-
Notifications
You must be signed in to change notification settings - Fork 3.8k
/
pebble_iterator.go
733 lines (665 loc) · 21.9 KB
/
pebble_iterator.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
// Copyright 2019 The Cockroach Authors.
//
// Use of this software is governed by the Business Source License
// included in the file licenses/BSL.txt.
//
// As of the Change Date specified in that file, in accordance with
// the Business Source License, use of this software will be governed
// by the Apache License, Version 2.0, included in the file
// licenses/APL.txt.
package storage
import (
"bytes"
"math"
"sync"
"github.com/cockroachdb/cockroach/pkg/keys"
"github.com/cockroachdb/cockroach/pkg/roachpb"
"github.com/cockroachdb/cockroach/pkg/storage/enginepb"
"github.com/cockroachdb/cockroach/pkg/util/protoutil"
"github.com/cockroachdb/cockroach/pkg/util/uuid"
"github.com/cockroachdb/errors"
"github.com/cockroachdb/pebble"
"github.com/cockroachdb/pebble/sstable"
)
// pebbleIterator is a wrapper around a pebble.Iterator that implements the
// MVCCIterator and EngineIterator interfaces. A single pebbleIterator
// should only be used in one of the two modes.
type pebbleIterator struct {
// Underlying iterator for the DB.
iter *pebble.Iterator
options pebble.IterOptions
// Reusable buffer for MVCCKey or EngineKey encoding.
keyBuf []byte
// Buffers for copying iterator bounds to. Note that the underlying memory
// is not GCed upon Close(), to reduce the number of overall allocations.
lowerBoundBuf []byte
upperBoundBuf []byte
// Set to true to govern whether to call SeekPrefixGE or SeekGE. Skips
// SSTables based on MVCC/Engine key when true.
prefix bool
// If reusable is true, Close() does not actually close the underlying
// iterator, but simply marks it as not inuse. Used by pebbleReadOnly.
reusable bool
inuse bool
// mvccDirIsReverse and mvccDone are used only for the methods implementing
// MVCCIterator. They are used to prevent the iterator from iterating into
// the lock table key space.
//
// The current direction. false for forward, true for reverse.
mvccDirIsReverse bool
// True iff the iterator is exhausted in the current direction. There is
// no error to report when it is true.
mvccDone bool
// Stat tracking the number of sstables encountered during time-bound
// iteration. Only used for MVCCIterator.
timeBoundNumSSTables int
}
var _ MVCCIterator = &pebbleIterator{}
var _ EngineIterator = &pebbleIterator{}
var pebbleIterPool = sync.Pool{
New: func() interface{} {
return &pebbleIterator{}
},
}
type cloneableIter interface {
Clone() (*pebble.Iterator, error)
Close() error
}
// Instantiates a new Pebble iterator, or gets one from the pool.
func newPebbleIterator(
handle pebble.Reader,
iterToClone cloneableIter,
opts IterOptions,
durability DurabilityRequirement,
) *pebbleIterator {
iter := pebbleIterPool.Get().(*pebbleIterator)
iter.reusable = false // defensive
iter.init(handle, iterToClone, false /* iterUnused */, opts, durability)
return iter
}
// init resets this pebbleIterator for use with the specified arguments. The
// current instance could either be a cached pebbleIterator (e.g. in
// pebbleBatch), or a newly-instantiated one through newPebbleIterator. The
// underlying *pebble.Iterator is created using iterToClone, if non-nil, else it
// is created using handle.
func (p *pebbleIterator) init(
handle pebble.Reader,
iterToClone cloneableIter,
iterUnused bool,
opts IterOptions,
durability DurabilityRequirement,
) {
*p = pebbleIterator{
keyBuf: p.keyBuf,
lowerBoundBuf: p.lowerBoundBuf,
upperBoundBuf: p.upperBoundBuf,
reusable: p.reusable,
}
if iterToClone != nil {
if iterUnused {
// NB: If the iterator was never used (at the time of writing, this means
// that the iterator was created by `PinEngineStateForIterators()`), we
// don't need to clone it.
p.iter = iterToClone.(*pebble.Iterator)
} else {
var err error
if p.iter, err = iterToClone.Clone(); err != nil {
panic(err)
}
}
}
p.setOptions(opts, durability)
if p.iter == nil {
p.iter = handle.NewIter(&p.options)
}
p.inuse = true
}
// setOptions updates the options for a pebbleIterator. If p.iter is non-nil, it
// updates the options on the existing iterator too.
func (p *pebbleIterator) setOptions(opts IterOptions, durability DurabilityRequirement) {
if !opts.Prefix && len(opts.UpperBound) == 0 && len(opts.LowerBound) == 0 {
panic("iterator must set prefix or upper bound or lower bound")
}
if opts.MinTimestampHint.IsSet() && opts.MaxTimestampHint.IsEmpty() {
panic("min timestamp hint set without max timestamp hint")
}
// Generate new Pebble iterator options.
p.options = pebble.IterOptions{
OnlyReadGuaranteedDurable: durability == GuaranteedDurability,
}
p.prefix = opts.Prefix
if opts.LowerBound != nil {
// This is the same as
// p.options.LowerBound = EncodeKeyToBuf(p.lowerBoundBuf[0][:0], MVCCKey{Key: opts.LowerBound})
// or EngineKey{Key: opts.LowerBound}.EncodeToBuf(...).
// Since we are encoding keys with an empty version anyway, we can just
// append the NUL byte instead of calling the above encode functions which
// will do the same thing.
p.lowerBoundBuf = append(p.lowerBoundBuf[:0], opts.LowerBound...)
p.lowerBoundBuf = append(p.lowerBoundBuf, 0x00)
p.options.LowerBound = p.lowerBoundBuf
}
if opts.UpperBound != nil {
// Same as above.
p.upperBoundBuf = append(p.upperBoundBuf[:0], opts.UpperBound...)
p.upperBoundBuf = append(p.upperBoundBuf, 0x00)
p.options.UpperBound = p.upperBoundBuf
}
if opts.MaxTimestampHint.IsSet() {
encodedMinTS := string(encodeMVCCTimestamp(opts.MinTimestampHint))
encodedMaxTS := string(encodeMVCCTimestamp(opts.MaxTimestampHint))
p.options.TableFilter = func(userProps map[string]string) bool {
tableMinTS := userProps["crdb.ts.min"]
if len(tableMinTS) == 0 {
if opts.WithStats {
p.timeBoundNumSSTables++
}
return true
}
tableMaxTS := userProps["crdb.ts.max"]
if len(tableMaxTS) == 0 {
if opts.WithStats {
p.timeBoundNumSSTables++
}
return true
}
used := encodedMaxTS >= tableMinTS && encodedMinTS <= tableMaxTS
if used && opts.WithStats {
p.timeBoundNumSSTables++
}
return used
}
// We are given an inclusive [MinTimestampHint, MaxTimestampHint]. The
// MVCCWAllTimeIntervalCollector has collected the WallTimes and we need
// [min, max), i.e., exclusive on the upper bound.
p.options.PointKeyFilters = []pebble.BlockPropertyFilter{
sstable.NewBlockIntervalFilter(mvccWallTimeIntervalCollector,
uint64(opts.MinTimestampHint.WallTime),
uint64(opts.MaxTimestampHint.WallTime)+1),
}
}
// Set the new iterator options. We unconditionally do so, since Pebble will
// optimize noop changes as needed, and it may affect batch write visibility.
if p.iter != nil {
p.iter.SetOptions(&p.options)
}
}
// Close implements the MVCCIterator interface.
func (p *pebbleIterator) Close() {
if !p.inuse {
panic("closing idle iterator")
}
p.inuse = false
if p.reusable {
p.iter.ResetStats()
return
}
p.destroy()
pebbleIterPool.Put(p)
}
// SeekGE implements the MVCCIterator interface.
func (p *pebbleIterator) SeekGE(key MVCCKey) {
p.mvccDirIsReverse = false
p.mvccDone = false
p.keyBuf = EncodeMVCCKeyToBuf(p.keyBuf[:0], key)
if p.prefix {
p.iter.SeekPrefixGE(p.keyBuf)
} else {
p.iter.SeekGE(p.keyBuf)
}
}
// SeekIntentGE implements the MVCCIterator interface.
func (p *pebbleIterator) SeekIntentGE(key roachpb.Key, _ uuid.UUID) {
p.SeekGE(MVCCKey{Key: key})
}
// SeekEngineKeyGE implements the EngineIterator interface.
func (p *pebbleIterator) SeekEngineKeyGE(key EngineKey) (valid bool, err error) {
p.keyBuf = key.EncodeToBuf(p.keyBuf[:0])
var ok bool
if p.prefix {
ok = p.iter.SeekPrefixGE(p.keyBuf)
} else {
ok = p.iter.SeekGE(p.keyBuf)
}
// NB: A Pebble Iterator always returns ok==false when an error is
// present.
if ok {
return true, nil
}
return false, p.iter.Error()
}
func (p *pebbleIterator) SeekEngineKeyGEWithLimit(
key EngineKey, limit roachpb.Key,
) (state pebble.IterValidityState, err error) {
p.keyBuf = key.EncodeToBuf(p.keyBuf[:0])
if limit != nil {
if p.prefix {
panic("prefix iteration does not permit a limit")
}
// Append the sentinel byte to make an EngineKey that has an empty
// version.
limit = append(limit, '\x00')
}
if p.prefix {
state = pebble.IterExhausted
if p.iter.SeekPrefixGE(p.keyBuf) {
state = pebble.IterValid
}
} else {
state = p.iter.SeekGEWithLimit(p.keyBuf, limit)
}
if state == pebble.IterExhausted {
return state, p.iter.Error()
}
return state, nil
}
// Valid implements the MVCCIterator interface. Must not be called from
// methods of EngineIterator.
func (p *pebbleIterator) Valid() (bool, error) {
if p.mvccDone {
return false, nil
}
// NB: A Pebble Iterator always returns Valid()==false when an error is
// present. If Valid() is true, there is no error.
if ok := p.iter.Valid(); ok {
// The MVCCIterator interface is broken in that it silently discards
// the error when UnsafeKey(), Key() are unable to parse the key as
// an MVCCKey. This is especially problematic if the caller is
// accidentally iterating into the lock table key space, since that
// parsing will fail. We do a cheap check here to make sure we are
// not in the lock table key space.
//
// TODO(sumeer): fix this properly by changing those method signatures.
k := p.iter.Key()
if len(k) == 0 {
return false, errors.Errorf("iterator encountered 0 length key")
}
// Last byte is the version length + 1 or 0.
versionLen := int(k[len(k)-1])
if versionLen == engineKeyVersionLockTableLen+1 {
p.mvccDone = true
return false, nil
}
return ok, nil
}
return false, p.iter.Error()
}
// Next implements the MVCCIterator interface.
func (p *pebbleIterator) Next() {
if p.mvccDirIsReverse {
// Switching directions.
p.mvccDirIsReverse = false
p.mvccDone = false
}
if p.mvccDone {
return
}
p.iter.Next()
}
// NextEngineKey implements the Engineterator interface.
func (p *pebbleIterator) NextEngineKey() (valid bool, err error) {
ok := p.iter.Next()
// NB: A Pebble Iterator always returns ok==false when an error is
// present.
if ok {
return true, nil
}
return false, p.iter.Error()
}
func (p *pebbleIterator) NextEngineKeyWithLimit(
limit roachpb.Key,
) (state pebble.IterValidityState, err error) {
if limit != nil {
// Append the sentinel byte to make an EngineKey that has an empty
// version.
limit = append(limit, '\x00')
}
state = p.iter.NextWithLimit(limit)
if state == pebble.IterExhausted {
return state, p.iter.Error()
}
return state, nil
}
// NextKey implements the MVCCIterator interface.
func (p *pebbleIterator) NextKey() {
// Even though NextKey() is not allowed for switching direction by the
// MVCCIterator interface, pebbleIterator works correctly even when
// switching direction. So we set mvccDirIsReverse = false.
if p.mvccDirIsReverse {
// Switching directions.
p.mvccDirIsReverse = false
p.mvccDone = false
}
if p.mvccDone {
return
}
if valid, err := p.Valid(); err != nil || !valid {
return
}
p.keyBuf = append(p.keyBuf[:0], p.UnsafeKey().Key...)
if !p.iter.Next() {
return
}
if bytes.Equal(p.keyBuf, p.UnsafeKey().Key) {
// This is equivalent to:
// p.iter.SeekGE(EncodeKey(MVCCKey{p.UnsafeKey().Key.Next(), hlc.Timestamp{}}))
p.iter.SeekGE(append(p.keyBuf, 0, 0))
}
}
// UnsafeKey implements the MVCCIterator interface.
func (p *pebbleIterator) UnsafeKey() MVCCKey {
if valid, err := p.Valid(); err != nil || !valid {
return MVCCKey{}
}
mvccKey, err := DecodeMVCCKey(p.iter.Key())
if err != nil {
return MVCCKey{}
}
return mvccKey
}
// UnsafeEngineKey implements the EngineIterator interface.
func (p *pebbleIterator) UnsafeEngineKey() (EngineKey, error) {
engineKey, ok := DecodeEngineKey(p.iter.Key())
if !ok {
return engineKey, errors.Errorf("invalid encoded engine key: %x", p.iter.Key())
}
return engineKey, nil
}
// UnsafeRawKey returns the raw key from the underlying pebble.Iterator.
func (p *pebbleIterator) UnsafeRawKey() []byte {
return p.iter.Key()
}
// UnsafeRawMVCCKey implements the MVCCIterator interface.
func (p *pebbleIterator) UnsafeRawMVCCKey() []byte {
return p.iter.Key()
}
// UnsafeRawEngineKey implements the EngineIterator interface.
func (p *pebbleIterator) UnsafeRawEngineKey() []byte {
return p.iter.Key()
}
// UnsafeValue implements the MVCCIterator and EngineIterator interfaces.
func (p *pebbleIterator) UnsafeValue() []byte {
if ok := p.iter.Valid(); !ok {
return nil
}
return p.iter.Value()
}
// SeekLT implements the MVCCIterator interface.
func (p *pebbleIterator) SeekLT(key MVCCKey) {
p.mvccDirIsReverse = true
p.mvccDone = false
p.keyBuf = EncodeMVCCKeyToBuf(p.keyBuf[:0], key)
p.iter.SeekLT(p.keyBuf)
}
// SeekEngineKeyLT implements the EngineIterator interface.
func (p *pebbleIterator) SeekEngineKeyLT(key EngineKey) (valid bool, err error) {
p.keyBuf = key.EncodeToBuf(p.keyBuf[:0])
ok := p.iter.SeekLT(p.keyBuf)
// NB: A Pebble Iterator always returns ok==false when an error is
// present.
if ok {
return true, nil
}
return false, p.iter.Error()
}
func (p *pebbleIterator) SeekEngineKeyLTWithLimit(
key EngineKey, limit roachpb.Key,
) (state pebble.IterValidityState, err error) {
p.keyBuf = key.EncodeToBuf(p.keyBuf[:0])
if limit != nil {
// Append the sentinel byte to make an EngineKey that has an empty
// version.
limit = append(limit, '\x00')
}
state = p.iter.SeekLTWithLimit(p.keyBuf, limit)
if state == pebble.IterExhausted {
return state, p.iter.Error()
}
return state, nil
}
// Prev implements the MVCCIterator interface.
func (p *pebbleIterator) Prev() {
if !p.mvccDirIsReverse {
// Switching directions.
p.mvccDirIsReverse = true
p.mvccDone = false
}
if p.mvccDone {
return
}
p.iter.Prev()
}
// PrevEngineKey implements the EngineIterator interface.
func (p *pebbleIterator) PrevEngineKey() (valid bool, err error) {
ok := p.iter.Prev()
// NB: A Pebble Iterator always returns ok==false when an error is
// present.
if ok {
return true, nil
}
return false, p.iter.Error()
}
func (p *pebbleIterator) PrevEngineKeyWithLimit(
limit roachpb.Key,
) (state pebble.IterValidityState, err error) {
if limit != nil {
// Append the sentinel byte to make an EngineKey that has an empty
// version.
limit = append(limit, '\x00')
}
state = p.iter.PrevWithLimit(limit)
if state == pebble.IterExhausted {
return state, p.iter.Error()
}
return state, nil
}
// Key implements the MVCCIterator interface.
func (p *pebbleIterator) Key() MVCCKey {
key := p.UnsafeKey()
keyCopy := make([]byte, len(key.Key))
copy(keyCopy, key.Key)
key.Key = keyCopy
return key
}
// EngineKey implements the EngineIterator interface.
func (p *pebbleIterator) EngineKey() (EngineKey, error) {
key, err := p.UnsafeEngineKey()
if err != nil {
return key, err
}
return key.Copy(), nil
}
// Value implements the MVCCIterator and EngineIterator interfaces.
func (p *pebbleIterator) Value() []byte {
value := p.UnsafeValue()
valueCopy := make([]byte, len(value))
copy(valueCopy, value)
return valueCopy
}
// ValueProto implements the MVCCIterator interface.
func (p *pebbleIterator) ValueProto(msg protoutil.Message) error {
value := p.UnsafeValue()
return protoutil.Unmarshal(value, msg)
}
// ComputeStats implements the MVCCIterator interface.
func (p *pebbleIterator) ComputeStats(
start, end roachpb.Key, nowNanos int64,
) (enginepb.MVCCStats, error) {
return ComputeStatsForRange(p, start, end, nowNanos)
}
// Go-only version of IsValidSplitKey. Checks if the specified key is in
// NoSplitSpans.
func isValidSplitKey(key roachpb.Key, noSplitSpans []roachpb.Span) bool {
if key.Equal(keys.Meta2KeyMax) {
// We do not allow splits at Meta2KeyMax. The reason for this is that range
// descriptors are stored at RangeMetaKey(range.EndKey), so the new range
// that ends at Meta2KeyMax would naturally store its descriptor at
// RangeMetaKey(Meta2KeyMax) = Meta1KeyMax. However, Meta1KeyMax already
// serves a different role of holding a second copy of the descriptor for
// the range that spans the meta2/userspace boundary (see case 3a in
// rangeAddressing). If we allowed splits at Meta2KeyMax, the two roles
// would overlap. See #1206.
return false
}
for i := range noSplitSpans {
if noSplitSpans[i].ProperlyContainsKey(key) {
return false
}
}
return true
}
// IsValidSplitKey returns whether the key is a valid split key. Adapter for
// the method above, for use from other packages.
func IsValidSplitKey(key roachpb.Key) bool {
return isValidSplitKey(key, keys.NoSplitSpans)
}
// FindSplitKey implements the MVCCIterator interface.
func (p *pebbleIterator) FindSplitKey(
start, end, minSplitKey roachpb.Key, targetSize int64,
) (MVCCKey, error) {
return findSplitKeyUsingIterator(p, start, end, minSplitKey, targetSize)
}
func findSplitKeyUsingIterator(
iter MVCCIterator, start, end, minSplitKey roachpb.Key, targetSize int64,
) (MVCCKey, error) {
const timestampLen = 12
sizeSoFar := int64(0)
bestDiff := int64(math.MaxInt64)
bestSplitKey := MVCCKey{}
// found indicates that we have found a valid split key that is the best
// known so far. If bestSplitKey is empty => that split key
// is in prevKey, else it is in bestSplitKey.
found := false
prevKey := MVCCKey{}
// We only have to consider no-split spans if our minimum split key possibly
// lies before them. Note that the no-split spans are ordered by end-key.
noSplitSpans := keys.NoSplitSpans
for i := range noSplitSpans {
if minSplitKey.Compare(noSplitSpans[i].EndKey) <= 0 {
noSplitSpans = noSplitSpans[i:]
break
}
}
// Note that it is unnecessary to compare against "end" to decide to
// terminate iteration because the iterator's upper bound has already been
// set to end.
mvccMinSplitKey := MakeMVCCMetadataKey(minSplitKey)
iter.SeekGE(MakeMVCCMetadataKey(start))
for ; ; iter.Next() {
valid, err := iter.Valid()
if err != nil {
return MVCCKey{}, err
}
if !valid {
break
}
mvccKey := iter.UnsafeKey()
diff := targetSize - sizeSoFar
if diff < 0 {
diff = -diff
}
if diff > bestDiff {
// diff will keep increasing past this point. And we must have had a valid
// candidate in the past since we can't be worse than MaxInt64.
break
}
if mvccMinSplitKey.Key != nil && !mvccKey.Less(mvccMinSplitKey) {
// mvccKey is >= mvccMinSplitKey. Set the minSplitKey to nil so we do
// not have to make any more checks going forward.
mvccMinSplitKey.Key = nil
}
if mvccMinSplitKey.Key == nil && diff < bestDiff &&
(len(noSplitSpans) == 0 || isValidSplitKey(mvccKey.Key, noSplitSpans)) {
// This is a valid candidate for a split key.
//
// Instead of copying bestSplitKey just yet, flip the found flag. In the
// most common case where the actual best split key is followed by a key
// that has diff > bestDiff (see the if statement with that predicate
// above), this lets us save a copy by reusing prevCandidateKey as the
// best split key.
bestDiff = diff
found = true
// Set length of bestSplitKey to 0, which the rest of this method relies
// on to check if the last key encountered was the best split key.
bestSplitKey.Key = bestSplitKey.Key[:0]
} else if found && len(bestSplitKey.Key) == 0 {
// We were just at a valid split key candidate, but then we came across
// a key that cannot be a split key (i.e. is in noSplitSpans), or was not
// an improvement over bestDiff. Copy the previous key as the
// bestSplitKey.
bestSplitKey.Timestamp = prevKey.Timestamp
bestSplitKey.Key = append(bestSplitKey.Key[:0], prevKey.Key...)
}
sizeSoFar += int64(len(iter.UnsafeValue()))
if mvccKey.IsValue() && bytes.Equal(prevKey.Key, mvccKey.Key) {
// We only advanced timestamps, but not new mvcc keys.
sizeSoFar += timestampLen
} else {
sizeSoFar += int64(len(mvccKey.Key) + 1)
if mvccKey.IsValue() {
sizeSoFar += timestampLen
}
}
prevKey.Key = append(prevKey.Key[:0], mvccKey.Key...)
prevKey.Timestamp = mvccKey.Timestamp
}
// There are three distinct types of cases possible here:
//
// 1. No valid split key was found (found == false), in which case we return
// bestSplitKey (which should be MVCCKey{}).
// 2. The best candidate seen for a split key so far was encountered in the
// last iteration of the above loop. We broke out of the loop either due
// to iterator exhaustion (!p.iter.Valid()), or an increasing diff. Return
// prevKey as the best split key.
// 3. The best split key was seen multiple iterations ago, and was copied into
// bestSplitKey at some point (found == true, len(bestSplitKey.Key) > 0).
// Keys encountered after that point were invalid for being in noSplitSpans
// so return the bestSplitKey that had been copied.
//
// This if statement checks for case 2.
if found && len(bestSplitKey.Key) == 0 {
// Use the last key found as the best split key, since we broke out of the
// loop (due to iterator exhaustion or increasing diff) right after we saw
// the best split key. prevKey has to be a valid split key since the only
// way we'd have both found && len(bestSplitKey.Key) == 0 is when we've
// already checked prevKey for validity.
return prevKey, nil
}
return bestSplitKey, nil
}
// Stats implements the {MVCCIterator,EngineIterator} interfaces.
func (p *pebbleIterator) Stats() IteratorStats {
return IteratorStats{
TimeBoundNumSSTs: p.timeBoundNumSSTables,
Stats: p.iter.Stats(),
}
}
// SupportsPrev implements the MVCCIterator interface.
func (p *pebbleIterator) SupportsPrev() bool {
return true
}
// GetRawIter is part of the EngineIterator interface.
func (p *pebbleIterator) GetRawIter() *pebble.Iterator {
return p.iter
}
func (p *pebbleIterator) destroy() {
if p.inuse {
panic("iterator still in use")
}
if p.iter != nil {
err := p.iter.Close()
if err != nil {
panic(err)
}
p.iter = nil
}
// Reset all fields except for the key and lower/upper bound buffers. Holding
// onto their underlying memory is more efficient to prevent extra
// allocations down the line.
*p = pebbleIterator{
keyBuf: p.keyBuf,
lowerBoundBuf: p.lowerBoundBuf,
upperBoundBuf: p.upperBoundBuf,
reusable: p.reusable,
}
}