-
Notifications
You must be signed in to change notification settings - Fork 3.8k
/
replicate_queue.go
733 lines (682 loc) · 24.5 KB
/
replicate_queue.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
// Copyright 2015 The Cockroach Authors.
//
// Use of this software is governed by the Business Source License
// included in the file licenses/BSL.txt.
//
// As of the Change Date specified in that file, in accordance with
// the Business Source License, use of this software will be governed
// by the Apache License, Version 2.0, included in the file
// licenses/APL.txt.
package storage
import (
"bytes"
"context"
"fmt"
"sync/atomic"
"time"
"github.com/cockroachdb/cockroach/pkg/base"
"github.com/cockroachdb/cockroach/pkg/config"
"github.com/cockroachdb/cockroach/pkg/gossip"
"github.com/cockroachdb/cockroach/pkg/roachpb"
"github.com/cockroachdb/cockroach/pkg/storage/storagepb"
"github.com/cockroachdb/cockroach/pkg/util/hlc"
"github.com/cockroachdb/cockroach/pkg/util/log"
"github.com/cockroachdb/cockroach/pkg/util/metric"
"github.com/cockroachdb/cockroach/pkg/util/retry"
"github.com/cockroachdb/cockroach/pkg/util/timeutil"
"github.com/pkg/errors"
"go.etcd.io/etcd/raft"
)
const (
// replicateQueueTimerDuration is the duration between replication of queued
// replicas.
replicateQueueTimerDuration = 0 // zero duration to process replication greedily
// minLeaseTransferInterval controls how frequently leases can be transferred
// for rebalancing. It does not prevent transferring leases in order to allow
// a replica to be removed from a range.
minLeaseTransferInterval = time.Second
// newReplicaGracePeriod is the amount of time that we allow for a new
// replica's raft state to catch up to the leader's before we start
// considering it to be behind for the sake of rebalancing. We choose a
// large value here because snapshots of large replicas can take a while
// in high latency clusters, and not allowing enough of a cushion can
// make rebalance thrashing more likely (#17879).
newReplicaGracePeriod = 5 * time.Minute
)
var (
metaReplicateQueueAddReplicaCount = metric.Metadata{
Name: "queue.replicate.addreplica",
Help: "Number of replica additions attempted by the replicate queue",
Measurement: "Replica Additions",
Unit: metric.Unit_COUNT,
}
metaReplicateQueueRemoveReplicaCount = metric.Metadata{
Name: "queue.replicate.removereplica",
Help: "Number of replica removals attempted by the replicate queue (typically in response to a rebalancer-initiated addition)",
Measurement: "Replica Removals",
Unit: metric.Unit_COUNT,
}
metaReplicateQueueRemoveDeadReplicaCount = metric.Metadata{
Name: "queue.replicate.removedeadreplica",
Help: "Number of dead replica removals attempted by the replicate queue (typically in response to a node outage)",
Measurement: "Replica Removals",
Unit: metric.Unit_COUNT,
}
metaReplicateQueueRebalanceReplicaCount = metric.Metadata{
Name: "queue.replicate.rebalancereplica",
Help: "Number of replica rebalancer-initiated additions attempted by the replicate queue",
Measurement: "Replica Additions",
Unit: metric.Unit_COUNT,
}
metaReplicateQueueTransferLeaseCount = metric.Metadata{
Name: "queue.replicate.transferlease",
Help: "Number of range lease transfers attempted by the replicate queue",
Measurement: "Lease Transfers",
Unit: metric.Unit_COUNT,
}
)
// quorumError indicates a retryable error condition which sends replicas being
// processed through the replicate queue into purgatory so that they can be
// retried quickly as soon as nodes come online.
type quorumError struct {
msg string
}
func newQuorumError(f string, args ...interface{}) *quorumError {
return &quorumError{
msg: fmt.Sprintf(f, args...),
}
}
func (e *quorumError) Error() string {
return e.msg
}
func (*quorumError) purgatoryErrorMarker() {}
// ReplicateQueueMetrics is the set of metrics for the replicate queue.
type ReplicateQueueMetrics struct {
AddReplicaCount *metric.Counter
RemoveReplicaCount *metric.Counter
RemoveDeadReplicaCount *metric.Counter
RebalanceReplicaCount *metric.Counter
TransferLeaseCount *metric.Counter
}
func makeReplicateQueueMetrics() ReplicateQueueMetrics {
return ReplicateQueueMetrics{
AddReplicaCount: metric.NewCounter(metaReplicateQueueAddReplicaCount),
RemoveReplicaCount: metric.NewCounter(metaReplicateQueueRemoveReplicaCount),
RemoveDeadReplicaCount: metric.NewCounter(metaReplicateQueueRemoveDeadReplicaCount),
RebalanceReplicaCount: metric.NewCounter(metaReplicateQueueRebalanceReplicaCount),
TransferLeaseCount: metric.NewCounter(metaReplicateQueueTransferLeaseCount),
}
}
// replicateQueue manages a queue of replicas which may need to add an
// additional replica to their range.
type replicateQueue struct {
*baseQueue
metrics ReplicateQueueMetrics
allocator Allocator
updateChan chan time.Time
lastLeaseTransfer atomic.Value // read and written by scanner & queue goroutines
}
// newReplicateQueue returns a new instance of replicateQueue.
func newReplicateQueue(store *Store, g *gossip.Gossip, allocator Allocator) *replicateQueue {
rq := &replicateQueue{
metrics: makeReplicateQueueMetrics(),
allocator: allocator,
updateChan: make(chan time.Time, 1),
}
store.metrics.registry.AddMetricStruct(&rq.metrics)
rq.baseQueue = newBaseQueue(
"replicate", rq, store, g,
queueConfig{
maxSize: defaultQueueMaxSize,
needsLease: true,
needsSystemConfig: true,
acceptsUnsplitRanges: store.TestingKnobs().ReplicateQueueAcceptsUnsplit,
successes: store.metrics.ReplicateQueueSuccesses,
failures: store.metrics.ReplicateQueueFailures,
pending: store.metrics.ReplicateQueuePending,
processingNanos: store.metrics.ReplicateQueueProcessingNanos,
purgatory: store.metrics.ReplicateQueuePurgatory,
},
)
updateFn := func() {
select {
case rq.updateChan <- timeutil.Now():
default:
}
}
// Register gossip and node liveness callbacks to signal that
// replicas in purgatory might be retried.
if g != nil { // gossip is nil for some unittests
g.RegisterCallback(gossip.MakePrefixPattern(gossip.KeyStorePrefix), func(key string, _ roachpb.Value) {
if !rq.store.IsStarted() {
return
}
// Because updates to our store's own descriptor won't affect
// replicas in purgatory, skip updating the purgatory channel
// in this case.
if storeID, err := gossip.StoreIDFromKey(key); err == nil && storeID == rq.store.StoreID() {
return
}
updateFn()
})
}
if nl := store.cfg.NodeLiveness; nl != nil { // node liveness is nil for some unittests
nl.RegisterCallback(func(_ roachpb.NodeID) {
updateFn()
})
}
return rq
}
func (rq *replicateQueue) shouldQueue(
ctx context.Context, now hlc.Timestamp, repl *Replica, sysCfg *config.SystemConfig,
) (shouldQ bool, priority float64) {
// Get the descriptor and zone config for this range.
desc, zone := repl.DescAndZone()
rangeInfo := rangeInfoForRepl(repl, desc)
action, priority := rq.allocator.ComputeAction(ctx, zone, rangeInfo)
if action == AllocatorNoop {
log.VEventf(ctx, 2, "no action to take")
return false, 0
} else if action != AllocatorConsiderRebalance {
log.VEventf(ctx, 2, "repair needed (%s), enqueuing", action)
return true, priority
}
if !rq.store.TestingKnobs().DisableReplicaRebalancing {
target, _ := rq.allocator.RebalanceTarget(ctx, zone, repl.RaftStatus(), rangeInfo, storeFilterThrottled)
if target != nil {
log.VEventf(ctx, 2, "rebalance target found, enqueuing")
return true, 0
}
log.VEventf(ctx, 2, "no rebalance target found, not enqueuing")
}
// If the lease is valid, check to see if we should transfer it.
if lease, _ := repl.GetLease(); repl.IsLeaseValid(lease, now) {
// Learner replicas aren't allowed to become the leaseholder or raft leader,
// so only consider the `Voters` replicas.
if rq.canTransferLease() &&
rq.allocator.ShouldTransferLease(
ctx, zone, desc.Replicas().Voters(), lease.Replica.StoreID, desc.RangeID, repl.leaseholderStats) {
log.VEventf(ctx, 2, "lease transfer needed, enqueuing")
return true, 0
}
}
return false, 0
}
func (rq *replicateQueue) process(
ctx context.Context, repl *Replica, sysCfg *config.SystemConfig,
) error {
retryOpts := retry.Options{
InitialBackoff: 50 * time.Millisecond,
MaxBackoff: 1 * time.Second,
Multiplier: 2,
MaxRetries: 5,
}
// Use a retry loop in order to backoff in the case of preemptive
// snapshot errors, usually signaling that a rebalancing
// reservation could not be made with the selected target.
for r := retry.StartWithCtx(ctx, retryOpts); r.Next(); {
for {
requeue, err := rq.processOneChange(ctx, repl, rq.canTransferLease, false /* dryRun */)
if IsSnapshotError(err) {
// If ChangeReplicas failed because the preemptive snapshot failed, we
// log the error but then return success indicating we should retry the
// operation. The most likely causes of the preemptive snapshot failing are
// a declined reservation or the remote node being unavailable. In either
// case we don't want to wait another scanner cycle before reconsidering
// the range.
log.Info(ctx, err)
break
}
if err != nil {
return err
}
if testingAggressiveConsistencyChecks {
if err := rq.store.consistencyQueue.process(ctx, repl, sysCfg); err != nil {
log.Warning(ctx, err)
}
}
if !requeue {
return nil
}
log.VEventf(ctx, 1, "re-processing")
}
}
return errors.Errorf("failed to replicate after %d retries", retryOpts.MaxRetries)
}
func (rq *replicateQueue) processOneChange(
ctx context.Context, repl *Replica, canTransferLease func() bool, dryRun bool,
) (requeue bool, _ error) {
desc, zone := repl.DescAndZone()
// Avoid taking action if the range has too many dead replicas to make
// quorum.
liveReplicas, deadReplicas := rq.allocator.storePool.liveAndDeadReplicas(
desc.RangeID, desc.Replicas().Unwrap())
{
quorum := desc.Replicas().QuorumSize()
if lr := len(liveReplicas); lr < quorum {
return false, newQuorumError(
"range requires a replication change, but lacks a quorum of live replicas (%d/%d)", lr, quorum)
}
}
rangeInfo := rangeInfoForRepl(repl, desc)
action, _ := rq.allocator.ComputeAction(ctx, zone, rangeInfo)
log.VEventf(ctx, 1, "next replica action: %s", action)
switch action {
case AllocatorNoop:
break
case AllocatorAdd:
newStore, details, err := rq.allocator.AllocateTarget(
ctx,
zone,
liveReplicas, // only include liveReplicas, since deadReplicas should soon be removed
rangeInfo,
)
if err != nil {
return false, err
}
newReplica := roachpb.ReplicationTarget{
NodeID: newStore.Node.NodeID,
StoreID: newStore.StoreID,
}
clusterNodes := rq.allocator.storePool.ClusterNodeCount()
need := GetNeededReplicas(*zone.NumReplicas, clusterNodes)
willHave := len(desc.Replicas().Unwrap()) + 1
// Only up-replicate if there are suitable allocation targets such
// that, either the replication goal is met, or it is possible to get to the
// next odd number of replicas. A consensus group of size 2n has worse
// failure tolerance properties than a group of size 2n - 1 because it has a
// larger quorum. For example, up-replicating from 1 to 2 replicas only
// makes sense if it is possible to be able to go to 3 replicas.
//
// NB: If willHave > need, then always allow up-replicating as that will be
// the case when up-replicating a range with a decommissioning replica.
if willHave < need && willHave%2 == 0 {
// This means we are going to up-replicate to an even replica state.
// Check if it is possible to go to an odd replica state beyond it.
oldPlusNewReplicas := desc.Replicas().DeepCopy()
oldPlusNewReplicas.AddReplica(roachpb.ReplicaDescriptor{
NodeID: newStore.Node.NodeID,
StoreID: newStore.StoreID,
})
_, _, err := rq.allocator.AllocateTarget(
ctx,
zone,
oldPlusNewReplicas.Unwrap(),
rangeInfo,
)
if err != nil {
// It does not seem possible to go to the next odd replica state. Note
// that AllocateTarget returns an allocatorError (a purgatoryError)
// when purgatory is requested.
return false, errors.Wrap(err, "avoid up-replicating to fragile quorum")
}
}
rq.metrics.AddReplicaCount.Inc(1)
log.VEventf(ctx, 1, "adding replica %+v due to under-replication: %s",
newReplica, rangeRaftProgress(repl.RaftStatus(), desc.Replicas()))
if err := rq.addReplica(
ctx,
repl,
newReplica,
desc,
SnapshotRequest_RECOVERY,
storagepb.ReasonRangeUnderReplicated,
details,
dryRun,
); err != nil {
return false, err
}
case AllocatorRemove:
// This retry loop involves quick operations on local state, so a
// small MaxBackoff is good (but those local variables change on
// network time scales as raft receives responses).
//
// TODO(bdarnell): There's another retry loop at process(). It
// would be nice to combine these, but I'm keeping them separate
// for now so we can tune the options separately.
retryOpts := retry.Options{
InitialBackoff: time.Millisecond,
MaxBackoff: 200 * time.Millisecond,
Multiplier: 2,
}
var candidates []roachpb.ReplicaDescriptor
deadline := timeutil.Now().Add(2 * base.NetworkTimeout)
for r := retry.StartWithCtx(ctx, retryOpts); r.Next() && timeutil.Now().Before(deadline); {
lastReplAdded, lastAddedTime := repl.LastReplicaAdded()
if timeutil.Since(lastAddedTime) > newReplicaGracePeriod {
lastReplAdded = 0
}
raftStatus := repl.RaftStatus()
if raftStatus == nil || raftStatus.RaftState != raft.StateLeader {
// If we've lost raft leadership, we're unlikely to regain it so give up immediately.
return false, &benignError{errors.Errorf("not raft leader while range needs removal")}
}
candidates = filterUnremovableReplicas(raftStatus, desc.Replicas().Unwrap(), lastReplAdded)
log.VEventf(ctx, 3, "filtered unremovable replicas from %v to get %v as candidates for removal: %s",
desc.Replicas(), candidates, rangeRaftProgress(raftStatus, desc.Replicas()))
if len(candidates) > 0 {
break
}
if len(raftStatus.Progress) <= 2 {
// HACK(bdarnell): Downreplicating to a single node from
// multiple nodes is not really supported. There are edge
// cases in which the two peers stop communicating with each
// other too soon and we don't reach a satisfactory
// resolution. However, some tests (notably
// TestRepartitioning) get into this state, and if the
// replication queue spends its entire timeout waiting for the
// downreplication to finish the test will time out. As a
// hack, just fail-fast when we're trying to go down to a
// single replica.
break
}
// After upreplication, the candidates for removal could still
// be catching up. The allocator determined that the range was
// over-replicated, and it's important to clear that state as
// quickly as we can (because over-replicated ranges may be
// under-diversified). If we return an error here, this range
// probably won't be processed again until the next scanner
// cycle, which is too long, so we retry here.
}
if len(candidates) == 0 {
// If we timed out and still don't have any valid candidates, give up.
return false, errors.Errorf("no removable replicas from range that needs a removal: %s",
rangeRaftProgress(repl.RaftStatus(), desc.Replicas()))
}
removeReplica, details, err := rq.allocator.RemoveTarget(ctx, zone, candidates, rangeInfo)
if err != nil {
return false, err
}
if removeReplica.StoreID == repl.store.StoreID() {
// The local replica was selected as the removal target, but that replica
// is the leaseholder, so transfer the lease instead. We don't check that
// the current store has too many leases in this case under the
// assumption that replica balance is a greater concern. Also note that
// AllocatorRemove action takes preference over AllocatorConsiderRebalance
// (rebalancing) which is where lease transfer would otherwise occur. We
// need to be able to transfer leases in AllocatorRemove in order to get
// out of situations where this store is overfull and yet holds all the
// leases. The fullness checks need to be ignored for cases where
// a replica needs to be removed for constraint violations.
transferred, err := rq.findTargetAndTransferLease(
ctx,
repl,
desc,
zone,
transferLeaseOptions{
dryRun: dryRun,
},
)
if err != nil {
return false, err
}
// Do not requeue as we transferred our lease away.
if transferred {
return false, nil
}
} else {
rq.metrics.RemoveReplicaCount.Inc(1)
log.VEventf(ctx, 1, "removing replica %+v due to over-replication: %s",
removeReplica, rangeRaftProgress(repl.RaftStatus(), desc.Replicas()))
target := roachpb.ReplicationTarget{
NodeID: removeReplica.NodeID,
StoreID: removeReplica.StoreID,
}
if err := rq.removeReplica(
ctx, repl, target, desc, storagepb.ReasonRangeOverReplicated, details, dryRun,
); err != nil {
return false, err
}
}
case AllocatorRemoveDecommissioning:
decommissioningReplicas := rq.allocator.storePool.decommissioningReplicas(
desc.RangeID, desc.Replicas().Unwrap())
if len(decommissioningReplicas) == 0 {
log.VEventf(ctx, 1, "range of replica %s was identified as having decommissioning replicas, "+
"but no decommissioning replicas were found", repl)
break
}
decommissioningReplica := decommissioningReplicas[0]
if decommissioningReplica.StoreID == repl.store.StoreID() {
// As in the AllocatorRemove case, if we're trying to remove ourselves, we
// we must first transfer our lease away.
if dryRun {
return false, nil
}
transferred, err := rq.findTargetAndTransferLease(
ctx,
repl,
desc,
zone,
transferLeaseOptions{
dryRun: dryRun,
},
)
if err != nil {
return false, err
}
// Do not requeue as we transferred our lease away.
if transferred {
return false, nil
}
} else {
rq.metrics.RemoveReplicaCount.Inc(1)
log.VEventf(ctx, 1, "removing decommissioning replica %+v from store", decommissioningReplica)
target := roachpb.ReplicationTarget{
NodeID: decommissioningReplica.NodeID,
StoreID: decommissioningReplica.StoreID,
}
if err := rq.removeReplica(
ctx, repl, target, desc, storagepb.ReasonStoreDecommissioning, "", dryRun,
); err != nil {
return false, err
}
}
case AllocatorRemoveDead:
if len(deadReplicas) == 0 {
log.VEventf(ctx, 1, "range of replica %s was identified as having dead replicas, but no dead replicas were found", repl)
break
}
deadReplica := deadReplicas[0]
rq.metrics.RemoveDeadReplicaCount.Inc(1)
log.VEventf(ctx, 1, "removing dead replica %+v from store", deadReplica)
target := roachpb.ReplicationTarget{
NodeID: deadReplica.NodeID,
StoreID: deadReplica.StoreID,
}
if err := rq.removeReplica(
ctx, repl, target, desc, storagepb.ReasonStoreDead, "", dryRun,
); err != nil {
return false, err
}
case AllocatorConsiderRebalance:
// The Noop case will result if this replica was queued in order to
// rebalance. Attempt to find a rebalancing target.
if !rq.store.TestingKnobs().DisableReplicaRebalancing {
rebalanceStore, details := rq.allocator.RebalanceTarget(
ctx, zone, repl.RaftStatus(), rangeInfo, storeFilterThrottled)
if rebalanceStore == nil {
log.VEventf(ctx, 1, "no suitable rebalance target")
} else {
rebalanceReplica := roachpb.ReplicationTarget{
NodeID: rebalanceStore.Node.NodeID,
StoreID: rebalanceStore.StoreID,
}
rq.metrics.RebalanceReplicaCount.Inc(1)
log.VEventf(ctx, 1, "rebalancing to %+v: %s",
rebalanceReplica, rangeRaftProgress(repl.RaftStatus(), desc.Replicas()))
if err := rq.addReplica(
ctx,
repl,
rebalanceReplica,
desc,
SnapshotRequest_REBALANCE,
storagepb.ReasonRebalance,
details,
dryRun,
); err != nil {
return false, err
}
return true, nil
}
}
if canTransferLease() {
// We require the lease in order to process replicas, so
// repl.store.StoreID() corresponds to the lease-holder's store ID.
transferred, err := rq.findTargetAndTransferLease(
ctx,
repl,
desc,
zone,
transferLeaseOptions{
checkTransferLeaseSource: true,
checkCandidateFullness: true,
dryRun: dryRun,
},
)
if err != nil {
return false, err
}
// Do not requeue as we transferred our lease away.
if transferred {
return false, nil
}
}
// No action was necessary and no rebalance target was found. Return
// without re-queuing this replica.
return false, nil
}
return true, nil
}
type transferLeaseOptions struct {
checkTransferLeaseSource bool
checkCandidateFullness bool
dryRun bool
}
func (rq *replicateQueue) findTargetAndTransferLease(
ctx context.Context,
repl *Replica,
desc *roachpb.RangeDescriptor,
zone *config.ZoneConfig,
opts transferLeaseOptions,
) (bool, error) {
// Learner replicas aren't allowed to become the leaseholder or raft leader,
// so only consider the `Voters` replicas.
candidates := filterBehindReplicas(repl.RaftStatus(), desc.Replicas().Voters())
target := rq.allocator.TransferLeaseTarget(
ctx,
zone,
candidates,
repl.store.StoreID(),
desc.RangeID,
repl.leaseholderStats,
opts.checkTransferLeaseSource,
opts.checkCandidateFullness,
false, /* alwaysAllowDecisionWithoutStats */
)
if target == (roachpb.ReplicaDescriptor{}) {
return false, nil
}
if opts.dryRun {
log.VEventf(ctx, 1, "transferring lease to s%d", target.StoreID)
return false, nil
}
avgQPS, qpsMeasurementDur := repl.leaseholderStats.avgQPS()
if qpsMeasurementDur < MinStatsDuration {
avgQPS = 0
}
err := rq.transferLease(ctx, repl, target, avgQPS)
return err == nil, err
}
func (rq *replicateQueue) transferLease(
ctx context.Context, repl *Replica, target roachpb.ReplicaDescriptor, rangeQPS float64,
) error {
rq.metrics.TransferLeaseCount.Inc(1)
log.VEventf(ctx, 1, "transferring lease to s%d", target.StoreID)
if err := repl.AdminTransferLease(ctx, target.StoreID); err != nil {
return errors.Wrapf(err, "%s: unable to transfer lease to s%d", repl, target.StoreID)
}
rq.lastLeaseTransfer.Store(timeutil.Now())
rq.allocator.storePool.updateLocalStoresAfterLeaseTransfer(
repl.store.StoreID(), target.StoreID, rangeQPS)
return nil
}
func (rq *replicateQueue) addReplica(
ctx context.Context,
repl *Replica,
target roachpb.ReplicationTarget,
desc *roachpb.RangeDescriptor,
priority SnapshotRequest_Priority,
reason storagepb.RangeLogEventReason,
details string,
dryRun bool,
) error {
if dryRun {
return nil
}
if _, err := repl.changeReplicas(ctx, roachpb.ADD_REPLICA, target, desc, priority, reason, details); err != nil {
return err
}
rangeInfo := rangeInfoForRepl(repl, desc)
rq.allocator.storePool.updateLocalStoreAfterRebalance(target.StoreID, rangeInfo, roachpb.ADD_REPLICA)
return nil
}
func (rq *replicateQueue) removeReplica(
ctx context.Context,
repl *Replica,
target roachpb.ReplicationTarget,
desc *roachpb.RangeDescriptor,
reason storagepb.RangeLogEventReason,
details string,
dryRun bool,
) error {
if dryRun {
return nil
}
if _, err := repl.ChangeReplicas(ctx, roachpb.REMOVE_REPLICA, target, desc, reason, details); err != nil {
return err
}
rangeInfo := rangeInfoForRepl(repl, desc)
rq.allocator.storePool.updateLocalStoreAfterRebalance(target.StoreID, rangeInfo, roachpb.REMOVE_REPLICA)
return nil
}
func (rq *replicateQueue) canTransferLease() bool {
if lastLeaseTransfer := rq.lastLeaseTransfer.Load(); lastLeaseTransfer != nil {
return timeutil.Since(lastLeaseTransfer.(time.Time)) > minLeaseTransferInterval
}
return true
}
func (*replicateQueue) timer(_ time.Duration) time.Duration {
return replicateQueueTimerDuration
}
// purgatoryChan returns the replicate queue's store update channel.
func (rq *replicateQueue) purgatoryChan() <-chan time.Time {
return rq.updateChan
}
// rangeRaftStatus pretty-prints the Raft progress (i.e. Raft log position) of
// the replicas.
func rangeRaftProgress(raftStatus *raft.Status, replicas roachpb.ReplicaDescriptors) string {
if raftStatus == nil {
return "[no raft status]"
} else if len(raftStatus.Progress) == 0 {
return "[no raft progress]"
}
var buf bytes.Buffer
buf.WriteString("[")
for i, r := range replicas.All() {
if i > 0 {
buf.WriteString(", ")
}
fmt.Fprintf(&buf, "%d", r.ReplicaID)
if uint64(r.ReplicaID) == raftStatus.Lead {
buf.WriteString("*")
}
if progress, ok := raftStatus.Progress[uint64(r.ReplicaID)]; ok {
fmt.Fprintf(&buf, ":%d", progress.Match)
} else {
buf.WriteString(":?")
}
}
buf.WriteString("]")
return buf.String()
}