-
Notifications
You must be signed in to change notification settings - Fork 37
/
bigint.go
917 lines (829 loc) · 23.2 KB
/
bigint.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
// Copyright 2022 The Cockroach Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
// implied. See the License for the specific language governing
// permissions and limitations under the License.
package apd
import (
"fmt"
"math/big"
"math/bits"
"math/rand"
"unsafe"
)
// The inlineWords capacity is set to accommodate any value that would fit in a
// 128-bit integer (i.e. values with an absolute value up to 2^128 - 1).
const inlineWords = 2
// BigInt is a wrapper around big.Int. It minimizes memory allocation by using
// an inline array to back the big.Int's variable-length "nat" slice when the
// integer's value is sufficiently small.
// The zero value is ready to use.
type BigInt struct {
// A wrapped big.Int. Only set to the BigInt's value when the value exceeds
// what is representable in the _inline array.
//
// When the BigInt's value is still small enough to use the _inline array,
// this field doubles as integer's negative flag. See negSentinel.
//
// Methods should access this field through inner.
_inner *big.Int
// The inlined backing array use for short-lived, stack-allocated big.Int
// structs during arithmetic when the value is small.
//
// Each BigInt maintains (through big.Int) an internal reference to a
// variable-length integer value, which is represented by a []big.Word. The
// _inline field and the inner and updateInner methods combine to allow
// BigInt to inline this variable-length integer array within the BigInt
// struct when its value is sufficiently small. In the inner method, we
// point a temporary big.Int's nat slice at this _inline array. big.Int will
// avoid re-allocating this array until it is provided with a value that
// exceeds the initial capacity. Later in updateInner, we detect whether the
// array has been re-allocated. If so, we switch to using the _inner. If
// not, we continue to use this array.
_inline [inlineWords]big.Word
}
// NewBigInt allocates and returns a new BigInt set to x.
//
// NOTE: BigInt jumps through hoops to avoid escaping to the heap. As such, most
// users of BigInt should not need this function. They should instead declare a
// zero-valued BigInt directly on the stack and interact with references to this
// stack-allocated value. Recall that the zero-valued BigInt is ready to use.
func NewBigInt(x int64) *BigInt {
return new(BigInt).SetInt64(x)
}
// Set as the value of BigInt._inner as a "sentinel" flag to indicate that a
// BigInt is negative ((big.Int).Sign() < 0) but the absolute value is still
// small enough to represent in the _inline array.
var negSentinel = new(big.Int)
// isInline returns whether the BigInt stores its value in its _inline array.
func (z *BigInt) isInline() bool {
return z._inner == nil || z._inner == negSentinel
}
// The memory representation of big.Int. Used for unsafe modification below.
type intStruct struct {
neg bool
abs []big.Word
}
// noescape hides a pointer from escape analysis. noescape is the identity
// function but escape analysis doesn't think the output depends on the input.
// noescape is inlined and currently compiles down to zero instructions.
//
// USE CAREFULLY!
//
// This was copied from strings.Builder, which has identical code which was
// itself copied from the runtime.
// For more, see issues #23382 and #7921 in github.com/golang/go.
//go:nosplit
//go:nocheckptr
func noescape(p unsafe.Pointer) unsafe.Pointer {
x := uintptr(p)
return unsafe.Pointer(x ^ 0)
}
// inner returns the BigInt's current value as a *big.Int.
//
// NOTE: this was carefully written to permit function inlining. Modify with
// care.
func (z *BigInt) inner(tmp *big.Int) *big.Int {
// Point the big.Int at the inline array. When doing so, use noescape to
// avoid forcing the BigInt to escape to the heap. Go's escape analysis
// struggles with self-referential pointers, and it can't prove that we
// only assign _inner to a heap-allocated object (which must not contain
// pointers that reference the stack or the GC explodes) if the big.Int's
// backing array has been re-allocated onto the heap first.
//
// NOTE: SetBits set the neg field to false, so this must come before the
// negSentinel handling.
tmp.SetBits((*[inlineWords]big.Word)(noescape(unsafe.Pointer(&z._inline[0])))[:])
if z._inner != nil {
if z._inner != negSentinel {
// The variable-length big.Int reference is set.
return z._inner
}
// This is the negative sentinel, which indicates that the integer is
// negative but still stored inline. Update the big.Int accordingly. We
// use unsafe because (*big.Int).Neg is too complex and prevents this
// method from being inlined.
(*intStruct)(unsafe.Pointer(tmp)).neg = true
}
return tmp
}
// innerOrNil is like inner, but returns a nil *big.Int if the receiver is nil.
func (z *BigInt) innerOrNil(tmp *big.Int) *big.Int {
if z == nil {
return nil
}
return z.inner(tmp)
}
// innerOrAlias is like inner, but returns the provided *big.Int if the receiver
// and the other *BigInt argument reference the same object.
func (z *BigInt) innerOrAlias(tmp *big.Int, a *BigInt, ai *big.Int) *big.Int {
if a == z {
return ai
}
return z.inner(tmp)
}
// innerOrNilOrAlias is like inner, but with the added semantics specified for
// both innerOrNil and innerOrAlias.
func (z *BigInt) innerOrNilOrAlias(tmp *big.Int, a *BigInt, ai *big.Int) *big.Int {
if z == nil {
return nil
} else if z == a {
return ai
}
return z.inner(tmp)
}
// updateInner updates the BigInt's current value with the provided *big.Int.
//
// NOTE: this was carefully written to permit function inlining. Modify with
// care.
func (z *BigInt) updateInner(src *big.Int) {
if z._inner == src {
return
}
bits := src.Bits()
bitsLen := len(bits)
if bitsLen > 0 && &z._inline[0] != &bits[0] {
// The big.Int re-allocated its backing array during arithmetic because
// the value grew beyond what could fit in the _inline array. Switch to
// a heap-allocated, variable-length big.Int and store that in _inner.
// From now on, all arithmetic will use this big.Int directly.
//
// Allocate a new big.Int and perform a shallow-copy of the argument to
// prevent it from escaping off the stack.
z._inner = new(big.Int)
*z._inner = *src
} else {
// Zero out all words beyond the end of the big.Int's current Word
// slice. big.Int arithmetic can sometimes leave these words "dirty".
// They would cause issues when the _inline array is injected into the
// next big.Int if not cleared.
for bitsLen < len(z._inline) {
z._inline[bitsLen] = 0
bitsLen++
}
// Set or unset the negative sentinel, according to the argument's sign.
// We use unsafe because (*big.Int).Sign is too complex and prevents
// this method from being inlined.
if (*intStruct)(unsafe.Pointer(src)).neg {
z._inner = negSentinel
} else {
z._inner = nil
}
}
}
// innerAsUint returns the BigInt's current absolute value as a uint and a flag
// indicating whether the value is negative. If the value is not stored inline
// or if it can not fit in a uint, false is returned.
//
// NOTE: this was carefully written to permit function inlining. Modify with
// care.
func (z *BigInt) innerAsUint() (val uint, neg bool, ok bool) {
if !z.isInline() {
// The value is not stored inline.
return 0, false, false
}
for i := 1; i < len(z._inline); i++ {
if z._inline[i] != 0 {
// The value can not fit in a uint.
return 0, false, false
}
}
val = uint(z._inline[0])
neg = z._inner == negSentinel
return val, neg, true
}
// updateInnerFromUint updates the BigInt's current value with the provided
// absolute value and sign.
//
// NOTE: this was carefully written to permit function inlining. Modify with
// care.
func (z *BigInt) updateInnerFromUint(val uint, neg bool) {
// Set the inline value, making sure to clear out all other words.
z._inline[0] = big.Word(val)
for i := 1; i < len(z._inline); i++ {
z._inline[i] = 0
}
// Set or unset the negative sentinel.
if neg {
z._inner = negSentinel
} else {
z._inner = nil
}
}
///////////////////////////////////////////////////////////////////////////////
// inline arithmetic for small values //
///////////////////////////////////////////////////////////////////////////////
func addInline(xVal, yVal uint, xNeg, yNeg bool) (zVal uint, zNeg, ok bool) {
if xNeg == yNeg {
sum, carry := bits.Add(xVal, yVal, 0)
if carry != 0 { // overflow
return 0, false, false
}
return sum, xNeg, true
}
diff, borrow := bits.Sub(xVal, yVal, 0)
if borrow != 0 { // underflow
xNeg = !xNeg
diff = yVal - xVal
}
if diff == 0 {
xNeg = false
}
return diff, xNeg, true
}
func mulInline(xVal, yVal uint, xNeg, yNeg bool) (zVal uint, zNeg, ok bool) {
hi, lo := bits.Mul(xVal, yVal)
if hi != 0 { // overflow
return 0, false, false
}
neg := xNeg != yNeg
return lo, neg, true
}
func quoInline(xVal, yVal uint, xNeg, yNeg bool) (quoVal uint, quoNeg, ok bool) {
quo := xVal / yVal
neg := xNeg != yNeg
return quo, neg, true
}
func remInline(xVal, yVal uint, xNeg, yNeg bool) (remVal uint, remNeg, ok bool) {
rem := xVal % yVal
return rem, xNeg, true
}
///////////////////////////////////////////////////////////////////////////////
// big.Int API wrapper methods //
///////////////////////////////////////////////////////////////////////////////
// Abs calls (big.Int).Abs.
func (z *BigInt) Abs(x *BigInt) *BigInt {
if x.isInline() {
z._inline = x._inline
z._inner = nil // !negSentinel
return z
}
var tmp1, tmp2 big.Int
zi := z.inner(&tmp1)
zi.Abs(x.inner(&tmp2))
z.updateInner(zi)
return z
}
// Add calls (big.Int).Add.
func (z *BigInt) Add(x, y *BigInt) *BigInt {
if xVal, xNeg, ok := x.innerAsUint(); ok {
if yVal, yNeg, ok := y.innerAsUint(); ok {
if zVal, zNeg, ok := addInline(xVal, yVal, xNeg, yNeg); ok {
z.updateInnerFromUint(zVal, zNeg)
return z
}
}
}
var tmp1, tmp2, tmp3 big.Int
zi := z.inner(&tmp1)
zi.Add(x.inner(&tmp2), y.inner(&tmp3))
z.updateInner(zi)
return z
}
// And calls (big.Int).And.
func (z *BigInt) And(x, y *BigInt) *BigInt {
var tmp1, tmp2, tmp3 big.Int
zi := z.inner(&tmp1)
zi.And(x.inner(&tmp2), y.inner(&tmp3))
z.updateInner(zi)
return z
}
// AndNot calls (big.Int).AndNot.
func (z *BigInt) AndNot(x, y *BigInt) *BigInt {
var tmp1, tmp2, tmp3 big.Int
zi := z.inner(&tmp1)
zi.AndNot(x.inner(&tmp2), y.inner(&tmp3))
z.updateInner(zi)
return z
}
// Append calls (big.Int).Append.
func (z *BigInt) Append(buf []byte, base int) []byte {
var tmp1 big.Int
return z.inner(&tmp1).Append(buf, base)
}
// Binomial calls (big.Int).Binomial.
func (z *BigInt) Binomial(n, k int64) *BigInt {
var tmp1 big.Int
zi := z.inner(&tmp1)
zi.Binomial(n, k)
z.updateInner(zi)
return z
}
// Bit calls (big.Int).Bit.
func (z *BigInt) Bit(i int) uint {
if i == 0 && z.isInline() {
// Optimization for common case: odd/even test of z.
return uint(z._inline[0] & 1)
}
var tmp1 big.Int
return z.inner(&tmp1).Bit(i)
}
// BitLen calls (big.Int).BitLen.
func (z *BigInt) BitLen() int {
if z.isInline() {
// Find largest non-zero inline word.
for i := len(z._inline) - 1; i >= 0; i-- {
if z._inline[i] != 0 {
return i*bits.UintSize + bits.Len(uint(z._inline[i]))
}
}
return 0
}
var tmp1 big.Int
return z.inner(&tmp1).BitLen()
}
// Bits calls (big.Int).Bits.
func (z *BigInt) Bits() []big.Word {
// Don't expose direct access to the big.Int's word slice.
panic("unimplemented")
}
// Bytes calls (big.Int).Bytes.
func (z *BigInt) Bytes() []byte {
var tmp1 big.Int
return z.inner(&tmp1).Bytes()
}
// Cmp calls (big.Int).Cmp.
func (z *BigInt) Cmp(y *BigInt) (r int) {
if zVal, zNeg, ok := z.innerAsUint(); ok {
if yVal, yNeg, ok := y.innerAsUint(); ok {
switch {
case zNeg == yNeg:
switch {
case zVal < yVal:
r = -1
case zVal > yVal:
r = 1
}
if zNeg {
r = -r
}
case zNeg:
r = -1
default:
r = 1
}
return r
}
}
var tmp1, tmp2 big.Int
return z.inner(&tmp1).Cmp(y.inner(&tmp2))
}
// CmpAbs calls (big.Int).CmpAbs.
func (z *BigInt) CmpAbs(y *BigInt) (r int) {
if zVal, _, ok := z.innerAsUint(); ok {
if yVal, _, ok := y.innerAsUint(); ok {
switch {
case zVal < yVal:
r = -1
case zVal > yVal:
r = 1
}
return r
}
}
var tmp1, tmp2 big.Int
return z.inner(&tmp1).CmpAbs(y.inner(&tmp2))
}
// Div calls (big.Int).Div.
func (z *BigInt) Div(x, y *BigInt) *BigInt {
var tmp1, tmp2, tmp3 big.Int
zi := z.inner(&tmp1)
zi.Div(x.inner(&tmp2), y.inner(&tmp3))
z.updateInner(zi)
return z
}
// DivMod calls (big.Int).DivMod.
func (z *BigInt) DivMod(x, y, m *BigInt) (*BigInt, *BigInt) {
var tmp1, tmp2, tmp3, tmp4 big.Int
zi := z.inner(&tmp1)
mi := m.inner(&tmp2)
// NOTE: innerOrAlias for the y param because (big.Int).DivMod needs to
// detect when y is aliased to the receiver.
zi.DivMod(x.inner(&tmp3), y.innerOrAlias(&tmp4, z, zi), mi)
z.updateInner(zi)
m.updateInner(mi)
return z, m
}
// Exp calls (big.Int).Exp.
func (z *BigInt) Exp(x, y, m *BigInt) *BigInt {
var tmp1, tmp2, tmp3, tmp4 big.Int
zi := z.inner(&tmp1)
if zi.Exp(x.inner(&tmp2), y.inner(&tmp3), m.innerOrNil(&tmp4)) == nil {
return nil
}
z.updateInner(zi)
return z
}
// FillBytes calls (big.Int).FillBytes.
func (z *BigInt) FillBytes(buf []byte) []byte {
var tmp1 big.Int
return z.inner(&tmp1).FillBytes(buf)
}
// Format calls (big.Int).Format.
func (z *BigInt) Format(s fmt.State, ch rune) {
var tmp1 big.Int
z.innerOrNil(&tmp1).Format(s, ch)
}
// GCD calls (big.Int).GCD.
func (z *BigInt) GCD(x, y, a, b *BigInt) *BigInt {
var tmp1, tmp2, tmp3, tmp4, tmp5 big.Int
zi := z.inner(&tmp1)
ai := a.inner(&tmp2)
bi := b.inner(&tmp3)
xi := x.innerOrNil(&tmp4)
// NOTE: innerOrNilOrAlias for the y param because (big.Int).GCD needs to
// detect when y is aliased to b. See "avoid aliasing b" in lehmerGCD.
yi := y.innerOrNilOrAlias(&tmp5, b, bi)
zi.GCD(xi, yi, ai, bi)
z.updateInner(zi)
if xi != nil {
x.updateInner(xi)
}
if yi != nil {
y.updateInner(yi)
}
return z
}
// GobEncode calls (big.Int).GobEncode.
func (z *BigInt) GobEncode() ([]byte, error) {
var tmp1 big.Int
return z.innerOrNil(&tmp1).GobEncode()
}
// GobDecode calls (big.Int).GobDecode.
func (z *BigInt) GobDecode(buf []byte) error {
var tmp1 big.Int
zi := z.inner(&tmp1)
if err := zi.GobDecode(buf); err != nil {
return err
}
z.updateInner(zi)
return nil
}
// Int64 calls (big.Int).Int64.
func (z *BigInt) Int64() int64 {
var tmp1 big.Int
return z.inner(&tmp1).Int64()
}
// IsInt64 calls (big.Int).IsInt64.
func (z *BigInt) IsInt64() bool {
var tmp1 big.Int
return z.inner(&tmp1).IsInt64()
}
// IsUint64 calls (big.Int).IsUint64.
func (z *BigInt) IsUint64() bool {
var tmp1 big.Int
return z.inner(&tmp1).IsUint64()
}
// Lsh calls (big.Int).Lsh.
func (z *BigInt) Lsh(x *BigInt, n uint) *BigInt {
var tmp1, tmp2 big.Int
zi := z.inner(&tmp1)
zi.Lsh(x.inner(&tmp2), n)
z.updateInner(zi)
return z
}
// MarshalJSON calls (big.Int).MarshalJSON.
func (z *BigInt) MarshalJSON() ([]byte, error) {
var tmp1 big.Int
return z.innerOrNil(&tmp1).MarshalJSON()
}
// MarshalText calls (big.Int).MarshalText.
func (z *BigInt) MarshalText() (text []byte, err error) {
var tmp1 big.Int
return z.innerOrNil(&tmp1).MarshalText()
}
// Mod calls (big.Int).Mod.
func (z *BigInt) Mod(x, y *BigInt) *BigInt {
var tmp1, tmp2, tmp3 big.Int
zi := z.inner(&tmp1)
// NOTE: innerOrAlias for the y param because (big.Int).Mod needs to detect
// when y is aliased to the receiver.
zi.Mod(x.inner(&tmp2), y.innerOrAlias(&tmp3, z, zi))
z.updateInner(zi)
return z
}
// ModInverse calls (big.Int).ModInverse.
func (z *BigInt) ModInverse(g, n *BigInt) *BigInt {
var tmp1, tmp2, tmp3 big.Int
zi := z.inner(&tmp1)
if zi.ModInverse(g.inner(&tmp2), n.inner(&tmp3)) == nil {
return nil
}
z.updateInner(zi)
return z
}
// ModSqrt calls (big.Int).ModSqrt.
func (z *BigInt) ModSqrt(x, p *BigInt) *BigInt {
var tmp1, tmp2, tmp3 big.Int
zi := z.inner(&tmp1)
if zi.ModSqrt(x.inner(&tmp2), p.inner(&tmp3)) == nil {
return nil
}
z.updateInner(zi)
return z
}
// Mul calls (big.Int).Mul.
func (z *BigInt) Mul(x, y *BigInt) *BigInt {
if xVal, xNeg, ok := x.innerAsUint(); ok {
if yVal, yNeg, ok := y.innerAsUint(); ok {
if zVal, zNeg, ok := mulInline(xVal, yVal, xNeg, yNeg); ok {
z.updateInnerFromUint(zVal, zNeg)
return z
}
}
}
var tmp1, tmp2, tmp3 big.Int
zi := z.inner(&tmp1)
zi.Mul(x.inner(&tmp2), y.inner(&tmp3))
z.updateInner(zi)
return z
}
// MulRange calls (big.Int).MulRange.
func (z *BigInt) MulRange(x, y int64) *BigInt {
var tmp1 big.Int
zi := z.inner(&tmp1)
zi.MulRange(x, y)
z.updateInner(zi)
return z
}
// Neg calls (big.Int).Neg.
func (z *BigInt) Neg(x *BigInt) *BigInt {
if x.isInline() {
z._inline = x._inline
if x._inner == negSentinel {
z._inner = nil
} else {
z._inner = negSentinel
}
return z
}
var tmp1, tmp2 big.Int
zi := z.inner(&tmp1)
zi.Neg(x.inner(&tmp2))
z.updateInner(zi)
return z
}
// Not calls (big.Int).Not.
func (z *BigInt) Not(x *BigInt) *BigInt {
var tmp1, tmp2 big.Int
zi := z.inner(&tmp1)
zi.Not(x.inner(&tmp2))
z.updateInner(zi)
return z
}
// Or calls (big.Int).Or.
func (z *BigInt) Or(x, y *BigInt) *BigInt {
var tmp1, tmp2, tmp3 big.Int
zi := z.inner(&tmp1)
zi.Or(x.inner(&tmp2), y.inner(&tmp3))
z.updateInner(zi)
return z
}
// ProbablyPrime calls (big.Int).ProbablyPrime.
func (z *BigInt) ProbablyPrime(n int) bool {
var tmp1 big.Int
return z.inner(&tmp1).ProbablyPrime(n)
}
// Quo calls (big.Int).Quo.
func (z *BigInt) Quo(x, y *BigInt) *BigInt {
if xVal, xNeg, ok := x.innerAsUint(); ok {
if yVal, yNeg, ok := y.innerAsUint(); ok {
if quoVal, quoNeg, ok := quoInline(xVal, yVal, xNeg, yNeg); ok {
z.updateInnerFromUint(quoVal, quoNeg)
return z
}
}
}
var tmp1, tmp2, tmp3 big.Int
zi := z.inner(&tmp1)
zi.Quo(x.inner(&tmp2), y.inner(&tmp3))
z.updateInner(zi)
return z
}
// QuoRem calls (big.Int).QuoRem.
func (z *BigInt) QuoRem(x, y, r *BigInt) (*BigInt, *BigInt) {
if xVal, xNeg, ok := x.innerAsUint(); ok {
if yVal, yNeg, ok := y.innerAsUint(); ok {
if quoVal, quoNeg, ok := quoInline(xVal, yVal, xNeg, yNeg); ok {
if remVal, remNeg, ok := remInline(xVal, yVal, xNeg, yNeg); ok {
z.updateInnerFromUint(quoVal, quoNeg)
r.updateInnerFromUint(remVal, remNeg)
return z, r
}
}
}
}
var tmp1, tmp2, tmp3, tmp4 big.Int
zi := z.inner(&tmp1)
ri := r.inner(&tmp2)
zi.QuoRem(x.inner(&tmp3), y.inner(&tmp4), ri)
z.updateInner(zi)
r.updateInner(ri)
return z, r
}
// Rand calls (big.Int).Rand.
func (z *BigInt) Rand(rnd *rand.Rand, n *BigInt) *BigInt {
var tmp1, tmp2 big.Int
zi := z.inner(&tmp1)
zi.Rand(rnd, n.inner(&tmp2))
z.updateInner(zi)
return z
}
// Rem calls (big.Int).Rem.
func (z *BigInt) Rem(x, y *BigInt) *BigInt {
if xVal, xNeg, ok := x.innerAsUint(); ok {
if yVal, yNeg, ok := y.innerAsUint(); ok {
if remVal, remNeg, ok := remInline(xVal, yVal, xNeg, yNeg); ok {
z.updateInnerFromUint(remVal, remNeg)
return z
}
}
}
var tmp1, tmp2, tmp3 big.Int
zi := z.inner(&tmp1)
zi.Rem(x.inner(&tmp2), y.inner(&tmp3))
z.updateInner(zi)
return z
}
// Rsh calls (big.Int).Rsh.
func (z *BigInt) Rsh(x *BigInt, n uint) *BigInt {
var tmp1, tmp2 big.Int
zi := z.inner(&tmp1)
zi.Rsh(x.inner(&tmp2), n)
z.updateInner(zi)
return z
}
// Scan calls (big.Int).Scan.
func (z *BigInt) Scan(s fmt.ScanState, ch rune) error {
var tmp1 big.Int
zi := z.inner(&tmp1)
if err := zi.Scan(s, ch); err != nil {
return err
}
z.updateInner(zi)
return nil
}
// Set calls (big.Int).Set.
func (z *BigInt) Set(x *BigInt) *BigInt {
if x.isInline() {
*z = *x
return z
}
var tmp1, tmp2 big.Int
zi := z.inner(&tmp1)
zi.Set(x.inner(&tmp2))
z.updateInner(zi)
return z
}
// SetBit calls (big.Int).SetBit.
func (z *BigInt) SetBit(x *BigInt, i int, v uint) *BigInt {
var tmp1, tmp2 big.Int
zi := z.inner(&tmp1)
zi.SetBit(x.inner(&tmp2), i, v)
z.updateInner(zi)
return z
}
// SetBits calls (big.Int).SetBits.
func (z *BigInt) SetBits(_ []big.Word) *BigInt {
// Don't expose direct access to the big.Int's word slice.
panic("unimplemented")
}
// SetBytes calls (big.Int).SetBytes.
func (z *BigInt) SetBytes(buf []byte) *BigInt {
var tmp1 big.Int
zi := z.inner(&tmp1)
zi.SetBytes(buf)
z.updateInner(zi)
return z
}
// SetInt64 calls (big.Int).SetInt64.
func (z *BigInt) SetInt64(x int64) *BigInt {
if bits.UintSize == 64 {
neg := false
if x < 0 {
neg = true
x = -x
}
z.updateInnerFromUint(uint(x), neg)
return z
}
var tmp1 big.Int
zi := z.inner(&tmp1)
zi.SetInt64(x)
z.updateInner(zi)
return z
}
// SetString calls (big.Int).SetString.
func (z *BigInt) SetString(s string, base int) (*BigInt, bool) {
var tmp1 big.Int
zi := z.inner(&tmp1)
if _, ok := zi.SetString(s, base); !ok {
return nil, false
}
z.updateInner(zi)
return z, true
}
// SetUint64 calls (big.Int).SetUint64.
func (z *BigInt) SetUint64(x uint64) *BigInt {
if bits.UintSize == 64 {
z.updateInnerFromUint(uint(x), false)
return z
}
var tmp1 big.Int
zi := z.inner(&tmp1)
zi.SetUint64(x)
z.updateInner(zi)
return z
}
// Sign calls (big.Int).Sign.
func (z *BigInt) Sign() int {
if z._inner == nil {
if z._inline[0] == 0 {
return 0
}
return 1
} else if z._inner == negSentinel {
return -1
}
return z._inner.Sign()
}
// Sqrt calls (big.Int).Sqrt.
func (z *BigInt) Sqrt(x *BigInt) *BigInt {
var tmp1, tmp2 big.Int
zi := z.inner(&tmp1)
zi.Sqrt(x.inner(&tmp2))
z.updateInner(zi)
return z
}
// String calls (big.Int).String.
func (z *BigInt) String() string {
var tmp1 big.Int
return z.inner(&tmp1).String()
}
// Sub calls (big.Int).Sub.
func (z *BigInt) Sub(x, y *BigInt) *BigInt {
if xVal, xNeg, ok := x.innerAsUint(); ok {
if yVal, yNeg, ok := y.innerAsUint(); ok {
if zVal, zNeg, ok := addInline(xVal, yVal, xNeg, !yNeg); ok {
z.updateInnerFromUint(zVal, zNeg)
return z
}
}
}
var tmp1, tmp2, tmp3 big.Int
zi := z.inner(&tmp1)
zi.Sub(x.inner(&tmp2), y.inner(&tmp3))
z.updateInner(zi)
return z
}
// Text calls (big.Int).Text.
func (z *BigInt) Text(base int) string {
var tmp1 big.Int
return z.inner(&tmp1).Text(base)
}
// TrailingZeroBits calls (big.Int).TrailingZeroBits.
func (z *BigInt) TrailingZeroBits() uint {
var tmp1 big.Int
return z.inner(&tmp1).TrailingZeroBits()
}
// Uint64 calls (big.Int).Uint64.
func (z *BigInt) Uint64() uint64 {
var tmp1 big.Int
return z.inner(&tmp1).Uint64()
}
// UnmarshalJSON calls (big.Int).UnmarshalJSON.
func (z *BigInt) UnmarshalJSON(text []byte) error {
var tmp1 big.Int
zi := z.inner(&tmp1)
if err := zi.UnmarshalJSON(text); err != nil {
return err
}
z.updateInner(zi)
return nil
}
// UnmarshalText calls (big.Int).UnmarshalText.
func (z *BigInt) UnmarshalText(text []byte) error {
var tmp1 big.Int
zi := z.inner(&tmp1)
if err := zi.UnmarshalText(text); err != nil {
return err
}
z.updateInner(zi)
return nil
}
// Xor calls (big.Int).Xor.
func (z *BigInt) Xor(x, y *BigInt) *BigInt {
var tmp1, tmp2, tmp3 big.Int
zi := z.inner(&tmp1)
zi.Xor(x.inner(&tmp2), y.inner(&tmp3))
z.updateInner(zi)
return z
}