachdb/cockroach/pkg/util"
"github.com/cockroachdb/cockroach/pkg/util/grpcutil"
"github.com/cockroachdb/cockroach/pkg/util/hlc"
"github.com/cockroachdb/cockroach/pkg/util/log"
"github.com/cockroachdb/cockroach/pkg/util/metric"
"github.com/cockroachdb/cockroach/pkg/util/retry"
"github.com/cockroachdb/cockroach/pkg/util/stop"
"github.com/cockroachdb/cockroach/pkg/util/syncutil"
"github.com/cockroachdb/cockroach/pkg/util/timeutil"
"github.com/cockroachdb/cockroach/pkg/util/tracing"
"github.com/cockroachdb/cockroach/pkg/util/uuid"
"github.com/cockroachdb/errors"
"github.com/cockroachdb/logtags"
"github.com/cockroachdb/redact"
"google.golang.org/grpc/codes"
grpcstatus "google.golang.org/grpc/status"
)
const (
// gossipStatusInterval is the interval for logging gossip status.
gossipStatusInterval = 1 * time.Minute
// FirstNodeID is the node ID of the first node in a new cluster.
FirstNodeID = 1
graphiteIntervalKey = "external.graphite.interval"
maxGraphiteInterval = 15 * time.Minute
)
// Metric names.
var (
metaExecLatency = metric.Metadata{
Name: "exec.latency",
Help: "Latency of batch KV requests executed on this node",
Measurement: "Latency",
Unit: metric.Unit_NANOSECONDS,
}
metaExecSuccess = metric.Metadata{
Name: "exec.success",
Help: "Number of batch KV requests executed successfully on this node",
Measurement: "Batch KV Requests",
Unit: metric.Unit_COUNT,
}
metaExecError = metric.Metadata{
Name: "exec.error",
Help: "Number of batch KV requests that failed to execute on this node",
Measurement: "Batch KV Requests",
Unit: metric.Unit_COUNT,
}
metaDiskStalls = metric.Metadata{
Name: "engine.stalls",
Help: "Number of disk stalls detected on this node",
Measurement: "Disk stalls detected",
Unit: metric.Unit_COUNT,
}
)
// Cluster settings.
var (
// graphiteEndpoint is host:port, if any, of Graphite metrics server.
graphiteEndpoint = settings.RegisterPublicStringSetting(
"external.graphite.endpoint",
"if nonempty, push server metrics to the Graphite or Carbon server at the specified host:port",
"",
)
// graphiteInterval is how often metrics are pushed to Graphite, if enabled.
graphiteInterval = settings.RegisterPublicNonNegativeDurationSettingWithMaximum(
graphiteIntervalKey,
"the interval at which metrics are pushed to Graphite (if enabled)",
10*time.Second,
maxGraphiteInterval,
)
)
type nodeMetrics struct {
Latency *metric.Histogram
Success *metric.Counter
Err *metric.Counter
DiskStalls *metric.Counter
}
func makeNodeMetrics(reg *metric.Registry, histogramWindow time.Duration) nodeMetrics {
nm := nodeMetrics{
Latency: metric.NewLatency(metaExecLatency, histogramWindow),
Success: metric.NewCounter(metaExecSuccess),
Err: metric.NewCounter(metaExecError),
DiskStalls: metric.NewCounter(metaDiskStalls),
}
reg.AddMetricStruct(nm)
return nm
}
// callComplete records very high-level metrics about the number of completed
// calls and their latency. Currently, this only records statistics at the batch
// level; stats on specific lower-level kv operations are not recorded.
func (nm nodeMetrics) callComplete(d time.Duration, pErr *roachpb.Error) {
if pErr != nil && pErr.TransactionRestart == roachpb.TransactionRestart_NONE {
nm.Err.Inc(1)
} else {
nm.Success.Inc(1)
}
nm.Latency.RecordValue(d.Nanoseconds())
}
// A Node manages a map of stores (by store ID) for which it serves
// traffic. A node is the top-level data structure. There is one node
// instance per process. A node accepts incoming RPCs and services
// them by directing the commands contained within RPCs to local
// stores, which in turn direct the commands to specific ranges. Each
// node has access to the global, monolithic Key-Value abstraction via
// its client.DB reference. Nodes use this to allocate node and store
// IDs for bootstrapping the node itself or new stores as they're added
// on subsequent instantiations.
type Node struct {
stopper *stop.Stopper
clusterID *base.ClusterIDContainer // UUID for Cockroach cluster
Descriptor roachpb.NodeDescriptor // Node ID, network/physical topology
storeCfg kvserver.StoreConfig // Config to use and pass to stores
eventLogger sql.EventLogger
stores *kvserver.Stores // Access to node-local stores
metrics nodeMetrics
recorder *status.MetricsRecorder
startedAt int64
lastUp int64
initialStart bool // True if this is the first time this node has started.
txnMetrics kvcoord.TxnMetrics
bootstrapNewStoresCh chan struct{}
perReplicaServer kvserver.Server
}
var _ roachpb.InternalServer = &Node{}
// allocateNodeID increments the node id generator key to allocate
// a new, unique node id.
func allocateNodeID(ctx context.Context, db *kv.DB) (roachpb.NodeID, error) {
val, err := kv.IncrementValRetryable(ctx, db, keys.NodeIDGenerator, 1)
if err != nil {
return 0, errors.Wrap(err, "unable to allocate node ID")
}
return roachpb.NodeID(val), nil
}
// allocateStoreIDs increments the store id generator key for the
// specified node to allocate count new, unique store ids. The
// first ID in a contiguous range is returned on success.
func allocateStoreIDs(
ctx context.Context, nodeID roachpb.NodeID, count int64, db *kv.DB,
) (roachpb.StoreID, error) {
val, err := kv.IncrementValRetryable(ctx, db, keys.StoreIDGenerator, count)
if err != nil {
return 0, errors.Wrapf(err, "unable to allocate %d store IDs for node %d", count, nodeID)
}
return roachpb.StoreID(val - count + 1), nil
}
// GetBootstrapSchema returns the schema which will be used to bootstrap a new
// server.
func GetBootstrapSchema(
defaultZoneConfig *zonepb.ZoneConfig, defaultSystemZoneConfig *zonepb.ZoneConfig,
) bootstrap.MetadataSchema {
return bootstrap.MakeMetadataSchema(keys.SystemSQLCodec, defaultZoneConfig, defaultSystemZoneConfig)
}
// bootstrapCluster initializes the passed-in engines for a new cluster.
// Returns the cluster ID.
//
// The first engine will contain ranges for various static split points (i.e.
// various system ranges and system tables). Note however that many of these
// ranges cannot be accessed by KV in regular means until the node liveness is
// written, since epoch-based leases cannot be granted until then. All other
// engines are initialized with their StoreIdent.
func bootstrapCluster(
ctx context.Context,
engines []storage.Engine,
defaultZoneConfig *zonepb.ZoneConfig,
defaultSystemZoneConfig *zonepb.ZoneConfig,
) (*initState, error) {
clusterID := uuid.MakeV4()
// TODO(andrei): It'd be cool if this method wouldn't do anything to engines
// other than the first one, and let regular node startup code deal with them.
var bootstrapVersion clusterversion.ClusterVersion
const firstStoreID = 1
for i, eng := range engines {
cv, err := kvserver.ReadClusterVersion(ctx, eng)
if err != nil {
return nil, errors.Wrapf(err, "reading cluster version of %s", eng)
} else if cv.Major == 0 {
return nil, errors.Errorf("missing bootstrap version")
}
// bootstrapCluster requires matching cluster versions on all engines.
if i == 0 {
bootstrapVersion = cv
} else if bootstrapVersion != cv {
return nil, errors.Wrapf(err, "found cluster versions %s and %s", bootstrapVersion, cv)
}
sIdent := roachpb.StoreIdent{
ClusterID: clusterID,
NodeID: FirstNodeID,
StoreID: roachpb.StoreID(i + firstStoreID),
}
// Initialize the engine backing the store with the store ident and cluster
// version.
if err := kvserver.InitEngine(ctx, eng, sIdent); err != nil {
return nil, err
}
// Create first range, writing directly to engine. Note this does
// not create the range, just its data. Only do this if this is the
// first store.
if i == 0 {
schema := GetBootstrapSchema(defaultZoneConfig, defaultSystemZoneConfig)
initialValues, tableSplits := schema.GetInitialValues()
splits := append(config.StaticSplits(), tableSplits...)
sort.Slice(splits, func(i, j int) bool {
return splits[i].Less(splits[j])
})
if err := kvserver.WriteInitialClusterData(
ctx, eng, initialValues,
bootstrapVersion.Version, len(engines), splits,
hlc.UnixNano(),
); err != nil {
return nil, err
}
}
}
state := &initState{
initDiskState: initDiskState{
nodeID: FirstNodeID,
clusterID: clusterID,
clusterVersion: bootstrapVersion,
initializedEngines: engines,
newEngines: nil,
},
firstStoreID: firstStoreID,
}
return state, nil
}
// NewNode returns a new instance of Node.
//
// execCfg can be nil to help bootstrapping of a Server (the Node is created
// before the ExecutorConfig is initialized). In that case, InitLogger() needs
// to be called before the Node is used.
func NewNode(
cfg kvserver.StoreConfig,
recorder *status.MetricsRecorder,
reg *metric.Registry,
stopper *stop.Stopper,
txnMetrics kvcoord.TxnMetrics,
execCfg *sql.ExecutorConfig,
clusterID *base.ClusterIDContainer,
) *Node {
var eventLogger sql.EventLogger
if execCfg != nil {
eventLogger = sql.MakeEventLogger(execCfg)
}
n := &Node{
storeCfg: cfg,
stopper: stopper,
recorder: recorder,
metrics: makeNodeMetrics(reg, cfg.HistogramWindowInterval),
stores: kvserver.NewStores(cfg.AmbientCtx, cfg.Clock),
txnMetrics: txnMetrics,
eventLogger: eventLogger,
clusterID: clusterID,
}
n.perReplicaServer = kvserver.MakeServer(&n.Descriptor, n.stores)
return n
}
// InitLogger needs to be called if a nil execCfg was passed to NewNode().
func (n *Node) InitLogger(execCfg *sql.ExecutorConfig) {
n.eventLogger = sql.MakeEventLogger(execCfg)
}
// String implements fmt.Stringer.
func (n *Node) String() string {
return fmt.Sprintf("node=%d", n.Descriptor.NodeID)
}
// AnnotateCtx is a convenience wrapper; see AmbientContext.
func (n *Node) AnnotateCtx(ctx context.Context) context.Context {
return n.storeCfg.AmbientCtx.AnnotateCtx(ctx)
}
// AnnotateCtxWithSpan is a convenience wrapper; see AmbientContext.
func (n *Node) AnnotateCtxWithSpan(
ctx context.Context, opName string,
) (context.Context, *tracing.Span) {
return n.storeCfg.AmbientCtx.AnnotateCtxWithSpan(ctx, opName)
}
// start starts the node by registering the storage instance for the RPC
// service "Node" and initializing stores for each specified engine.
// Launches periodic store gossiping in a goroutine. A callback can
// be optionally provided that will be invoked once this node's
// NodeDescriptor is available, to help bootstrapping.
func (n *Node) start(
ctx context.Context,
addr, sqlAddr net.Addr,
state initState,
initialStart bool,
clusterName string,
attrs roachpb.Attributes,
locality roachpb.Locality,
localityAddress []roachpb.LocalityAddress,
nodeDescriptorCallback func(descriptor roachpb.NodeDescriptor),
) error {
// Obtaining the NodeID requires a dance of sorts. If the node has initialized
// stores, the NodeID is persisted in each of them. If not, then we'll need to
// use the KV store to get a NodeID assigned.
n.initialStart = initialStart
nodeID := state.nodeID
if nodeID == 0 {
// TODO(irfansharif): This codepath exists to maintain the legacy
// behavior of node ID allocation that was triggered on gossip
// connectivity. This was replaced by the Join RPC in 20.2, and can be
// removed in 21.1.
if !initialStart {
log.Fatalf(ctx, "node has no NodeID, but claims to not be joining cluster")
}
// Allocate NodeID. Note that Gossip is already connected because if there's
// no NodeID yet, this means that we had to connect Gossip to learn the ClusterID.
select {
case <-n.storeCfg.Gossip.Connected:
default:
log.Fatalf(ctx, "gossip is not connected yet")
}
ctxWithSpan, span := n.AnnotateCtxWithSpan(ctx, "alloc-node-id")
newID, err := allocateNodeID(ctxWithSpan, n.storeCfg.DB)
if err != nil {
return err
}
log.Infof(ctxWithSpan, "new node allocated ID %d", newID)
span.Finish()
nodeID = newID
// We're joining via gossip, so we don't have a liveness record for
// ourselves yet. Let's create one while here.
if err := n.storeCfg.NodeLiveness.CreateLivenessRecord(ctx, nodeID); err != nil {
return err
}
}
// Inform the RPC context of the node ID.
n.storeCfg.RPCContext.NodeID.Set(ctx, nodeID)
n.startedAt = n.storeCfg.Clock.Now().WallTime
n.Descriptor = roachpb.NodeDescriptor{
NodeID: nodeID,
Address: util.MakeUnresolvedAddr(addr.Network(), addr.String()),
SQLAddress: util.MakeUnresolvedAddr(sqlAddr.Network(), sqlAddr.String()),
Attrs: attrs,
Locality: locality,
LocalityAddress: localityAddress,
ClusterName: clusterName,
ServerVersion: n.storeCfg.Settings.Version.BinaryVersion(),
BuildTag: build.GetInfo().Tag,
StartedAt: n.startedAt,
}
// Invoke any passed in nodeDescriptorCallback as soon as it's available, to
// ensure that other components (currently the DistSQLPlanner) are initialized
// before store startup continues.
if nodeDescriptorCallback != nil {
nodeDescriptorCallback(n.Descriptor)
}
// Gossip the node descriptor to make this node addressable by node ID.
n.storeCfg.Gossip.NodeID.Set(ctx, n.Descriptor.NodeID)
if err := n.storeCfg.Gossip.SetNodeDescriptor(&n.Descriptor); err != nil {
return errors.Errorf("couldn't gossip descriptor for node %d: %s", n.Descriptor.NodeID, err)
}
// Start the closed timestamp subsystem.
n.storeCfg.ClosedTimestamp.Start(n.Descriptor.NodeID)
// Create stores from the engines that were already bootstrapped.
for _, e := range state.initializedEngines {
s := kvserver.NewStore(ctx, n.storeCfg, e, &n.Descriptor)
if err := s.Start(ctx, n.stopper); err != nil {
return errors.Errorf("failed to start store: %s", err)
}
capacity, err := s.Capacity(ctx, false /* useCached */)
if err != nil {
return errors.Errorf("could not query store capacity: %s", err)
}
log.Infof(ctx, "initialized store %s: %+v", s, capacity)
n.addStore(ctx, s)
}
// Verify all initialized stores agree on cluster and node IDs.
if err := n.validateStores(ctx); err != nil {
return err
}
log.VEventf(ctx, 2, "validated stores")
// Compute the time this node was last up; this is done by reading the
// "last up time" from every store and choosing the most recent timestamp.
var mostRecentTimestamp hlc.Timestamp
if err := n.stores.VisitStores(func(s *kvserver.Store) error {
timestamp, err := s.ReadLastUpTimestamp(ctx)
if err != nil {
return err
}
if mostRecentTimestamp.Less(timestamp) {
mostRecentTimestamp = timestamp
}
return nil
}); err != nil {
return errors.Wrapf(err, "failed to read last up timestamp from stores")
}
n.lastUp = mostRecentTimestamp.WallTime
// Set the stores map as the gossip persistent storage, so that
// gossip can bootstrap using the most recently persisted set of
// node addresses.
if err := n.storeCfg.Gossip.SetStorage(n.stores); err != nil {
return fmt.Errorf("failed to initialize the gossip interface: %s", err)
}
// Bootstrap uninitialized stores, if any.
if len(state.newEngines) > 0 {
// We need to bootstrap additional stores asynchronously. Consider the range that
// houses the store ID allocator. When restarting the set of nodes that holds a
// quorum of these replicas, when restarting them with additional stores, those
// additional stores will require store IDs to get fully bootstrapped. But if we're
// gating node start (specifically opening up the RPC floodgates) on having all
// stores fully bootstrapped, we'll simply hang when trying to allocate store IDs.
// See TestAddNewStoresToExistingNodes and #39415 for more details.
//
// Instead we opt to bootstrap additional stores asynchronously, and rely on the
// blocking function n.waitForBootstrapNewStores() to signal to the caller that
// all stores have been fully bootstrapped.
n.bootstrapNewStoresCh = make(chan struct{})
if err := n.stopper.RunAsyncTask(ctx, "bootstrap-stores", func(ctx context.Context) {
if err := n.bootstrapStores(ctx, state.firstStoreID, state.newEngines, n.stopper); err != nil {
log.Fatalf(ctx, "while bootstrapping additional stores: %v", err)
}
close(n.bootstrapNewStoresCh)
}); err != nil {
close(n.bootstrapNewStoresCh)
return err
}
}
n.startComputePeriodicMetrics(n.stopper, base.DefaultMetricsSampleInterval)
// Be careful about moving this line above where we start stores; store
// migrations rely on the fact that the cluster version has not been updated
// via Gossip (we have migrations that want to run only if the server starts
// with a given cluster version, but not if the server starts with a lower
// one and gets bumped immediately, which would be possible if gossip got
// started earlier).
n.startGossiping(ctx, n.stopper)
allEngines := append([]storage.Engine(nil), state.initializedEngines...)
allEngines = append(allEngines, state.newEngines...)
for _, e := range allEngines {
t := e.Type()
log.Infof(ctx, "started with engine type %v", t)
}
log.Infof(ctx, "started with attributes %v", attrs.Attrs)
return nil
}
// waitForBootstrapNewStores blocks until all additional empty stores,
// if any, have been bootstrapped.
func (n *Node) waitForBootstrapNewStores() {
if n.bootstrapNewStoresCh != nil {
<-n.bootstrapNewStoresCh
}
}
// IsDraining returns true if at least one Store housed on this Node is not
// currently allowing range leases to be procured or extended.
func (n *Node) IsDraining() bool {
var isDraining bool
if err := n.stores.VisitStores(func(s *kvserver.Store) error {
isDraining = isDraining || s.IsDraining()
return nil
}); err != nil {
panic(err)
}
return isDraining
}
// SetDraining sets the draining mode on all of the node's underlying stores.
// The reporter callback, if non-nil, is called on a best effort basis
// to report work that needed to be done and which may or may not have
// been done by the time this call returns. See the explanation in
// pkg/server/drain.go for details.
func (n *Node) SetDraining(drain bool, reporter func(int, redact.SafeString)) error {
return n.stores.VisitStores(func(s *kvserver.Store) error {
s.SetDraining(drain, reporter)
return nil
})
}
// SetHLCUpperBound sets the upper bound of the HLC wall time on all of the
// node's underlying stores.
func (n *Node) SetHLCUpperBound(ctx context.Context, hlcUpperBound int64) error {
return n.stores.VisitStores(func(s *kvserver.Store) error {
return s.WriteHLCUpperBound(ctx, hlcUpperBound)
})
}
func (n *Node) addStore(ctx context.Context, store *kvserver.Store) {
cv, err := kvserver.ReadClusterVersion(context.TODO(), store.Engine())
if err != nil {
log.Fatalf(ctx, "%v", err)
}
if cv == (clusterversion.ClusterVersion{}) {
// The store should have had a version written to it during the store
// bootstrap process.
log.Fatal(ctx, "attempting to add a store without a version")
}
n.stores.AddStore(store)
n.recorder.AddStore(store)
}
// validateStores iterates over all stores, verifying they agree on node ID.
// The node's ident is initialized based on the agreed-upon node ID. Note that
// cluster ID consistency is checked elsewhere in inspectEngines.
//
// TODO(tbg): remove this, we already validate everything in inspectEngines now.
func (n *Node) validateStores(ctx context.Context) error {
return n.stores.VisitStores(func(s *kvserver.Store) error {
if n.Descriptor.NodeID != s.Ident.NodeID {
return errors.Errorf("store %s node ID doesn't match node ID: %d", s, n.Descriptor.NodeID)
}
return nil
})
}
// bootstrapStores bootstraps uninitialized stores once the cluster
// and node IDs have been established for this node. Store IDs are
// allocated via a sequence id generator stored at a system key per
// node. The new stores are added to n.stores.
func (n *Node) bootstrapStores(
ctx context.Context,
firstStoreID roachpb.StoreID,
emptyEngines []storage.Engine,
stopper *stop.Stopper,
) error {
if n.clusterID.Get() == uuid.Nil {
return errors.New("ClusterID missing during store bootstrap of auxiliary store")
}
{
// Bootstrap all waiting stores by allocating a new store id for
// each and invoking storage.Bootstrap() to persist it and the cluster
// version and to create stores. The -1 comes from the fact that our
// first store ID has already been pre-allocated for us.
storeIDAlloc := int64(len(emptyEngines)) - 1
if firstStoreID == 0 {
// We lied, we don't have a firstStoreID; we'll need to allocate for
// that too.
//
// TODO(irfansharif): We get here if we're falling back to
// gossip-based connectivity. This can be removed in 21.1.
storeIDAlloc++
}
startID, err := allocateStoreIDs(ctx, n.Descriptor.NodeID, storeIDAlloc, n.storeCfg.DB)
if firstStoreID == 0 {
firstStoreID = startID
}
if err != nil {
return errors.Errorf("error allocating store ids: %s", err)
}
sIdent := roachpb.StoreIdent{
ClusterID: n.clusterID.Get(),
NodeID: n.Descriptor.NodeID,
StoreID: firstStoreID,
}
for _, eng := range emptyEngines {
if err := kvserver.InitEngine(ctx, eng, sIdent); err != nil {
return err
}
s := kvserver.NewStore(ctx, n.storeCfg, eng, &n.Descriptor)
if err := s.Start(ctx, stopper); err != nil {
return err
}
n.addStore(ctx, s)
log.Infof(ctx, "bootstrapped store %s", s)
// Done regularly in Node.startGossiping, but this cuts down the time
// until this store is used for range allocations.
if err := s.GossipStore(ctx, false /* useCached */); err != nil {
log.Warningf(ctx, "error doing initial gossiping: %s", err)
}
sIdent.StoreID++
}
}
// write a new status summary after all stores have been bootstrapped; this
// helps the UI remain responsive when new nodes are added.
if err := n.writeNodeStatus(ctx, 0 /* alertTTL */); err != nil {
log.Warningf(ctx, "error writing node summary after store bootstrap: %s", err)
}
return nil
}
// startGossiping loops on a periodic ticker to gossip node-related
// information. Starts a goroutine to loop until the node is closed.
func (n *Node) startGossiping(ctx context.Context, stopper *stop.Stopper) {
ctx = n.AnnotateCtx(ctx)
stopper.RunWorker(ctx, func(ctx context.Context) {
// Verify we've already gossiped our node descriptor.
//
// TODO(tbg): see if we really needed to do this earlier already. We
// probably needed to (this call has to come late for ... reasons I
// still need to look into) and nobody can talk to this node until
// the descriptor is in Gossip.
if _, err := n.storeCfg.Gossip.GetNodeDescriptor(n.Descriptor.NodeID); err != nil {
panic(err)
}
// NB: Gossip may not be connected at this point. That's fine though,
// we can still gossip something; Gossip sends it out reactively once
// it can.
statusTicker := time.NewTicker(gossipStatusInterval)
storesTicker := time.NewTicker(gossip.StoresInterval)
nodeTicker := time.NewTicker(gossip.NodeDescriptorInterval)
defer storesTicker.Stop()
defer nodeTicker.Stop()
n.gossipStores(ctx) // one-off run before going to sleep
for {
select {
case <-statusTicker.C:
n.storeCfg.Gossip.LogStatus()
case <-storesTicker.C:
n.gossipStores(ctx)
case <-nodeTicker.C:
if err := n.storeCfg.Gossip.SetNodeDescriptor(&n.Descriptor); err != nil {
log.Warningf(ctx, "couldn't gossip descriptor for node %d: %s", n.Descriptor.NodeID, err)
}
case <-stopper.ShouldStop():
return
}
}
})
}
// gossipStores broadcasts each store and dead replica to the gossip network.
func (n *Node) gossipStores(ctx context.Context) {
if err := n.stores.VisitStores(func(s *kvserver.Store) error {
return s.GossipStore(ctx, false /* useCached */)
}); err != nil {
log.Warningf(ctx, "%v", err)
}
}
// startComputePeriodicMetrics starts a loop which periodically instructs each
// store to compute the value of metrics which cannot be incrementally
// maintained.
func (n *Node) startComputePeriodicMetrics(stopper *stop.Stopper, interval time.Duration) {
ctx := n.AnnotateCtx(context.Background())
stopper.RunWorker(ctx, func(ctx context.Context) {
// Compute periodic stats at the same frequency as metrics are sampled.
ticker := time.NewTicker(interval)
defer ticker.Stop()
for tick := 0; ; tick++ {
select {
case <-ticker.C:
if err := n.computePeriodicMetrics(ctx, tick); err != nil {
log.Errorf(ctx, "failed computing periodic metrics: %s", err)
}
case <-stopper.ShouldStop():
return
}
}
})
}
// computePeriodicMetrics instructs each store to compute the value of
// complicated metrics.
func (n *Node) computePeriodicMetrics(ctx context.Context, tick int) error {
return n.stores.VisitStores(func(store *kvserver.Store) error {
if err := store.ComputeMetrics(ctx, tick); err != nil {
log.Warningf(ctx, "%s: unable to compute metrics: %s", store, err)
}
return nil
})
}
func (n *Node) startGraphiteStatsExporter(st *cluster.Settings) {
ctx := logtags.AddTag(n.AnnotateCtx(context.Background()), "graphite stats exporter", nil)
pm := metric.MakePrometheusExporter()
n.stopper.RunWorker(ctx, func(ctx context.Context) {
var timer timeutil.Timer
defer timer.Stop()
for {
timer.Reset(graphiteInterval.Get(&st.SV))
select {
case <-n.stopper.ShouldStop():
return
case <-timer.C:
timer.Read = true
endpoint := graphiteEndpoint.Get(&st.SV)
if endpoint != "" {
if err := n.recorder.ExportToGraphite(ctx, endpoint, &pm); err != nil {
log.Infof(ctx, "error pushing metrics to graphite: %s\n", err)
}
}
}
}
})
}
// startWriteNodeStatus begins periodically persisting status summaries for the
// node and its stores.
func (n *Node) startWriteNodeStatus(frequency time.Duration) {
ctx := logtags.AddTag(n.AnnotateCtx(context.Background()), "summaries", nil)
// Immediately record summaries once on server startup.
if err := n.writeNodeStatus(ctx, 0 /* alertTTL */); err != nil {
log.Warningf(ctx, "error recording initial status summaries: %s", err)
}
n.stopper.RunWorker(ctx, func(ctx context.Context) {
// Write a status summary immediately; this helps the UI remain
// responsive when new nodes are added.
ticker := time.NewTicker(frequency)
defer ticker.Stop()
for {
select {
case <-ticker.C:
// Use an alertTTL of twice the ticker frequency. This makes sure that
// alerts don't disappear and reappear spuriously while at the same
// time ensuring that an alert doesn't linger for too long after having
// resolved.
if err := n.writeNodeStatus(ctx, 2*frequency); err != nil {
log.Warningf(ctx, "error recording status summaries: %s", err)
}
case <-n.stopper.ShouldStop():
return
}
}
})
}
// writeNodeStatus retrieves status summaries from the supplied
// NodeStatusRecorder and persists them to the cockroach data store.
func (n *Node) writeNodeStatus(ctx context.Context, alertTTL time.Duration) error {
var err error
if runErr := n.stopper.RunTask(ctx, "node.Node: writing summary", func(ctx context.Context) {
nodeStatus := n.recorder.GenerateNodeStatus(ctx)
if nodeStatus == nil {
return
}
if result := n.recorder.CheckHealth(ctx, *nodeStatus); len(result.Alerts) != 0 {
var numNodes int
if err := n.storeCfg.Gossip.IterateInfos(gossip.KeyNodeIDPrefix, func(k string, info gossip.Info) error {
numNodes++
return nil
}); err != nil {
log.Warningf(ctx, "%v", err)
}
if numNodes > 1 {
// Avoid this warning on single-node clusters, which require special UX.
log.Warningf(ctx, "health alerts detected: %+v", result)
}
if err := n.storeCfg.Gossip.AddInfoProto(
gossip.MakeNodeHealthAlertKey(n.Descriptor.NodeID), &result, alertTTL,
); err != nil {
log.Warningf(ctx, "unable to gossip health alerts: %+v", result)
}
// TODO(tschottdorf): add a metric that we increment every time there are
// alerts. This can help understand how long the cluster has been in that
// state (since it'll be incremented every ~10s).
}
err = n.recorder.WriteNodeStatus(ctx, n.storeCfg.DB, *nodeStatus)
}); runErr != nil {
err = runErr
}
return err
}
// recordJoinEvent begins an asynchronous task which attempts to log a "node
// join" or "node restart" event. This query will retry until it succeeds or the
// server stops.
func (n *Node) recordJoinEvent() {
if !n.storeCfg.LogRangeEvents {
return
}
logEventType := sql.EventLogNodeRestart
lastUp := n.lastUp
if n.initialStart {
logEventType = sql.EventLogNodeJoin
lastUp = n.startedAt
}
n.stopper.RunWorker(context.Background(), func(bgCtx context.Context) {
ctx, span := n.AnnotateCtxWithSpan(bgCtx, "record-join-event")
defer span.Finish()
retryOpts := base.DefaultRetryOptions()
retryOpts.Closer = n.stopper.ShouldStop()
for r := retry.Start(retryOpts); r.Next(); {
if err := n.storeCfg.DB.Txn(ctx, func(ctx context.Context, txn *kv.Txn) error {
return n.eventLogger.InsertEventRecord(
ctx,
txn,
logEventType,
int32(n.Descriptor.NodeID),
int32(n.Descriptor.NodeID),
struct {
Descriptor roachpb.NodeDescriptor
ClusterID uuid.UUID
StartedAt int64
LastUp int64
}{n.Descriptor, n.clusterID.Get(), n.startedAt, lastUp},
)
}); err != nil {
log.Warningf(ctx, "%s: unable to log %s event: %s", n, logEventType, err)
} else {
return
}
}
})
}
// If we receive a (proto-marshaled) roachpb.BatchRequest whose Requests contain
// a message type unknown to this node, we will end up with a zero entry in the
// slice. If we don't error out early, this breaks all sorts of assumptions and
// usually ends in a panic.
func checkNoUnknownRequest(reqs []roachpb.RequestUnion) *roachpb.UnsupportedRequestError {
for _, req := range reqs {
if req.GetValue() == nil {
return &roachpb.UnsupportedRequestError{}
}
}
return nil
}
func (n *Node) batchInternal(
ctx context.Context, args *roachpb.BatchRequest,
) (*roachpb.BatchResponse, error) {
if detail := checkNoUnknownRequest(args.Requests); detail != nil {
var br roachpb.BatchResponse
br.Error = roachpb.NewError(detail)
return &br, nil
}
var br *roachpb.BatchResponse
if err := n.stopper.RunTaskWithErr(ctx, "node.Node: batch", func(ctx context.Context) error {
var finishSpan func(*roachpb.BatchResponse)
// Shadow ctx from the outer function. Written like this to pass the linter.
ctx, finishSpan = n.setupSpanForIncomingRPC(ctx, grpcutil.IsLocalRequestContext(ctx))
// NB: wrapped to delay br evaluation to its value when returning.
defer func() { finishSpan(br) }()
if log.HasSpanOrEvent(ctx) {
log.Eventf(ctx, "node received request: %s", args.Summary())
}
tStart := timeutil.Now()
var pErr *roachpb.Error
br, pErr = n.stores.Send(ctx, *args)
if pErr != nil {
br = &roachpb.BatchResponse{}
log.VErrEventf(ctx, 3, "%T", pErr.GetDetail())
}
if br.Error != nil {
panic(roachpb.ErrorUnexpectedlySet(n.stores, br))
}
n.metrics.callComplete(timeutil.Since(tStart), pErr)
br.Error = pErr
return nil
}); err != nil {
return nil, err
}
return br, nil
}
// Batch implements the roachpb.InternalServer interface.
func (n *Node) Batch(
ctx context.Context, args *roachpb.BatchRequest,
) (*roachpb.BatchResponse, error) {
// NB: Node.Batch is called directly for "local" calls. We don't want to
// carry the associated log tags forward as doing so makes adding additional
// log tags more expensive and makes local calls differ from remote calls.
ctx = n.storeCfg.AmbientCtx.ResetAndAnnotateCtx(ctx)
br, err := n.batchInternal(ctx, args)
// We always return errors via BatchResponse.Error so structure is
// preserved; plain errors are presumed to be from the RPC
// framework and not from cockroach.
if err != nil {
if br == nil {
br = &roachpb.BatchResponse{}
}
if br.Error != nil {
log.Fatalf(
ctx, "attempting to return both a plain error (%s) and roachpb.Error (%s)", err, br.Error,
)
}
br.Error = roachpb.NewError(err)
}
return br, nil
}
// setupSpanForIncomingRPC takes a context and returns a derived context with a
// new span in it. Depending on the input context, that span might be a root
// span or a child span. If it is a child span, it might be a child span of a
// local or a remote span. Note that supporting both the "child of local span"
// and "child of remote span" cases are important, as this RPC can be called
// either through the network or directly if the caller is local.
//
// It returns the derived context and a cleanup function to be called when
// servicing the RPC is done. The cleanup function will close the span and, in
// case the span was the child of a remote span and "snowball tracing" was
// enabled on that parent span, it serializes the local trace into the
// BatchResponse. The cleanup function takes the BatchResponse in which the
// response is to serialized. The BatchResponse can be nil in case no response
// is to be returned to the rpc caller.
func (n *Node) setupSpanForIncomingRPC(
ctx context.Context, isLocalRequest bool,
) (context.Context, func(*roachpb.BatchResponse)) {
// The operation name matches the one created by the interceptor in the
// remoteTrace case below.
const opName = "/cockroach.roachpb.Internal/Batch"
var newSpan, grpcSpan *tracing.Span
if isLocalRequest {
// This is a local request which circumvented gRPC. Start a span now.
ctx, newSpan = tracing.ChildSpan(ctx, opName)
} else {
grpcSpan = tracing.SpanFromContext(ctx)
if grpcSpan == nil {
// If tracing information was passed via gRPC metadata, the gRPC interceptor
// should have opened a span for us. If not, open a span now (if tracing is
// disabled, this will be a noop span).
newSpan = n.storeCfg.AmbientCtx.Tracer.StartSpan(
opName, tracing.WithLogTags(n.storeCfg.AmbientCtx.LogTags()),
)
ctx = tracing.ContextWithSpan(ctx, newSpan)
} else {
grpcSpan.SetTag("node", n.Descriptor.NodeID)
}
}
finishSpan := func(br *roachpb.BatchResponse) {
if newSpan != nil {
newSpan.Finish()
}
if br == nil {
return
}
if grpcSpan != nil {
// If this is a "snowball trace", we'll need to return all the recorded