-
Notifications
You must be signed in to change notification settings - Fork 139
/
mini-rv32ima.h
540 lines (485 loc) · 16.6 KB
/
mini-rv32ima.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
// Copyright 2022 Charles Lohr, you may use this file or any portions herein under any of the BSD, MIT, or CC0 licenses.
#ifndef _MINI_RV32IMAH_H
#define _MINI_RV32IMAH_H
/**
To use mini-rv32ima.h for the bare minimum, the following:
#define MINI_RV32_RAM_SIZE ram_amt
#define MINIRV32_IMPLEMENTATION
#include "mini-rv32ima.h"
Though, that's not _that_ interesting. You probably want I/O!
Notes:
* There is a dedicated CLNT at 0x10000000.
* There is free MMIO from there to 0x12000000.
* You can put things like a UART, or whatever there.
* Feel free to override any of the functionality with macros.
*/
#ifndef MINIRV32WARN
#define MINIRV32WARN( x... );
#endif
#ifndef MINIRV32_DECORATE
#define MINIRV32_DECORATE static
#endif
#ifndef MINIRV32_RAM_IMAGE_OFFSET
#define MINIRV32_RAM_IMAGE_OFFSET 0x80000000
#endif
#ifndef MINIRV32_MMIO_RANGE
#define MINIRV32_MMIO_RANGE(n) (0x10000000 <= (n) && (n) < 0x12000000)
#endif
#ifndef MINIRV32_POSTEXEC
#define MINIRV32_POSTEXEC(...);
#endif
#ifndef MINIRV32_HANDLE_MEM_STORE_CONTROL
#define MINIRV32_HANDLE_MEM_STORE_CONTROL(...);
#endif
#ifndef MINIRV32_HANDLE_MEM_LOAD_CONTROL
#define MINIRV32_HANDLE_MEM_LOAD_CONTROL(...);
#endif
#ifndef MINIRV32_OTHERCSR_WRITE
#define MINIRV32_OTHERCSR_WRITE(...);
#endif
#ifndef MINIRV32_OTHERCSR_READ
#define MINIRV32_OTHERCSR_READ(...);
#endif
#ifndef MINIRV32_CUSTOM_MEMORY_BUS
#define MINIRV32_STORE4( ofs, val ) *(uint32_t*)(image + ofs) = val
#define MINIRV32_STORE2( ofs, val ) *(uint16_t*)(image + ofs) = val
#define MINIRV32_STORE1( ofs, val ) *(uint8_t*)(image + ofs) = val
#define MINIRV32_LOAD4( ofs ) *(uint32_t*)(image + ofs)
#define MINIRV32_LOAD2( ofs ) *(uint16_t*)(image + ofs)
#define MINIRV32_LOAD1( ofs ) *(uint8_t*)(image + ofs)
#define MINIRV32_LOAD2_SIGNED( ofs ) *(int16_t*)(image + ofs)
#define MINIRV32_LOAD1_SIGNED( ofs ) *(int8_t*)(image + ofs)
#endif
// As a note: We quouple-ify these, because in HLSL, we will be operating with
// uint4's. We are going to uint4 data to/from system RAM.
//
// We're going to try to keep the full processor state to 12 x uint4.
struct MiniRV32IMAState
{
uint32_t regs[32];
uint32_t pc;
uint32_t mstatus;
uint32_t cyclel;
uint32_t cycleh;
uint32_t timerl;
uint32_t timerh;
uint32_t timermatchl;
uint32_t timermatchh;
uint32_t mscratch;
uint32_t mtvec;
uint32_t mie;
uint32_t mip;
uint32_t mepc;
uint32_t mtval;
uint32_t mcause;
// Note: only a few bits are used. (Machine = 3, User = 0)
// Bits 0..1 = privilege.
// Bit 2 = WFI (Wait for interrupt)
// Bit 3+ = Load/Store reservation LSBs.
uint32_t extraflags;
};
#ifndef MINIRV32_STEPPROTO
MINIRV32_DECORATE int32_t MiniRV32IMAStep( struct MiniRV32IMAState * state, uint8_t * image, uint32_t vProcAddress, uint32_t elapsedUs, int count );
#endif
#ifdef MINIRV32_IMPLEMENTATION
#ifndef MINIRV32_CUSTOM_INTERNALS
#define CSR( x ) state->x
#define SETCSR( x, val ) { state->x = val; }
#define REG( x ) state->regs[x]
#define REGSET( x, val ) { state->regs[x] = val; }
#endif
#ifndef MINIRV32_STEPPROTO
MINIRV32_DECORATE int32_t MiniRV32IMAStep( struct MiniRV32IMAState * state, uint8_t * image, uint32_t vProcAddress, uint32_t elapsedUs, int count )
#else
MINIRV32_STEPPROTO
#endif
{
uint32_t new_timer = CSR( timerl ) + elapsedUs;
if( new_timer < CSR( timerl ) ) CSR( timerh )++;
CSR( timerl ) = new_timer;
// Handle Timer interrupt.
if( ( CSR( timerh ) > CSR( timermatchh ) || ( CSR( timerh ) == CSR( timermatchh ) && CSR( timerl ) > CSR( timermatchl ) ) ) && ( CSR( timermatchh ) || CSR( timermatchl ) ) )
{
CSR( extraflags ) &= ~4; // Clear WFI
CSR( mip ) |= 1<<7; //MTIP of MIP // https://stackoverflow.com/a/61916199/2926815 Fire interrupt.
}
else
CSR( mip ) &= ~(1<<7);
// If WFI, don't run processor.
if( CSR( extraflags ) & 4 )
return 1;
uint32_t trap = 0;
uint32_t rval = 0;
uint32_t pc = CSR( pc );
uint32_t cycle = CSR( cyclel );
if( ( CSR( mip ) & (1<<7) ) && ( CSR( mie ) & (1<<7) /*mtie*/ ) && ( CSR( mstatus ) & 0x8 /*mie*/) )
{
// Timer interrupt.
trap = 0x80000007;
pc -= 4;
}
else // No timer interrupt? Execute a bunch of instructions.
for( int icount = 0; icount < count; icount++ )
{
uint32_t ir = 0;
rval = 0;
cycle++;
uint32_t ofs_pc = pc - MINIRV32_RAM_IMAGE_OFFSET;
if( ofs_pc >= MINI_RV32_RAM_SIZE )
{
trap = 1 + 1; // Handle access violation on instruction read.
break;
}
else if( ofs_pc & 3 )
{
trap = 1 + 0; //Handle PC-misaligned access
break;
}
else
{
ir = MINIRV32_LOAD4( ofs_pc );
uint32_t rdid = (ir >> 7) & 0x1f;
switch( ir & 0x7f )
{
case 0x37: // LUI (0b0110111)
rval = ( ir & 0xfffff000 );
break;
case 0x17: // AUIPC (0b0010111)
rval = pc + ( ir & 0xfffff000 );
break;
case 0x6F: // JAL (0b1101111)
{
int32_t reladdy = ((ir & 0x80000000)>>11) | ((ir & 0x7fe00000)>>20) | ((ir & 0x00100000)>>9) | ((ir&0x000ff000));
if( reladdy & 0x00100000 ) reladdy |= 0xffe00000; // Sign extension.
rval = pc + 4;
pc = pc + reladdy - 4;
break;
}
case 0x67: // JALR (0b1100111)
{
uint32_t imm = ir >> 20;
int32_t imm_se = imm | (( imm & 0x800 )?0xfffff000:0);
rval = pc + 4;
pc = ( (REG( (ir >> 15) & 0x1f ) + imm_se) & ~1) - 4;
break;
}
case 0x63: // Branch (0b1100011)
{
uint32_t immm4 = ((ir & 0xf00)>>7) | ((ir & 0x7e000000)>>20) | ((ir & 0x80) << 4) | ((ir >> 31)<<12);
if( immm4 & 0x1000 ) immm4 |= 0xffffe000;
int32_t rs1 = REG((ir >> 15) & 0x1f);
int32_t rs2 = REG((ir >> 20) & 0x1f);
immm4 = pc + immm4 - 4;
rdid = 0;
switch( ( ir >> 12 ) & 0x7 )
{
// BEQ, BNE, BLT, BGE, BLTU, BGEU
case 0: if( rs1 == rs2 ) pc = immm4; break;
case 1: if( rs1 != rs2 ) pc = immm4; break;
case 4: if( rs1 < rs2 ) pc = immm4; break;
case 5: if( rs1 >= rs2 ) pc = immm4; break; //BGE
case 6: if( (uint32_t)rs1 < (uint32_t)rs2 ) pc = immm4; break; //BLTU
case 7: if( (uint32_t)rs1 >= (uint32_t)rs2 ) pc = immm4; break; //BGEU
default: trap = (2+1);
}
break;
}
case 0x03: // Load (0b0000011)
{
uint32_t rs1 = REG((ir >> 15) & 0x1f);
uint32_t imm = ir >> 20;
int32_t imm_se = imm | (( imm & 0x800 )?0xfffff000:0);
uint32_t rsval = rs1 + imm_se;
rsval -= MINIRV32_RAM_IMAGE_OFFSET;
if( rsval >= MINI_RV32_RAM_SIZE-3 )
{
rsval += MINIRV32_RAM_IMAGE_OFFSET;
if( MINIRV32_MMIO_RANGE( rsval ) ) // UART, CLNT
{
MINIRV32_HANDLE_MEM_LOAD_CONTROL( rsval, rval );
}
else
{
trap = (5+1);
rval = rsval;
}
}
else
{
switch( ( ir >> 12 ) & 0x7 )
{
//LB, LH, LW, LBU, LHU
case 0: rval = MINIRV32_LOAD1_SIGNED( rsval ); break;
case 1: rval = MINIRV32_LOAD2_SIGNED( rsval ); break;
case 2: rval = MINIRV32_LOAD4( rsval ); break;
case 4: rval = MINIRV32_LOAD1( rsval ); break;
case 5: rval = MINIRV32_LOAD2( rsval ); break;
default: trap = (2+1);
}
}
break;
}
case 0x23: // Store 0b0100011
{
uint32_t rs1 = REG((ir >> 15) & 0x1f);
uint32_t rs2 = REG((ir >> 20) & 0x1f);
uint32_t addy = ( ( ir >> 7 ) & 0x1f ) | ( ( ir & 0xfe000000 ) >> 20 );
if( addy & 0x800 ) addy |= 0xfffff000;
addy += rs1 - MINIRV32_RAM_IMAGE_OFFSET;
rdid = 0;
if( addy >= MINI_RV32_RAM_SIZE-3 )
{
addy += MINIRV32_RAM_IMAGE_OFFSET;
if( MINIRV32_MMIO_RANGE( addy ) )
{
MINIRV32_HANDLE_MEM_STORE_CONTROL( addy, rs2 );
}
else
{
trap = (7+1); // Store access fault.
rval = addy;
}
}
else
{
switch( ( ir >> 12 ) & 0x7 )
{
//SB, SH, SW
case 0: MINIRV32_STORE1( addy, rs2 ); break;
case 1: MINIRV32_STORE2( addy, rs2 ); break;
case 2: MINIRV32_STORE4( addy, rs2 ); break;
default: trap = (2+1);
}
}
break;
}
case 0x13: // Op-immediate 0b0010011
case 0x33: // Op 0b0110011
{
uint32_t imm = ir >> 20;
imm = imm | (( imm & 0x800 )?0xfffff000:0);
uint32_t rs1 = REG((ir >> 15) & 0x1f);
uint32_t is_reg = !!( ir & 0x20 );
uint32_t rs2 = is_reg ? REG(imm & 0x1f) : imm;
if( is_reg && ( ir & 0x02000000 ) )
{
switch( (ir>>12)&7 ) //0x02000000 = RV32M
{
case 0: rval = rs1 * rs2; break; // MUL
#ifndef CUSTOM_MULH // If compiling on a system that doesn't natively, or via libgcc support 64-bit math.
case 1: rval = ((int64_t)((int32_t)rs1) * (int64_t)((int32_t)rs2)) >> 32; break; // MULH
case 2: rval = ((int64_t)((int32_t)rs1) * (uint64_t)rs2) >> 32; break; // MULHSU
case 3: rval = ((uint64_t)rs1 * (uint64_t)rs2) >> 32; break; // MULHU
#else
CUSTOM_MULH
#endif
case 4: if( rs2 == 0 ) rval = -1; else rval = ((int32_t)rs1 == INT32_MIN && (int32_t)rs2 == -1) ? rs1 : ((int32_t)rs1 / (int32_t)rs2); break; // DIV
case 5: if( rs2 == 0 ) rval = 0xffffffff; else rval = rs1 / rs2; break; // DIVU
case 6: if( rs2 == 0 ) rval = rs1; else rval = ((int32_t)rs1 == INT32_MIN && (int32_t)rs2 == -1) ? 0 : ((uint32_t)((int32_t)rs1 % (int32_t)rs2)); break; // REM
case 7: if( rs2 == 0 ) rval = rs1; else rval = rs1 % rs2; break; // REMU
}
}
else
{
switch( (ir>>12)&7 ) // These could be either op-immediate or op commands. Be careful.
{
case 0: rval = (is_reg && (ir & 0x40000000) ) ? ( rs1 - rs2 ) : ( rs1 + rs2 ); break;
case 1: rval = rs1 << (rs2 & 0x1F); break;
case 2: rval = (int32_t)rs1 < (int32_t)rs2; break;
case 3: rval = rs1 < rs2; break;
case 4: rval = rs1 ^ rs2; break;
case 5: rval = (ir & 0x40000000 ) ? ( ((int32_t)rs1) >> (rs2 & 0x1F) ) : ( rs1 >> (rs2 & 0x1F) ); break;
case 6: rval = rs1 | rs2; break;
case 7: rval = rs1 & rs2; break;
}
}
break;
}
case 0x0f: // 0b0001111
rdid = 0; // fencetype = (ir >> 12) & 0b111; We ignore fences in this impl.
break;
case 0x73: // Zifencei+Zicsr (0b1110011)
{
uint32_t csrno = ir >> 20;
uint32_t microop = ( ir >> 12 ) & 0x7;
if( (microop & 3) ) // It's a Zicsr function.
{
int rs1imm = (ir >> 15) & 0x1f;
uint32_t rs1 = REG(rs1imm);
uint32_t writeval = rs1;
// https://raw.githubusercontent.com/riscv/virtual-memory/main/specs/663-Svpbmt.pdf
// Generally, support for Zicsr
switch( csrno )
{
case 0x340: rval = CSR( mscratch ); break;
case 0x305: rval = CSR( mtvec ); break;
case 0x304: rval = CSR( mie ); break;
case 0xC00: rval = cycle; break;
case 0x344: rval = CSR( mip ); break;
case 0x341: rval = CSR( mepc ); break;
case 0x300: rval = CSR( mstatus ); break; //mstatus
case 0x342: rval = CSR( mcause ); break;
case 0x343: rval = CSR( mtval ); break;
case 0xf11: rval = 0xff0ff0ff; break; //mvendorid
case 0x301: rval = 0x40401101; break; //misa (XLEN=32, IMA+X)
//case 0x3B0: rval = 0; break; //pmpaddr0
//case 0x3a0: rval = 0; break; //pmpcfg0
//case 0xf12: rval = 0x00000000; break; //marchid
//case 0xf13: rval = 0x00000000; break; //mimpid
//case 0xf14: rval = 0x00000000; break; //mhartid
default:
MINIRV32_OTHERCSR_READ( csrno, rval );
break;
}
switch( microop )
{
case 1: writeval = rs1; break; //CSRRW
case 2: writeval = rval | rs1; break; //CSRRS
case 3: writeval = rval & ~rs1; break; //CSRRC
case 5: writeval = rs1imm; break; //CSRRWI
case 6: writeval = rval | rs1imm; break; //CSRRSI
case 7: writeval = rval & ~rs1imm; break; //CSRRCI
}
switch( csrno )
{
case 0x340: SETCSR( mscratch, writeval ); break;
case 0x305: SETCSR( mtvec, writeval ); break;
case 0x304: SETCSR( mie, writeval ); break;
case 0x344: SETCSR( mip, writeval ); break;
case 0x341: SETCSR( mepc, writeval ); break;
case 0x300: SETCSR( mstatus, writeval ); break; //mstatus
case 0x342: SETCSR( mcause, writeval ); break;
case 0x343: SETCSR( mtval, writeval ); break;
//case 0x3a0: break; //pmpcfg0
//case 0x3B0: break; //pmpaddr0
//case 0xf11: break; //mvendorid
//case 0xf12: break; //marchid
//case 0xf13: break; //mimpid
//case 0xf14: break; //mhartid
//case 0x301: break; //misa
default:
MINIRV32_OTHERCSR_WRITE( csrno, writeval );
break;
}
}
else if( microop == 0x0 ) // "SYSTEM" 0b000
{
rdid = 0;
if( csrno == 0x105 ) //WFI (Wait for interrupts)
{
CSR( mstatus ) |= 8; //Enable interrupts
CSR( extraflags ) |= 4; //Infor environment we want to go to sleep.
SETCSR( pc, pc + 4 );
return 1;
}
else if( ( ( csrno & 0xff ) == 0x02 ) ) // MRET
{
//https://raw.githubusercontent.com/riscv/virtual-memory/main/specs/663-Svpbmt.pdf
//Table 7.6. MRET then in mstatus/mstatush sets MPV=0, MPP=0, MIE=MPIE, and MPIE=1. La
// Should also update mstatus to reflect correct mode.
uint32_t startmstatus = CSR( mstatus );
uint32_t startextraflags = CSR( extraflags );
SETCSR( mstatus , (( startmstatus & 0x80) >> 4) | ((startextraflags&3) << 11) | 0x80 );
SETCSR( extraflags, (startextraflags & ~3) | ((startmstatus >> 11) & 3) );
pc = CSR( mepc ) -4;
}
else
{
switch( csrno )
{
case 0: trap = ( CSR( extraflags ) & 3) ? (11+1) : (8+1); break; // ECALL; 8 = "Environment call from U-mode"; 11 = "Environment call from M-mode"
case 1: trap = (3+1); break; // EBREAK 3 = "Breakpoint"
default: trap = (2+1); break; // Illegal opcode.
}
}
}
else
trap = (2+1); // Note micrrop 0b100 == undefined.
break;
}
case 0x2f: // RV32A (0b00101111)
{
uint32_t rs1 = REG((ir >> 15) & 0x1f);
uint32_t rs2 = REG((ir >> 20) & 0x1f);
uint32_t irmid = ( ir>>27 ) & 0x1f;
rs1 -= MINIRV32_RAM_IMAGE_OFFSET;
// We don't implement load/store from UART or CLNT with RV32A here.
if( rs1 >= MINI_RV32_RAM_SIZE-3 )
{
trap = (7+1); //Store/AMO access fault
rval = rs1 + MINIRV32_RAM_IMAGE_OFFSET;
}
else
{
rval = MINIRV32_LOAD4( rs1 );
// Referenced a little bit of https://github.com/franzflasch/riscv_em/blob/master/src/core/core.c
uint32_t dowrite = 1;
switch( irmid )
{
case 2: //LR.W (0b00010)
dowrite = 0;
CSR( extraflags ) = (CSR( extraflags ) & 0x07) | (rs1<<3);
break;
case 3: //SC.W (0b00011) (Make sure we have a slot, and, it's valid)
rval = ( CSR( extraflags ) >> 3 != ( rs1 & 0x1fffffff ) ); // Validate that our reservation slot is OK.
dowrite = !rval; // Only write if slot is valid.
break;
case 1: break; //AMOSWAP.W (0b00001)
case 0: rs2 += rval; break; //AMOADD.W (0b00000)
case 4: rs2 ^= rval; break; //AMOXOR.W (0b00100)
case 12: rs2 &= rval; break; //AMOAND.W (0b01100)
case 8: rs2 |= rval; break; //AMOOR.W (0b01000)
case 16: rs2 = ((int32_t)rs2<(int32_t)rval)?rs2:rval; break; //AMOMIN.W (0b10000)
case 20: rs2 = ((int32_t)rs2>(int32_t)rval)?rs2:rval; break; //AMOMAX.W (0b10100)
case 24: rs2 = (rs2<rval)?rs2:rval; break; //AMOMINU.W (0b11000)
case 28: rs2 = (rs2>rval)?rs2:rval; break; //AMOMAXU.W (0b11100)
default: trap = (2+1); dowrite = 0; break; //Not supported.
}
if( dowrite ) MINIRV32_STORE4( rs1, rs2 );
}
break;
}
default: trap = (2+1); // Fault: Invalid opcode.
}
// If there was a trap, do NOT allow register writeback.
if( trap )
break;
if( rdid )
{
REGSET( rdid, rval ); // Write back register.
}
}
MINIRV32_POSTEXEC( pc, ir, trap );
pc += 4;
}
// Handle traps and interrupts.
if( trap )
{
if( trap & 0x80000000 ) // If prefixed with 1 in MSB, it's an interrupt, not a trap.
{
SETCSR( mcause, trap );
SETCSR( mtval, 0 );
pc += 4; // PC needs to point to where the PC will return to.
}
else
{
SETCSR( mcause, trap - 1 );
SETCSR( mtval, (trap > 5 && trap <= 8)? rval : pc );
}
SETCSR( mepc, pc ); //TRICKY: The kernel advances mepc automatically.
//CSR( mstatus ) & 8 = MIE, & 0x80 = MPIE
// On an interrupt, the system moves current MIE into MPIE
SETCSR( mstatus, (( CSR( mstatus ) & 0x08) << 4) | (( CSR( extraflags ) & 3 ) << 11) );
pc = (CSR( mtvec ) - 4);
// If trapping, always enter machine mode.
CSR( extraflags ) |= 3;
trap = 0;
pc += 4;
}
if( CSR( cyclel ) > cycle ) CSR( cycleh )++;
SETCSR( cyclel, cycle );
SETCSR( pc, pc );
return 0;
}
#endif
#endif