-
Notifications
You must be signed in to change notification settings - Fork 4.3k
/
nanoDQM_cfi.py
1012 lines (1001 loc) · 79 KB
/
nanoDQM_cfi.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
# automatically generated by prepareDQM.py
import FWCore.ParameterSet.Config as cms
from PhysicsTools.NanoAOD.nanoDQM_tools_cff import *
from DQMServices.Core.DQMEDAnalyzer import DQMEDAnalyzer
nanoDQM = DQMEDAnalyzer("NanoAODDQM",
vplots = cms.PSet(
CaloMET = cms.PSet(
sels = cms.PSet(),
plots = cms.VPSet(
Plot1D('phi', 'phi', 20, -3.14159, 3.14159, 'phi'),
Plot1D('pt', 'pt', 20, 0, 400, 'pt'),
Plot1D('sumEt', 'sumEt', 20, 200, 3000, 'scalar sum of Et'),
)
),
CorrT1METJet = cms.PSet(
sels = cms.PSet(),
plots = cms.VPSet(
Count1D('_size', 20, -0.5, 19.5, 'Additional low-pt jets for Type-1 MET re-correction'),
Plot1D('area', 'area', 20, 0.2, 0.8, 'jet catchment area, for JECs'),
Plot1D('eta', 'eta', 20, -5, 5, 'eta'),
Plot1D('muonSubtrFactor', 'muonSubtrFactor', 20, 0, 1, '1-(muon-subtracted raw pt)/(raw pt)'),
Plot1D('phi', 'phi', 20, -3.14159, 3.14159, 'phi'),
Plot1D('rawPt', 'rawPt', 20, 5, 25, "pt()*jecFactor('Uncorrected')"),
Plot1D('rawMass', 'rawMass', 20, 5, 25, "mass()*jecFactor('Uncorrected')"),
Plot1D('EmEF', 'EmEF', 20, 0., 1., "charged+neutral Electromagnetic Energy Fraction"),
)
),
DeepMETResolutionTune = cms.PSet(
sels = cms.PSet(),
plots = cms.VPSet(
Plot1D('phi', 'phi', 20, -3.14159, 3.14159, 'Deep MET Resolution Tune phi'),
Plot1D('pt', 'pt', 20, 0, 400, 'Deep MET Response Tune pt'),
)
),
DeepMETResponseTune = cms.PSet(
sels = cms.PSet(),
plots = cms.VPSet(
Plot1D('phi', 'phi', 20, -3.14159, 3.14159, 'Deep MET Response Tune phi'),
Plot1D('pt', 'pt', 20, 0, 400, 'Deep MET Response Tune pt'),
)
),
Electron = cms.PSet(
sels = cms.PSet(
Good = cms.string('pt > 15 && abs(dxy) < 0.2 && abs(dz) < 0.5 && cutBased >= 3 && miniPFRelIso_all < 0.4')
),
plots = cms.VPSet(
Count1D('_size', 8, -0.5, 7.5, 'slimmedElectrons after basic selection (pt > 5 )'),
Plot1D('charge', 'charge', 3, -1.5, 1.5, 'electric charge'),
Plot1D('convVeto', 'convVeto', 2, -0.5, 1.5, 'pass conversion veto'),
Plot1D('cutBased', 'cutBased', 5, -0.5, 4.5, 'cut-based ID (0:fail, 1:veto, 2:loose, 3:medium, 4:tight)'),
Plot1D('cutBased_Fall17V2', 'cutBased_Fall17V2', 5, -0.5, 4.5, 'cut-based ID Fall17 V2 (0:fail, 1:veto, 2:loose, 3:medium, 4:tight)'),
Plot1D('cutBased_HEEP', 'cutBased_HEEP', 2, -0.5, 1.5, 'cut-based HEEP ID'),
Plot1D('deltaEtaSC', 'deltaEtaSC', 20, -0.2, 0.2, 'delta eta (SC,ele) with sign'),
Plot1D('dr03EcalRecHitSumEt', 'dr03EcalRecHitSumEt', 20, 0, 30, 'Non-PF Ecal isolation within a delta R cone of 0.3 with electron pt > 35 GeV'),
Plot1D('dr03HcalDepth1TowerSumEt', 'dr03HcalDepth1TowerSumEt', 20, 0, 20, 'Non-PF Hcal isolation within a delta R cone of 0.3 with electron pt > 35 GeV'),
Plot1D('dr03TkSumPt', 'dr03TkSumPt', 20, 0, 40, 'Non-PF track isolation within a delta R cone of 0.3 with electron pt > 35 GeV'),
Plot1D('dr03TkSumPtHEEP', 'dr03TkSumPtHEEP', 20, 0, 40, 'Non-PF track isolation within a delta R cone of 0.3 with electron pt > 35 GeV used in HEEP ID'),
Plot1D('dxy', 'dxy', 20, -0.1, 0.1, 'dxy (with sign) wrt first PV, in cm'),
Plot1D('dxyErr', 'dxyErr', 20, 0, 0.2, 'dxy uncertainty, in cm'),
Plot1D('dz', 'dz', 20, -0.3, 0.3, 'dz (with sign) wrt first PV, in cm'),
Plot1D('dzErr', 'dzErr', 20, 0, 0.2, 'dz uncertainty, in cm'),
Plot1D('fbrem', 'fbrem', 20, -5.0, 5.0, 'Fraction of brem'),
Plot1D('rawEnergy', 'rawEnergy', 100, 0, 1000.0, 'raw energy of Supercluster'),
Plot1D('PreshowerEnergy', 'PreshowerEnergy', 20, 0, 100.0, 'energy deposited in the preshower'),
Plot1D('ecalEnergy', 'ecalEnergy', 100, 0, 1000.0, 'energy after ECAL-only regression applied'),
Plot1D('ecalEnergyError', 'ecalEnergyError', 20, 0, 100.0, 'ecalEnergy error'),
Plot1D('gsfTrkpMode', 'gsfTrkpMode', 100, 0, 1000000.0, 'GSF track pMode'),
Plot1D('gsfTrkpModeErr', 'gsfTrkpModeErr', 100, 0, 1000000.0, 'GSF track pMode error'),
Plot1D('gsfTrketaMode', 'gsfTrketaMode', 20, -3.5, 3.5, 'GSF track eta Mode'),
Plot1D('gsfTrkphiMode', 'gsfTrkphiMode', 20, -4, 4, 'GSF track phi Mode'),
Plot1D('isEcalDriven', 'isEcalDriven', 2, -0.5, 1.5, 'is ECAL driven if true'),
Plot1D('isEB', 'isEB', 2, -0.5, 1.5, 'object in barrel if true derived from the seedCrystal and detID information'),
Plot1D('eInvMinusPInv', 'eInvMinusPInv', 20, -0.1, 0.1, '1/E_SC - 1/p_trk'),
Plot1D('energyErr', 'energyErr', 20, 0, 90, 'energy error of the cluster-track combination'),
Plot1D('eta', 'eta', 20, -3, 3, 'eta'),
Plot1D('genPartFlav', 'genPartFlav', 20, 0, 30, 'Flavour of genParticle for MC matching to status==1 electrons or photons: 1 = prompt electron (including gamma*->mu mu), 15 = electron from prompt tau, 22 = prompt photon (likely conversion), 5 = electron from b, 4 = electron from c, 3 = electron from light or unknown, 0 = unmatched'),
NoPlot('genPartIdx'),
Plot1D('hoe', 'hoe', 20, 0, 1, 'H over E'),
Plot1D('ip3d', 'ip3d', 20, 0, 0.2, '3D impact parameter wrt first PV, in cm'),
Plot1D('isPFcand', 'isPFcand', 2, -0.5, 1.5, 'electron is PF candidate'),
NoPlot('jetIdx'),
Plot1D('jetPtRelv2', 'jetPtRelv2', 20, 0, 60, 'Relative momentum of the lepton with respect to the closest jet after subtracting the lepton'),
Plot1D('jetRelIso', 'jetRelIso', 20, -0.2, 1.8, 'Relative isolation in matched jet (1/ptRatio-1), -1 if none'),
Plot1D('jetDF', 'jetDF', 20, 0., 1., 'value of the DEEPJET b tagging algorithm discriminator of the associated jet (0 if none)'),
Plot1D('lostHits', 'lostHits', 4, -0.5, 3.5, 'number of missing inner hits'),
Plot1D('jetNDauCharged', 'jetNDauCharged', 20, -0.5, 19.5, 'number of charged daughters of the closest jet'),
NoPlot('mass'),
Plot1D('mvaIso_Fall17V2', 'mvaIso_Fall17V2', 20, -1, 1, 'MVA Iso ID score, Fall17V2'),
Plot1D('mvaIso_Fall17V2_WP80', 'mvaIso_Fall17V2_WP80', 2, -0.5, 1.5, 'MVA Iso ID WP80, Fall17V2'),
Plot1D('mvaIso_Fall17V2_WP90', 'mvaIso_Fall17V2_WP90', 2, -0.5, 1.5, 'MVA Iso ID WP90, Fall17V2'),
Plot1D('mvaIso_Fall17V2_WPL', 'mvaIso_Fall17V2_WPL', 2, -0.5, 1.5, 'MVA Iso ID loose WP, Fall17V2'),
Plot1D('mvaIso', 'mvaIso', 20, -1, 1, 'MVA Iso ID score, Winter22V1'),
Plot1D('mvaIso_WP80', 'mvaIso_WP80', 2, -0.5, 1.5, 'MVA Iso ID WP80, Winter22V1'),
Plot1D('mvaIso_WP90', 'mvaIso_WP90', 2, -0.5, 1.5, 'MVA Iso ID WP90, Winter22V1'),
Plot1D('mvaNoIso', 'mvaNoIso', 20, -1, 1, 'MVA noIso ID score, Winter22V1'),
Plot1D('mvaNoIso_WP80', 'mvaNoIso_WP80', 2, -0.5, 1.5, 'MVA noIso ID WP80, Winter22V1'),
Plot1D('mvaNoIso_WP90', 'mvaNoIso_WP90', 2, -0.5, 1.5, 'MVA noIso ID WP90, Winter22V1'),
Plot1D('mvaNoIso_Fall17V2', 'mvaNoIso_Fall17V2', 20, -1, 1, 'MVA noIso ID score, Fall17V2'),
Plot1D('mvaNoIso_Fall17V2_WP80', 'mvaNoIso_Fall17V2_WP80', 2, -0.5, 1.5, 'MVA noIso ID WP80, Fall17V2'),
Plot1D('mvaNoIso_Fall17V2_WP90', 'mvaNoIso_Fall17V2_WP90', 2, -0.5, 1.5, 'MVA noIso ID WP90, Fall17V2'),
Plot1D('mvaNoIso_Fall17V2_WPL', 'mvaNoIso_Fall17V2_WPL', 2, -0.5, 1.5, 'MVA noIso ID loose WP, Fall17V2'),
Plot1D('mvaHZZIso', 'mvaHZZIso', 20, -1, 1, 'HZZ MVA Iso ID score'),
Plot1D('mvaIso_WPHZZ', 'mvaIso_WPHZZ', 2, -0.5, 1.5, 'MVA Iso ID WPHZZ, Winter22V1'),
Plot1D('promptMVA', 'promptMVA', 20, -1, 1, 'prompt MVA lepton ID score'),
Plot1D('pdgId', 'pdgId', 27, -13.5, 13.5, 'PDG code assigned by the event reconstruction (not by MC truth)'),
Plot1D('miniPFRelIso_all', 'miniPFRelIso_all', 20, 0, 1, 'mini PF relative isolation, total (with scaled rho*EA PU corrections)'),
Plot1D('miniPFRelIso_chg', 'miniPFRelIso_chg', 20, 0, 1, 'mini PF relative isolation, charged component'),
Plot1D('pfRelIso03_all', 'pfRelIso03_all', 20, 0, 2, 'PF relative isolation dR=0.3, total (with rho*EA PU corrections)'),
Plot1D('pfRelIso03_chg', 'pfRelIso03_chg', 20, 0, 2, 'PF relative isolation dR=0.3, charged component'),
Plot1D('pfRelIso04_all', 'pfRelIso04_all', 20, 0, 2, 'PF relative isolation dR=0.4, total (with rho*EA PU corrections)'),
Plot1D('miniPFRelIso_all_Fall17V2', 'miniPFRelIso_all_Fall17V2', 20, 0, 1, 'mini PF relative isolation, total (with scaled rho*EA PU corrections)'),
Plot1D('miniPFRelIso_chg_Fall17V2', 'miniPFRelIso_chg_Fall17V2', 20, 0, 1, 'mini PF relative isolation, charged component'),
Plot1D('pfRelIso03_all_Fall17V2', 'pfRelIso03_all_Fall17V2', 20, 0, 2, 'PF relative isolation dR=0.3 with 94 EffArea, total (with rho*EA PU corrections)'),
Plot1D('pfRelIso03_chg_Fall17V2', 'pfRelIso03_chg_Fall17V2', 20, 0, 2, 'PF relative isolation dR=0.3 with 94 EffArea, charged component'),
Plot1D('phi', 'phi', 20, -3.14159, 3.14159, 'phi'),
NoPlot('photonIdx'),
Plot1D('pt', 'pt', 20, 0, 200, 'pt (corrected)'),
Plot1D('r9', 'r9', 20, 0, 1.1, 'R9 of the supercluster, calculated with full 5x5 region'),
Plot1D('scEtOverPt', 'scEtOverPt', 20, -0.5, 0.5, '(supercluster transverse energy)/pt - 1'),
Plot1D('seedGain', 'seedGain', 12, 0.5, 12.5, 'Gain of the seed crystal'),
Plot1D('seediEtaOriX', 'seediEtaOriX', 200, -90, 110, 'iEta/iX of seed crystal'),
Plot1D('seediPhiOriY', 'seediPhiOriY', 380, -10, 370, 'iPhi/iY of seed crystal'),
Plot1D('sieie', 'sieie', 20, 0, 0.05, 'sigma_IetaIeta of the supercluster, calculated with full 5x5 region'),
Plot1D('sip3d', 'sip3d', 20, 0, 20, '3D impact parameter significance wrt first PV, in cm'),
Plot1D('tightCharge', 'tightCharge', 3, -0.5, 2.5, 'Tight charge criteria (0:none, 1:isGsfScPixChargeConsistent, 2:isGsfCtfScPixChargeConsistent)'),
NoPlot('vidNestedWPBitmap'),
NoPlot('vidNestedWPBitmap_Fall17V2'),
NoPlot('vidNestedWPBitmapHEEP'),
)
),
LowPtElectron = cms.PSet(
sels = cms.PSet(
Good = cms.string('pt > 1. && ID > 5.')
),
plots = cms.VPSet(
#
Count1D('_size', 8, -0.5, 7.5, 'slimmedLowPtElectrons after basic selection'),
# CandVars
Plot1D('charge', 'charge', 3, -1.5, 1.5, 'electric charge'),
Plot1D('eta', 'eta', 20, -3., 3., 'eta'),
NoPlot('mass'),
Plot1D('pdgId', 'pdgId', 101, -50.5, 50.5, 'PDG code assigned by the event reconstruction (not by MC truth)'),
Plot1D('phi', 'phi', 20, -3.14159, 3.14159, 'phi'),
Plot1D('pt', 'pt', 40, 0., 20., 'pt (corrected)'),
# BDT scores and WPs
Plot1D('embeddedID', 'embeddedID', 40, -10., 10., 'Embedded ID, BDT (raw) score'),
Plot1D('ID', 'ID', 40, -10., 10., 'ID, BDT (raw) score'),
Plot1D('unbiased', 'unbiased', 40, -10., 10., 'ElectronSeed, pT- and dxy- agnostic BDT (raw) score'),
Plot1D('ptbiased', 'ptbiased', 40, -10., 10., 'ElectronSeed, pT- and dxy- dependent BDT (raw) score'),
# Isolation
Plot1D('miniPFRelIso_chg', 'miniPFRelIso_chg', 20, 0., 1., 'mini PF relative isolation, charged component'),
Plot1D('miniPFRelIso_all', 'miniPFRelIso_all', 20, 0., 1., 'mini PF relative isolation, total (with scaled rho*EA PU corrections)'),
# Conversions
Plot1D('convVeto', 'convVeto', 2, -0.5, 1.5, 'pass conversion veto'),
Plot1D('convWP', 'convWP', 8, -0.5, 7.5, 'conversion flag bit map: 1=Veto, 2=Loose, 3=Tight'),
Plot1D('convVtxRadius', 'convVtxRadius', 40, 0., 20.0, 'conversion vertex radius (cm)'),
# Tracking
Plot1D('lostHits', 'lostHits', 4, -0.5, 3.5, 'number of missing inner hits'),
# Cluster-related
Plot1D('energyErr', 'energyErr', 40, 0., 20., 'energy error of the cluster from regression'),
Plot1D('deltaEtaSC', 'deltaEtaSC', 20, -0.2, 0.2, 'delta eta (SC,ele) with sign'),
Plot1D('r9', 'r9', 20, 0, 1.1, 'R9 of the supercluster, calculated with full 5x5 region'),
Plot1D('sieie', 'sieie', 20, 0, 0.05, 'sigma_IetaIeta of the supercluster, calculated with full 5x5 region'),
Plot1D('eInvMinusPInv', 'eInvMinusPInv', 20, -0.1, 0.1, '1/E_SC - 1/p_trk'),
Plot1D('scEtOverPt', 'scEtOverPt', 20, -0.5, 0.5, '(supercluster transverse energy)/pt - 1'),
Plot1D('hoe', 'hoe', 20, 0, 0.6, 'H over E'),
# Displacement
Plot1D('dxy', 'dxy', 20, -0.1, 0.1, 'dxy (with sign) wrt first PV, in cm'),
Plot1D('dz', 'dz', 20, -0.3, 0.3, 'dz (with sign) wrt first PV, in cm'),
Plot1D('dxyErr', 'dxyErr', 20, 0., 0.2, 'dxy uncertainty, in cm'),
Plot1D('dzErr', 'dzErr', 20, 0., 0.2, 'dz uncertainty, in cm'),
),
),
FatJet = cms.PSet(
sels = cms.PSet(),
plots = cms.VPSet(
Count1D('_size', 6, -0.5, 5.5, 'slimmedJetsAK8, i.e. ak8 fat jets for boosted analysis'),
Plot1D('area', 'area', 20, 2, 4, 'jet catchment area, for JECs'),
Plot1D('particleNetWithMass_QCD', 'particleNetWithMass_QCD', 20, -1, 1, 'ParticleNet (mass-correlated) QCD score'),
Plot1D('particleNetWithMass_TvsQCD', 'particleNetWithMass_TvsQCD', 20, 0, 1, 'ParticleNet (mass-correlated) top vs. QCD score'),
Plot1D('particleNetWithMass_WvsQCD', 'particleNetWithMass_WvsQCD', 20, 0, 1, 'ParticleNet (mass-correlated) W vs. QCD score'),
Plot1D('particleNetWithMass_ZvsQCD', 'particleNetWithMass_ZvsQCD', 20, 0, 1, 'ParticleNet (mass-correlated) Z vs. QCD score'),
Plot1D('particleNetWithMass_H4qvsQCD', 'particleNetWithMass_H4qvsQCD', 20, 0, 1, 'ParticleNet (mass-correlated) H(->VV->qqqq) vs. QCD score'),
Plot1D('particleNetWithMass_HbbvsQCD', 'particleNetWithMass_HbbvsQCD', 20, 0, 1, 'ParticleNet (mass-correlated) H->bb vs. QCD score'),
Plot1D('particleNetWithMass_HccvsQCD', 'particleNetWithMass_HccvsQCD', 20, 0, 1, 'ParticleNet (mass-correlated) H->cc vs. QCD score'),
Plot1D('particleNet_QCD', 'particleNet_QCD', 20, 0, 1, 'ParticleNet QCD score'),
Plot1D('particleNet_QCD2HF', 'particleNet_QCD2HF', 20, 0, 1, 'ParticleNet QCD 2HF (b,c) score'),
Plot1D('particleNet_QCD1HF', 'particleNet_QCD1HF', 20, 0, 1, 'ParticleNet QCD 1HF (b,c) score'),
Plot1D('particleNet_QCD0HF', 'particleNet_QCD0HF', 20, 0, 1, 'ParticleNet QCD 0HF (b,c) score'),
Plot1D('particleNet_massCorr', 'particleNet_massCorr', 20, 0, 2, 'ParticleNet mass regression, correction relative to jet mass'),
Plot1D('particleNet_XbbVsQCD', 'particleNet_XbbVsQCD', 20, 0, 1, 'ParticleNet X->bb vs. QCD score'),
Plot1D('particleNet_XccVsQCD', 'particleNet_XccVsQCD', 20, 0, 1, 'ParticleNet X->cc vs. QCD score'),
Plot1D('particleNet_XqqVsQCD', 'particleNet_XqqVsQCD', 20, 0, 1, 'ParticleNet X->qq (uds) vs. QCD score'),
Plot1D('particleNet_XggVsQCD', 'particleNet_XggVsQCD', 20, 0, 1, 'ParticleNet X->gg vs. QCD score'),
Plot1D('particleNet_XttVsQCD', 'particleNet_XttVsQCD', 20, 0, 1, 'ParticleNet X->tautau vs. QCD score'),
Plot1D('particleNet_XtmVsQCD', 'particleNet_XtmVsQCD', 20, 0, 1, 'ParticleNet X->mutau vs. QCD score'),
Plot1D('particleNet_XteVsQCD', 'particleNet_XteVsQCD', 20, 0, 1, 'ParticleNet X->etau vs. QCD score'),
Plot1D('particleNet_WVsQCD', 'particleNet_WVsQCD', 20, 0, 1, 'ParticleNet W vs. QCD score'),
NoPlot('electronIdx3SJ'),
Plot1D('eta', 'eta', 20, -4, 4, 'eta'),
NoPlot('genJetAK8Idx'),
Plot1D('hadronFlavour', 'hadronFlavour', 6, -0.5, 5.5, 'flavour from hadron ghost clustering'),
Plot1D('lsf3', 'lsf3', 20, -1, 1, 'Lepton Subjet Fraction (3 subjets)'),
Plot1D('mass', 'mass', 20, 0, 300, 'mass'),
Plot1D('msoftdrop', 'msoftdrop', 20, -300, 300, 'Soft drop mass'),
NoPlot('muonIdx3SJ'),
Plot1D('n2b1', 'n2b1', 20, 0, 1, 'N2 (beta=1)'),
Plot1D('n3b1', 'n3b1', 20, 0, 5, 'N3 (beta=1)'),
Plot1D('nConstituents', 'nConstituents', 20, 0, 80, 'Number of particles in the jet'),
Plot1D('chMultiplicity', 'chMultiplicity', 20, 0, 80, '(Puppi-weighted) Number of charged particles in the jet'),
Plot1D('neMultiplicity', 'neMultiplicity', 20, 0, 80, '(Puppi-weighted) Number of neutral particles in the jet'),
Plot1D('chEmEF', 'chEmEF', 20, 0, 1, 'charged Electromagnetic Energy Fraction'),
Plot1D('chHEF', 'chHEF', 20, 0, 2, 'charged Hadron Energy Fraction'),
Plot1D('muEF', 'muEF', 20, 0, 1, 'muon Energy Fraction'),
Plot1D('neEmEF', 'neEmEF', 20, 0, 1, 'charged Electromagnetic EnergyFraction'),
Plot1D('neHEF', 'neHEF', 20, 0, 1, 'neutral Hadron Energy Fraction'),
Plot1D('hfHEF', 'hfHEF', 20, 0, 1, 'hadronic Energy Fraction in HF'),
Plot1D('hfEmEF', 'hfEmEF', 20, 0, 1, 'electromagnetic Energy Fraction in HF'),
Plot1D('particleNetMD_QCD', 'particleNetMD_QCD', 20, 0, 1, 'Mass-decorrelated ParticleNet tagger raw QCD score'),
Plot1D('particleNetMD_Xbb', 'particleNetMD_Xbb', 20, 0, 1, 'Mass-decorrelated ParticleNet tagger raw X->bb score. For X->bb vs QCD tagging, use Xbb/(Xbb+QCD)'),
Plot1D('particleNetMD_Xcc', 'particleNetMD_Xcc', 20, 0, 1, 'Mass-decorrelated ParticleNet tagger raw X->cc score. For X->cc vs QCD tagging, use Xcc/(Xcc+QCD)'),
Plot1D('particleNetMD_Xqq', 'particleNetMD_Xqq', 20, 0, 1, 'Mass-decorrelated ParticleNet tagger raw X->qq (uds) score. For X->qq vs QCD tagging, use Xqq/(Xqq+QCD). For W vs QCD tagging, use (Xcc+Xqq)/(Xcc+Xqq+QCD)'),
Plot1D('particleNet_H4qvsQCD', 'particleNet_H4qvsQCD', 20, 0, 1, 'ParticleNet tagger H(->VV->qqqq) vs QCD discriminator'),
Plot1D('particleNet_HbbvsQCD', 'particleNet_HbbvsQCD', 20, 0, 1, 'ParticleNet tagger H(->bb) vs QCD discriminator'),
Plot1D('particleNet_HccvsQCD', 'particleNet_HccvsQCD', 20, 0, 1, 'ParticleNet tagger H(->cc) vs QCD discriminator'),
Plot1D('particleNet_QCD', 'particleNet_QCD', 20, 0, 1, 'ParticleNet tagger QCD(bb,cc,b,c,others) sum'),
Plot1D('particleNet_TvsQCD', 'particleNet_TvsQCD', 20, 0, 1, 'ParticleNet tagger top vs QCD discriminator'),
Plot1D('particleNet_WvsQCD', 'particleNet_WvsQCD', 20, 0, 1, 'ParticleNet tagger W vs QCD discriminator'),
Plot1D('particleNet_ZvsQCD', 'particleNet_ZvsQCD', 20, 0, 1, 'ParticleNet tagger Z vs QCD discriminator'),
Plot1D('particleNet_mass', 'particleNet_mass', 25, 0, 250, 'ParticleNet mass regression'),
Plot1D('phi', 'phi', 20, -3.14159, 3.14159, 'phi'),
Plot1D('pt', 'pt', 20, 0, 800, 'pt'),
Plot1D('rawFactor', 'rawFactor', 20, -0.5, 0.5, '1 - Factor to get back to raw pT'),
NoPlot('subJetIdx1'),
NoPlot('subJetIdx2'),
Plot1D('tau1', 'tau1', 20, 0, 1, 'Nsubjettiness (1 axis)'),
Plot1D('tau2', 'tau2', 20, 0, 1, 'Nsubjettiness (2 axis)'),
Plot1D('tau3', 'tau3', 20, 0, 1, 'Nsubjettiness (3 axis)'),
Plot1D('tau4', 'tau4', 20, 0, 1, 'Nsubjettiness (4 axis)'),
)
),
PFCand = cms.PSet(
sels = cms.PSet(),
plots = cms.VPSet(
Count1D('_size', 10, 0, 100, 'PF candidates'),
Plot1D('pt', 'pt', 20, 0, 50, 'Puppi-weighted pt'),
Plot1D('eta', 'eta', 20, -4, 4., 'eta'),
Plot1D('phi', 'phi', 20, -3.14159, 3.14159, 'phi'),
Plot1D('mass', 'mass', 10, 0, 1., 'Puppi-weighted mass'),
Plot1D('pdgId', 'pdgId', 44, -220, 220, 'PF candidate type (+/-211 = ChgHad, 130 = NeuHad, 22 = Photon, +/-11 = Electron, +/-13 = Muon, 1 = HFHad, 2 = HFEM)'),
)
),
Flag = cms.PSet(
sels = cms.PSet(),
plots = cms.VPSet(
Plot1D('BadChargedCandidateFilter', 'BadChargedCandidateFilter', 2, -0.5, 1.5, 'Trigger/flag bit'),
Plot1D('BadChargedCandidateSummer16Filter', 'BadChargedCandidateSummer16Filter', 2, -0.5, 1.5, 'Trigger/flag bit'),
Plot1D('BadPFMuonFilter', 'BadPFMuonFilter', 2, -0.5, 1.5, 'Trigger/flag bit'),
Plot1D('BadPFMuonDzFilter', 'BadPFMuonDzFilter', 2, -0.5, 1.5, 'Trigger/flag bit'),
Plot1D('BadPFMuonSummer16Filter', 'BadPFMuonSummer16Filter', 2, -0.5, 1.5, 'Trigger/flag bit'),
Plot1D('CSCTightHalo2015Filter', 'CSCTightHalo2015Filter', 2, -0.5, 1.5, 'Trigger/flag bit'),
Plot1D('CSCTightHaloFilter', 'CSCTightHaloFilter', 2, -0.5, 1.5, 'Trigger/flag bit'),
Plot1D('CSCTightHaloTrkMuUnvetoFilter', 'CSCTightHaloTrkMuUnvetoFilter', 2, -0.5, 1.5, 'Trigger/flag bit'),
Plot1D('EcalDeadCellBoundaryEnergyFilter', 'EcalDeadCellBoundaryEnergyFilter', 2, -0.5, 1.5, 'Trigger/flag bit'),
Plot1D('EcalDeadCellTriggerPrimitiveFilter', 'EcalDeadCellTriggerPrimitiveFilter', 2, -0.5, 1.5, 'Trigger/flag bit'),
Plot1D('HBHENoiseFilter', 'HBHENoiseFilter', 2, -0.5, 1.5, 'Trigger/flag bit'),
Plot1D('HBHENoiseIsoFilter', 'HBHENoiseIsoFilter', 2, -0.5, 1.5, 'Trigger/flag bit'),
Plot1D('HcalStripHaloFilter', 'HcalStripHaloFilter', 2, -0.5, 1.5, 'Trigger/flag bit'),
Plot1D('METFilters', 'METFilters', 2, -0.5, 1.5, 'Trigger/flag bit'),
Plot1D('chargedHadronTrackResolutionFilter', 'chargedHadronTrackResolutionFilter', 2, -0.5, 1.5, 'Trigger/flag bit'),
Plot1D('ecalBadCalibFilter', 'ecalBadCalibFilter', 2, -0.5, 1.5, 'Trigger/flag bit'),
Plot1D('ecalBadCalibFilterV2', 'ecalBadCalibFilterV2', 1, 0.5, 1.5, 'Bad ECAL calib flag (updated xtal list)'),
Plot1D('ecalLaserCorrFilter', 'ecalLaserCorrFilter', 2, -0.5, 1.5, 'Trigger/flag bit'),
Plot1D('eeBadScFilter', 'eeBadScFilter', 2, -0.5, 1.5, 'Trigger/flag bit'),
Plot1D('globalSuperTightHalo2016Filter', 'globalSuperTightHalo2016Filter', 2, -0.5, 1.5, 'Trigger/flag bit'),
Plot1D('globalTightHalo2016Filter', 'globalTightHalo2016Filter', 2, -0.5, 1.5, 'Trigger/flag bit'),
Plot1D('hfNoisyHitsFilter', 'hfNoisyHitsFilter', 2, -0.5, 1.5, 'Trigger/flag bit'),
Plot1D('goodVertices', 'goodVertices', 2, -0.5, 1.5, 'Trigger/flag bit'),
Plot1D('hcalLaserEventFilter', 'hcalLaserEventFilter', 2, -0.5, 1.5, 'Trigger/flag bit'),
Plot1D('muonBadTrackFilter', 'muonBadTrackFilter', 2, -0.5, 1.5, 'Trigger/flag bit'),
Plot1D('trkPOGFilters', 'trkPOGFilters', 2, -0.5, 1.5, 'Trigger/flag bit'),
Plot1D('trkPOG_logErrorTooManyClusters', 'trkPOG_logErrorTooManyClusters', 2, -0.5, 1.5, 'Trigger/flag bit'),
Plot1D('trkPOG_manystripclus53X', 'trkPOG_manystripclus53X', 2, -0.5, 1.5, 'Trigger/flag bit'),
Plot1D('trkPOG_toomanystripclus53X', 'trkPOG_toomanystripclus53X', 2, -0.5, 1.5, 'Trigger/flag bit'),
)
),
FsrPhoton = cms.PSet(
sels = cms.PSet(),
plots = cms.VPSet(
Count1D('_size', 4, -0.5, 3.5, 'Final state radiation photons emitted by muons'),
Plot1D('dROverEt2', 'dROverEt2', 20, 0, 0.05, 'deltaR to associated muon divided by photon et2'),
Plot1D('eta', 'eta', 20, -2.5, 2.5, 'eta'),
NoPlot('muonIdx'),
Plot1D('phi', 'phi', 20, -3.14159, 3.14159, 'phi'),
Plot1D('pt', 'pt', 20, 0, 40, 'pt'),
Plot1D('relIso03', 'relIso03', 20, 0, 2, 'relative isolation in a 0.3 cone without CHS'),
)
),
GenDressedLepton = cms.PSet(
sels = cms.PSet(),
plots = cms.VPSet(
Count1D('_size', 25, -0.5, 24.5, 'Dressed leptons from Rivet-based ParticleLevelProducer'),
Plot1D('eta', 'eta', 20, -7, 7, 'eta'),
Plot1D('hasTauAnc', 'hasTauAnc', 2, -0.5, 1.5, 'true if Dressed lepton has a tau as ancestor'),
Plot1D('mass', 'mass', 20, 0, 200, 'mass'),
Plot1D('pdgId', 'pdgId', 40, -20, 20, 'pdgId'),
Plot1D('phi', 'phi', 20, -3.14159, 3.14159, 'phi'),
Plot1D('pt', 'pt', 20, 0, 200, 'pt'),
)
),
GenIsolatedPhoton = cms.PSet(
sels = cms.PSet(),
plots = cms.VPSet(
Count1D('_size', 10, -0.5, 9.5, 'Isolated photons from Rivet-based ParticleLevelProducer'),
Plot1D('eta', 'eta', 20, -7, 7, 'eta'),
NoPlot('mass'),
Plot1D('phi', 'phi', 20, -3.14159, 3.14159, 'phi'),
Plot1D('pt', 'pt', 20, 0, 200, 'pt'),
)
),
GenJet = cms.PSet(
sels = cms.PSet(),
plots = cms.VPSet(
Count1D('_size', 25, -0.5, 24.5, 'slimmedGenJets, i.e. ak4 Jets made with visible genparticles'),
Plot1D('eta', 'eta', 20, -7, 7, 'eta'),
Plot1D('hadronFlavour', 'hadronFlavour', 6, -0.5, 5.5, 'flavour from hadron ghost clustering'),
Plot1D('mass', 'mass', 20, 0, 200, 'mass'),
Plot1D('nBHadrons', 'nBHadrons', 4, -0.5, 3.5, 'number of b-hadrons'),
Plot1D('nCHadrons', 'nCHadrons', 4, -0.5, 3.5, 'number of c-hadrons'),
Plot1D('partonFlavour', 'partonFlavour', 40, -9.5, 30.5, 'flavour from parton matching'),
Plot1D('phi', 'phi', 20, -3.14159, 3.14159, 'phi'),
Plot1D('pt', 'pt', 20, 0, 200, 'pt'),
)
),
GenJetAK8 = cms.PSet(
sels = cms.PSet(),
plots = cms.VPSet(
Count1D('_size', 25, -0.5, 24.5, 'slimmedGenJetAK8, i.e. ak8 Jets made with visible genparticles'),
Plot1D('eta', 'eta', 20, -7, 7, 'eta'),
Plot1D('hadronFlavour', 'hadronFlavour', 6, -0.5, 5.5, 'flavour from hadron ghost clustering'),
Plot1D('mass', 'mass', 20, 0, 200, 'mass'),
Plot1D('nBHadrons', 'nBHadrons', 4, -0.5, 3.5, 'number of b-hadrons'),
Plot1D('nCHadrons', 'nCHadrons', 4, -0.5, 3.5, 'number of c-hadrons'),
Plot1D('partonFlavour', 'partonFlavour', 40, -9.5, 30.5, 'flavour from parton matching'),
Plot1D('phi', 'phi', 20, -3.14159, 3.14159, 'phi'),
Plot1D('pt', 'pt', 20, 0, 200, 'pt'),
)
),
GenMET = cms.PSet(
sels = cms.PSet(),
plots = cms.VPSet(
Plot1D('phi', 'phi', 20, -3.14159, 3.14159, 'phi'),
Plot1D('pt', 'pt', 20, 0, 400, 'pt'),
)
),
GenPart = cms.PSet(
sels = cms.PSet(),
plots = cms.VPSet(
Count1D('_size', 40, -0.5, 124.5, 'interesting gen particles '),
Plot1D('eta', 'eta', 20, -30000, 30000, 'eta'),
NoPlot('genPartIdxMother'),
Plot1D('mass', 'mass', 20, 0, 300, 'Mass stored for all particles with mass > 10 GeV and photons with mass > 1 GeV. For other particles you can lookup from PDGID'),
Plot1D('pdgId', 'pdgId', 20, -6000, 6000, 'PDG id'),
Plot1D('phi', 'phi', 20, -3.14159, 3.14159, 'phi'),
Plot1D('pt', 'pt', 20, 0, 200, 'pt'),
Plot1D('iso', 'iso', 20, 0, 200, 'iso'),
Plot1D('status', 'status', 20, 0, 100, 'Particle status. 1=stable'),
Plot1D('statusFlags', 'statusFlags', 15, 0, 15, 'gen status flags stored bitwise, bits are: 0 : isPrompt, 1 : isDecayedLeptonHadron, 2 : isTauDecayProduct, 3 : isPromptTauDecayProduct, 4 : isDirectTauDecayProduct, 5 : isDirectPromptTauDecayProduct, 6 : isDirectHadronDecayProduct, 7 : isHardProcess, 8 : fromHardProcess, 9 : isHardProcessTauDecayProduct, 10 : isDirectHardProcessTauDecayProduct, 11 : fromHardProcessBeforeFSR, 12 : isFirstCopy, 13 : isLastCopy, 14 : isLastCopyBeforeFSR, ', bitset=True),
)
),
GenVtx = cms.PSet(
sels = cms.PSet(),
plots = cms.VPSet(
Plot1D('x', 'x', 50, -0.5, 0.5, 'Gen vertex x position'),
Plot1D('y', 'y', 50, -0.5, 0.5, 'Gen vertex y position'),
Plot1D('z', 'z', 30, -15, 15, 'Gen vertex z position'),
Plot1D('t0', 't0', 20, -1, 1, 'Gen vertex time (t0)'),
)
),
GenVisTau = cms.PSet(
sels = cms.PSet(),
plots = cms.VPSet(
Count1D('_size', 4, -0.5, 3.5, 'gen hadronic taus '),
Plot1D('charge', 'charge', 3, -1.5, 1.5, 'charge'),
Plot1D('eta', 'eta', 20, -5, 5, 'eta'),
NoPlot('genPartIdxMother'),
Plot1D('mass', 'mass', 20, 0, 2, 'mass'),
Plot1D('phi', 'phi', 20, -3.14159, 3.14159, 'phi'),
Plot1D('pt', 'pt', 20, 0, 200, 'pt'),
Plot1D('status', 'status', 16, -0.5, 15.5, 'Hadronic tau decay mode. 0=OneProng0PiZero, 1=OneProng1PiZero, 2=OneProng2PiZero, 10=ThreeProng0PiZero, 11=ThreeProng1PiZero, 15=Other'),
)
),
IsoTrack = cms.PSet(
sels = cms.PSet(),
plots = cms.VPSet(
Count1D('_size', 5, -0.5, 4.5, 'isolated tracks after basic selection (pt > 10 && abs(dxy) < 0.02 && abs(dz) < 0.1 && isHighPurityTrack && miniPFIsolation.chargedHadronIso/pt < 0.2) and lepton veto'),
Plot1D('dxy', 'dxy', 20, -0.02, 0.02, 'dxy (with sign) wrt first PV, in cm'),
Plot1D('dz', 'dz', 20, -0.09, 0.09, 'dz (with sign) wrt first PV, in cm'),
Plot1D('eta', 'eta', 20, -3, 3, 'eta'),
Plot1D('fromPV', 'fromPV', 5, -1.5, 3.5, 'provenance from primary vertex'),
Plot1D('isFromLostTrack', 'isFromLostTrack', 2, -0.5, 1.5, 'if isolated track comes from a lost track'),
Plot1D('isHighPurityTrack', 'isHighPurityTrack', 2, -0.5, 1.5, 'track is high purity'),
Plot1D('isPFcand', 'isPFcand', 2, -0.5, 1.5, 'if isolated track is a PF candidate'),
Plot1D('miniPFRelIso_all', 'miniPFRelIso_all', 20, 0, 2, 'mini PF relative isolation, total (with scaled rho*EA PU corrections)'),
Plot1D('miniPFRelIso_chg', 'miniPFRelIso_chg', 20, 0, 2, 'mini PF relative isolation, charged component'),
Plot1D('pdgId', 'pdgId', 20, -300, 300, 'PDG id of PF cand'),
Plot1D('pfRelIso03_all', 'pfRelIso03_all', 20, 0, 2, 'PF relative isolation dR=0.3, total (deltaBeta corrections)'),
Plot1D('pfRelIso03_chg', 'pfRelIso03_chg', 20, 0, 2, 'PF relative isolation dR=0.3, charged component'),
Plot1D('phi', 'phi', 20, -3.14159, 3.14159, 'phi'),
Plot1D('pt', 'pt', 20, 0, 200, 'pt'),
Plot1D('charge', 'charge', 3, -1.5, 1.5, 'electric charge')
)
),
Jet = cms.PSet(
sels = cms.PSet(
CentralPt30 = cms.string('abs(eta) < 2.4 && pt > 30'),
ForwardPt30 = cms.string('abs(eta) > 2.4 && pt > 30')
),
plots = cms.VPSet(
Count1D('_size', 20, -0.5, 19.5, 'slimmedJets, i.e. ak4 PFJets CHS with JECs applied, after basic selection (pt > 15)'),
Plot1D('area', 'area', 20, 0.2, 0.8, 'jet catchment area, for JECs'),
Plot1D('bRegCorr', 'bRegCorr', 20, 0, 3, 'pt correction for b-jet energy regression'),
Plot1D('bRegRes', 'bRegRes', 20, 0, 0.6, 'res on pt corrected with b-jet regression'),
Plot1D('btagDeepFlavB', 'btagDeepFlavB', 20, 0, 1, 'DeepFlavour b+bb tag discriminator'),
Plot1D('btagDeepFlavC', 'btagDeepFlavC', 20, 0, 1, 'DeepFlavour charm tag discriminator'),
Plot1D('btagDeepFlavCvB', 'btagDeepFlavCvB', 20, -1, 1, 'DeepJet c vs b+bb+lepb discriminator'),
Plot1D('btagDeepFlavCvL', 'btagDeepFlavCvL', 20, -1, 1, 'DeepJet c vs uds+g discriminator'),
Plot1D('btagDeepFlavQG', 'btagDeepFlavQG', 20, -1, 1, 'DeepJet g vs uds discriminator'),
Plot1D('btagUParTAK4B', 'btagUParTAK4B', 20, 0, 1, 'UnifiedParT b vs. udscg discriminator'),
Plot1D('btagUParTAK4CvB', 'btagUParTAK4CvB', 20, -1, 1, 'UnifiedParT c vs. b discriminator'),
Plot1D('btagUParTAK4CvL', 'btagUParTAK4CvL', 20, -1, 1, 'UnifiedParT c vs. udsg discriminator'),
Plot1D('btagUParTAK4SvCB', 'btagUParTAK4SvCB', 20, -1, 1, 'UnifiedParT s vs. bc discriminator'),
Plot1D('btagUParTAK4SvUDG', 'btagUParTAK4SvUDG', 20, -1, 1, 'UnifiedParT s vs. udg discriminator'),
Plot1D('btagUParTAK4UDG', 'btagUParTAK4UDG', 30, 0, 3, 'UnifiedParT u+d+g raw score'),
Plot1D('btagUParTAK4QG', 'btagUParTAK4QG', 20, -1, 1, 'UnifiedParT q (uds) vs. g discriminator'),
Plot1D('btagUParTAK4TauVJet', 'btagUParTAK4TauVJet', 20, -1, 1, 'UnifiedParT tau vs. jet discriminator'),
Plot1D('btagUParTAK4CvNotB', 'btagUParTAK4CvNotB', 20, 0, 1, 'UnifiedParT C vs notB discriminator'),
Plot1D('btagUParTAK4Ele', 'btagUParTAK4Ele', 20, -1, 1, 'UnifiedParT electron raw score'),
Plot1D('btagUParTAK4Mu', 'btagUParTAK4Mu', 20, -1, 1, 'UnifiedParT muon raw score'),
Plot1D('cRegCorr', 'cRegCorr', 20, 0.6, 2, 'pt correction for c-jet energy regression'),
Plot1D('cRegRes', 'cRegRes', 20, 0.05, 0.4, 'res on pt corrected with c-jet regression'),
Plot1D('btagPNetB', 'btagPNetB', 20, 0, 1, 'ParticleNet b tag discriminator'),
Plot1D('btagPNetCvL', 'btagPNetCvL', 20, 0, 1, 'ParticleNet c vs. light (udsg) discriminator'),
Plot1D('btagPNetCvB', 'btagPNetCvB', 20, 0, 1, 'ParticleNet c vs. b discriminator'),
Plot1D('btagPNetCvNotB', 'btagPNetCvNotB', 20, 0, 1, 'ParticleNet C vs notB discriminator'),
Plot1D('btagPNetQvG', 'btagPNetQvG', 20, 0, 1, 'ParticleNet quark (udsbc) vs. gluon discriminator'),
Plot1D('btagPNetTauVJet', 'btagPNetTauVJet', 20, 0, 1, 'ParticleNet tau vs. jet discriminator'),
Plot1D('PNetRegPtRawCorr', 'PNetRegPtRawCorr', 20, 0, 2, 'ParticleNet visible pT regression, correction relative to raw pT'),
Plot1D('PNetRegPtRawCorrNeutrino', 'PNetRegPtRawCorrNeutrino', 20, 0, 2, 'ParticleNet neutrino pT correction, relative to regressed visible pT'),
Plot1D('PNetRegPtRawRes', 'PNetRegPtRawRes', 20, 0, 0.5, 'ParticleNet per-jet resolution estimator: (q84 - q16)/2'),
Plot1D('puIdDisc', 'puIdDisc', 20, -1., 1., 'Pileup ID BDT discriminant with 133X Winter24 PuppiV18 training'),
Plot1D('chEmEF', 'chEmEF', 20, 0, 1, 'charged Electromagnetic Energy Fraction'),
Plot1D('chFPV0EF', 'chFPV0EF', 20, 0, 2, 'charged fromPV==0 Energy Fraction (energy excluded from CHS jets). Previously called betastar.'),
Plot1D('chHEF', 'chHEF', 20, 0, 2, 'charged Hadron Energy Fraction'),
NoPlot('electronIdx1'),
NoPlot('electronIdx2'),
Plot1D('eta', 'eta', 20, -6, 6, 'eta'),
NoPlot('genJetIdx'),
Plot1D('hadronFlavour', 'hadronFlavour', 6, -0.5, 5.5, 'flavour from hadron ghost clustering'),
Plot1D('mass', 'mass', 20, 0, 200, 'mass'),
Plot1D('muEF', 'muEF', 20, 0, 1, 'muon Energy Fraction'),
NoPlot('muonIdx1'),
NoPlot('muonIdx2'),
Plot1D('muonSubtrFactor', 'muonSubtrFactor', 20, 0, 1, '1-(muon-subtracted raw pt)/(raw pt)'),
Plot1D('nConstituents', 'nConstituents', 20, 0, 80, 'Number of particles in the jet'),
Plot1D('chMultiplicity', 'chMultiplicity', 20, 0, 80, '(Puppi-weighted) Number of charged particles in the jet'),
Plot1D('neMultiplicity', 'neMultiplicity', 20, 0, 80, '(Puppi-weighted) Number of neutral particles in the jet'),
Plot1D('nElectrons', 'nElectrons', 5, -0.5, 4.5, 'number of electrons in the jet'),
Plot1D('nMuons', 'nMuons', 4, -0.5, 3.5, 'number of muons in the jet'),
Plot1D('neEmEF', 'neEmEF', 20, 0, 1, 'charged Electromagnetic EnergyFraction'),
Plot1D('neHEF', 'neHEF', 20, 0, 1, 'neutral Hadron Energy Fraction'),
Plot1D('partonFlavour', 'partonFlavour', 40, -9.5, 30.5, 'flavour from parton matching'),
Plot1D('phi', 'phi', 20, -3.14159, 3.14159, 'phi'),
Plot1D('pt', 'pt', 20, 0, 400, 'pt'),
Plot1D('puId', 'puId', 8, -0.5, 7.5, 'Pilup ID flags'),
Plot1D('puIdDisc', 'puIdDisc', 20, -1, 1, 'Pilup ID discriminant with 102X (2018) training'),
Plot1D('qgl', 'qgl', 20, 0, 1, 'Quark vs Gluon likelihood discriminator'),
Plot1D('hfHEF', 'hfHEF', 20, 0, 1, 'hadronic Energy Fraction in HF'),
Plot1D('hfEmEF', 'hfEmEF', 20, 0, 1, 'electromagnetic Energy Fraction in HF'),
Plot1D('hfsigmaEtaEta', 'hfsigmaEtaEta', 20, 0, 0.2, 'sigmaEtaEta for HF jets (noise discriminating variable)'),
Plot1D('hfsigmaPhiPhi', 'hfsigmaPhiPhi', 20, 0, 0.2, 'sigmaPhiPhi for HF jets (noise discriminating variable)'),
Plot1D('hfcentralEtaStripSize', 'hfcentralEtaStripSize', 10, 0, 10, 'eta size of the central tower strip in HF (noise discriminating variable)'),
Plot1D('hfadjacentEtaStripsSize', 'hfadjacentEtaStripsSize', 10, 0, 10, 'eta size of the strips next to the central tower strip in HF (noise discriminating variable)'),
Plot1D('rawFactor', 'rawFactor', 20, -0.5, 0.5, '1 - Factor to get back to raw pT'),
)
),
LHEPart = cms.PSet(
sels = cms.PSet(),
plots = cms.VPSet(
Count1D('_size', 20, 0, 20, 'LHE particles'),
Plot1D('eta', 'eta', 20, -30000, 30000, 'eta'),
Plot1D('pdgId', 'pdgId', 20, -6000, 6000, 'PDG id'),
Plot1D('phi', 'phi', 20, -3.14159, 3.14159, 'phi'),
Plot1D('pt', 'pt', 20, 0, 200, 'pt'),
)
),
LHEPdfWeight = cms.PSet(
sels = cms.PSet(),
plots = cms.VPSet(
Count1D('_size', 1000, 0, 2000, 'LHE PDF weights'),
Plot1D('', '', 100, 0, 2, 'all weights'),
)
),
LHEScaleWeight = cms.PSet(
sels = cms.PSet(),
plots = cms.VPSet(
Count1D('_size', 20, 0, 20, 'LHE scale weights'),
Plot1D('', '', 100, 0, 2, 'all weights'),
)
),
PFMET = cms.PSet(
sels = cms.PSet(),
plots = cms.VPSet(
Plot1D('covXX', 'covXX', 20, 0, 40000, 'xx element of met covariance matrix'),
Plot1D('covXY', 'covXY', 20, -8000, 8000, 'xy element of met covariance matrix'),
Plot1D('covYY', 'covYY', 20, 0, 50000, 'yy element of met covariance matrix'),
Plot1D('phi', 'phi', 20, -3.14159, 3.14159, 'phi'),
Plot1D('pt', 'pt', 20, 0, 400, 'pt'),
Plot1D('significance', 'significance', 20, 0, 200, 'MET significance'),
Plot1D('sumEt', 'sumEt', 20, 600, 5000, 'scalar sum of Et'),
Plot1D('sumPtUnclustered', 'sumPtUnclustered', 20, 0, 3000, 'sumPt used for MET significance'),
Plot1D('ptUnclusteredUp', 'ptUnclusteredUp', 20, 0, 400, 'pt Unclustered Up'),
Plot1D('ptUnclusteredDown', 'ptUnclusteredDown', 20, 0, 400, 'pt Unclustered Down'),
Plot1D('phiUnclusteredUp', 'phiUnclusteredUp', 20, -3.14159, 3.14159, 'phi Unclustered Up'),
Plot1D('phiUnclusteredDown', 'phiUnclusteredDown', 20, -3.14159, 3.14159, 'phi Unclustered Down'),
)
),
FiducialMET = cms.PSet(
sels = cms.PSet(),
plots = cms.VPSet(
Plot1D('phi', 'phi', 20, -3.14159, 3.14159, 'phi'),
Plot1D('pt', 'pt', 20, 0, 400, 'pt'),
)
),
Muon = cms.PSet(
sels = cms.PSet(
Good = cms.string('pt > 15 && abs(dxy) < 0.2 && abs(dz) < 0.5 && mediumId && miniPFRelIso_all < 0.4')
),
plots = cms.VPSet(
Count1D('_size', 5, -0.5, 4.5, 'slimmedMuons after basic selection (pt > 3 && track.isNonnull && isLooseMuon)'),
Plot1D('bsConstrainedPt', '', 20, 0., 200., 'pt with beamspot constraint'),
Plot1D('bsConstrainedPtErr', '', 20, 0., 20., 'pt error w. beamspot constraint'),
Plot1D('bsConstrainedChi2', '', 20, 0., 40., 'chi2 of beamspot constraint'),
Plot1D('charge', 'charge', 3, -1.5, 1.5, 'electric charge'),
Plot1D('tuneP_charge', 'tuneP_charge', 3, -1.5, 1.5, 'charge from the tuneP algorithm'),
Plot1D('dxy', 'dxy', 20, -0.1, 0.1, 'dxy (with sign) wrt first PV, in cm'),
Plot1D('dxyErr', 'dxyErr', 20, 0, 0.1, 'dxy uncertainty, in cm'),
Plot1D('dxybs', 'dxybs', 20, -0.1, 0.1, 'dxy (with sign) wrt the beam spot, in cm'),
Plot1D('dxybsErr', 'dxybsErr', 20, 0, 0.1, 'uncertainty on dxy (with sign) wrt the beam spot, in cm'),
Plot1D('dz', 'dz', 20, -0.3, 0.3, 'dz (with sign) wrt first PV, in cm'),
Plot1D('dzErr', 'dzErr', 20, 0, 0.2, 'dz uncertainty, in cm'),
Plot1D('eta', 'eta', 20, -2.5, 2.5, 'eta'),
NoPlot('fsrPhotonIdx'),
Plot1D('genPartFlav', 'genPartFlav', 16, -0.5, 15.5, 'Flavour of genParticle for MC matching to status==1 muons: 1 = prompt muon (including gamma*->mu mu), 15 = muon from prompt tau, 5 = muon from b, 4 = muon from c, 3 = muon from light or unknown, 0 = unmatched'),
NoPlot('genPartIdx'),
Plot1D('highPtId', 'highPtId', 3, -0.5, 2.5, 'POG highPt muon ID (1 = tracker high pT, 2 = global high pT, which includes tracker high pT)'),
Plot1D('highPurity', 'highPurity', 2, -0.5, 1.5, 'inner track is high purity'),
Plot1D('inTimeMuon', 'inTimeMuon', 2, -0.5, 1.5, 'inTimeMuon ID'),
Plot1D('ip3d', 'ip3d', 20, 0, 0.2, '3D impact parameter wrt first PV, in cm'),
Plot1D('isGlobal', 'isGlobal', 2, -0.5, 1.5, 'muon is global muon'),
Plot1D('isPFcand', 'isPFcand', 2, -0.5, 1.5, 'muon is PF candidate'),
Plot1D('isTracker', 'isTracker', 2, -0.5, 1.5, 'muon is tracker muon'),
Plot1D('isStandalone', 'isStandalone', 2, -0.5, 1.5, 'muon is a standalone muon'),
NoPlot('jetIdx'),
Plot1D('jetPtRelv2', 'jetPtRelv2', 20, 0, 30, 'Relative momentum of the lepton with respect to the closest jet after subtracting the lepton'),
Plot1D('jetRelIso', 'jetRelIso', 20, -0.2, 1.8, 'Relative isolation in matched jet (1/ptRatio-1), -1 if none'),
Plot1D('jetDF', 'jetDF', 20, 0., 1., 'value of the DEEPJET b tagging algorithm discriminator of the associated jet (0 if none)'),
Plot1D('looseId', 'looseId', 2, -0.5, 1.5, 'muon is loose muon'),
NoPlot('mass'),
Profile1D('mediumId', 'mediumId', 'pt', 16, 0, 80, 'POG Medium muon ID (using the relaxed cuts in the data Run 2016 B-F periods, and standard cuts elsewhere)'),
Plot1D('mediumPromptId', 'mediumPromptId', 2, -0.5, 1.5, 'cut-based ID, medium prompt WP'),
Plot1D('miniIsoId', 'miniIsoId', 5, -0.5, 4.5, 'MiniIso ID from miniAOD selector (1=MiniIsoLoose, 2=MiniIsoMedium, 3=MiniIsoTight, 4=MiniIsoVeryTight)'),
Plot1D('miniPFRelIso_all', 'miniPFRelIso_all', 20, 0, 1, 'mini PF relative isolation, total (with scaled rho*EA PU corrections)'),
Plot1D('miniPFRelIso_chg', 'miniPFRelIso_chg', 20, 0, 1, 'mini PF relative isolation, charged component'),
Plot1D('multiIsoId', 'multiIsoId', 3, -0.5, 2.5, 'MultiIsoId from miniAOD selector (1=MultiIsoLoose, 2=MultiIsoMedium)'),
Plot1D('mvaLowPt', 'mvaLowPt', 20, -1, 1, 'Low pt muon ID score'),
Plot1D('promptMVA', 'promptMVA', 20, -1, 1, 'prompt MVA lepton ID score'),
Plot1D('mvaMuID', 'mvaMuID', 20, 0, 1, 'Score of MVA-based muon ID'),
Plot1D('mvaMuID_WP', 'mvaMuID_WP', 3, -0.5, 2.5, 'MVA-based ID selector WPs (1=MVAIDwpMedium,2=MVAIDwpTight)'),
Plot1D('nStations', 'nStations', 5, -0.5, 4.5, 'number of matched stations with default arbitration (segment & track)'),
Plot1D('nTrackerLayers', 'nTrackerLayers', 15, 2.5, 17.5, 'number of layers in the tracker'),
Plot1D('jetNDauCharged', 'jetNDauCharged', 20, -0.5, 19.5, 'number of charged daughters of the closest jet'),
Plot1D('pdgId', 'pdgId', 27, -13.5, 13.5, 'PDG code assigned by the event reconstruction (not by MC truth)'),
Plot1D('pfIsoId', 'pfIsoId', 7, -0.5, 6.5, 'PFIso ID from miniAOD selector (1=PFIsoVeryLoose, 2=PFIsoLoose, 3=PFIsoMedium, 4=PFIsoTight, 5=PFIsoVeryTight, 6=PFIsoVeryVeryTight)'),
Plot1D('pfRelIso03_all', 'pfRelIso03_all', 20, 0, 2, 'PF relative isolation dR=0.3, total (deltaBeta corrections)'),
Plot1D('pfRelIso03_chg', 'pfRelIso03_chg', 20, 0, 2, 'PF relative isolation dR=0.3, charged component'),
Plot1D('pfRelIso04_all', 'pfRelIso04_all', 20, 0, 2, 'PF relative isolation dR=0.4, total (deltaBeta corrections)'),
Plot1D('phi', 'phi', 20, -3.14159, 3.14159, 'phi'),
Plot1D('pt', 'pt', 20, 0, 200, 'pt'),
Plot1D('ptErr', 'ptErr', 20, 0, 20, 'ptError of the muon track'),
Plot1D('segmentComp', 'segmentComp', 20, 0, 1, 'muon segment compatibility'),
Plot1D('sip3d', 'sip3d', 20, 0, 20, '3D impact parameter significance wrt first PV'),
Profile1D('softId', 'softId', 'pt', 20, 0, 40, 'POG Soft muon ID (using the relaxed cuts in the data Run 2016 B-F periods, and standard cuts elsewhere)'),
Plot1D('softMva', 'softMva', 20, -1, 1, 'soft MVA ID score'),
Plot1D('softMvaRun3', 'softMvaRun3', 20, 0, 1, 'soft MVA ID score for Run3'),
Plot1D('softMvaId', 'softMvaId', 2, -0.5, 1.5, 'soft MVA ID'),
Plot1D('tightCharge', 'tightCharge', 1, 1.5, 2.5, 'Tight charge criterion using pterr/pt of muonBestTrack (0:fail, 2:pass)'),
Profile1D('tightId', 'tightId', 'pt', 16, 0, 80, 'POG Tight muon ID'),
Plot1D('tkIsoId', 'tkIsoId', 3, -0.5, 2.5, 'TkIso ID (1=TkIsoLoose, 2=TkIsoTight)'),
Plot1D('tkRelIso', 'tkRelIso', 100, 0, 1, 'Tracker-based relative isolation dR=0.3 for highPt, trkIso/tunePpt'),
Plot1D('triggerIdLoose', 'triggerIdLoose', 2, -0.5, 1.5, 'TriggerIdLoose ID'),
Plot1D('tunepRelPt', 'tunepRelPt', 200, 0, 200, 'TuneP relative pt, tunePpt/pt'),
Plot1D('VXBS_Cov00', 'VXBS_Cov00', 200, -10, 10, '0, 0 element of the VXBS Covariance matrix'),
Plot1D('VXBS_Cov03', 'VXBS_Cov03', 200, -10, 10, '0, 3 element of the VXBS Covariance matrix'),
Plot1D('VXBS_Cov33', 'VXBS_Cov33', 200, -10, 10, '3, 3 element of the VXBS Covariance matrix'),
)
),
OtherPV = cms.PSet(
sels = cms.PSet(),
plots = cms.VPSet(
NoPlot('_size'),
Plot1D('z', 'z', 20, -20, 20, 'Z position of other primary vertices, excluding the main PV'),
Plot1D('score', 'score', 20, 0, 300000, 'scores of other primary vertices, excluding the main PV'),
)
),
PPSLocalTrack = cms.PSet(
sels = cms.PSet(),
plots = cms.VPSet(
Count1D('_size', 26, -0.5, 25.5, 'ppsLocalTrack variables'),
Plot1D('decRPId', 'decRPId', 20, 0, 200, 'local track detector dec id'),
NoPlot('multiRPProtonIdx'),
Plot1D('rpType', 'rpType', 2, 3.5, 5.5, 'strip=3, pixel=4, diamond=5, timing=6'),
Plot1D('time', 'time', 20, -2, 2, 'local track time'),
Plot1D('timeUnc', 'timeUnc', 20, 0, 0.3, 'local track time uncertainty'),
Plot1D('x', 'x', 20, 2, 30, 'local track x'),
Plot1D('y', 'y', 20, -20, 20, 'local track y'),
)
),
PSWeight = cms.PSet(
sels = cms.PSet(),
plots = cms.VPSet(
Plot1D('', '', 20, 0, 2, 'All PS weights (w_var / w_nominal)'),
Count1D('_size', 46, -0.5, 45.5, 'Number of PS weights'),
)
),
PV = cms.PSet(
sels = cms.PSet(),
plots = cms.VPSet(
Plot1D('chi2', 'chi2', 20, 0.5, 3, 'main primary vertex reduced chi2'),
Plot1D('ndof', 'ndof', 20, 0, 500, 'main primary vertex number of degree of freedom'),
Plot1D('npvs', 'npvs', 20, 0, 60, 'total number of reconstructed primary vertices'),
Plot1D('npvsGood', 'npvsGood', 20, 0, 60, 'total number of Good primary vertices'),
Plot1D('score', 'score', 20, 0, 300000, 'main primary vertex score, i.e. sum pt2 of clustered objects'),
Plot1D('sumpt2', 'sumpt2', 100, 0, 300000, 'main primary vertex sum pt2 of the charged pf candidates'),
Plot1D('sumpx', 'sumpx', 20, -100, 100, 'main primary vertex sum px of the charged pf candidates'),
Plot1D('sumpy', 'sumpy', 20, -100, 100, 'main primary vertex sum py of the charged pf candidates'),
Plot1D('x', 'x', 20, -0.3, 0.3, 'main primary vertex position x coordinate'),
Plot1D('y', 'y', 20, -0.3, 0.3, 'main primary vertex position y coordinate'),
Plot1D('z', 'z', 20, -20, 20, 'main primary vertex position z coordinate'),
)
),
Photon = cms.PSet(
sels = cms.PSet(),
plots = cms.VPSet(
Count1D('_size', 9, -0.5, 8.5, 'slimmedPhotons after basic selection (pt > 5 )'),
Plot1D('charge', 'charge', 1, -0.5, 0.5, 'electric charge'),
Plot1D('cutBased', 'cutBased', 4, -0.5, 3.5,'cut-based ID bitmap, (0:fail, 1:loose, 2:medium, 3:tight)'),
Plot1D('cutBased_Fall17V2', 'cutBased_Fall17V2', 4, -0.5, 3.5, 'cut-based ID bitmap, Fall17V2, (0:fail, 1:loose, 2:medium, 3:tight)'),
NoPlot('electronIdx'),
Plot1D('electronVeto', 'electronVeto', 2, -0.5, 1.5, 'pass electron veto'),
Plot1D('energyErr', 'energyErr', 20, 0, 300, 'energy error of the cluster from regression'),
Plot1D('energyRaw', 'energyRaw', 100, 0, 300, 'raw energy of photon supercluster'),
Plot1D('superclusterEta', 'superclusterEta', 20, -3, 3, 'supercluster eta'),
Plot1D('eta', 'eta', 20, -3, 3, 'eta'),
Plot1D('genPartFlav', 'genPartFlav', 14, -0.5, 13.5, 'Flavour of genParticle for MC matching to status==1 photons or electrons: 1 = prompt photon, 13 = prompt electron, 0 = unknown or unmatched'),
NoPlot('genPartIdx'),
Plot1D('hoe', 'hoe', 20, 0, 0.6, 'H over E'),
Plot1D('hoe_Tower', 'hoe_Tower', 20, 0, 0.6, 'H over E Tower based calculation'),
Plot1D('hoe_PUcorr', 'hoe_PUcorr', 20, 0, 0.6, 'H over E with PU correction'),
Plot1D('isScEtaEB', 'isScEtaEB', 2, -0.5, 1.5, 'is supercluster eta within barrel acceptance'),
Plot1D('isScEtaEE', 'isScEtaEE', 2, -0.5, 1.5, 'is supercluster eta within endcap acceptance'),
NoPlot('jetIdx'),
NoPlot('mass'),
Plot1D('mvaID', 'mvaID', 20, -1, 1, 'MVA ID score'),
Plot1D('mvaID_WP80', 'mvaID_WP80', 2, -0.5, 1.5, 'MVA ID WP80'),
Plot1D('mvaID_WP90', 'mvaID_WP90', 2, -0.5, 1.5, 'MVA ID WP90'),
Plot1D('mvaID_Fall17V2', 'mvaID_Fall17V2', 20, -1, 1, 'Fall17V2 MVA ID score'),
Plot1D('mvaID_Fall17V2_WP80', 'mvaID_WP80_Fall17V2', 2, -0.5, 1.5, 'Fall17V2 MVA ID WP80'),
Plot1D('mvaID_Fall17V2_WP90', 'mvaID_WP90_Fall17V2', 2, -0.5, 1.5, 'Fall17V2 MVA ID WP90'),
Plot1D('trkSumPtHollowConeDR03', 'trkSumPtHollowConeDR03', 100, 0, 8, 'Sum of track pT in a hollow cone of outer radius, inner radius'),
Plot1D('trkSumPtSolidConeDR04', 'trkSumPtSolidConeDR04', 100, 0, 8, 'Sum of track pT in a cone of dR=0.4'),
Plot1D('ecalPFClusterIso', 'ecalPFClusterIso', 100, 0, 10, 'sum pt of ecal clusters, vetoing clusters part of photon'),
Plot1D('hcalPFClusterIso', 'hcalPFClusterIso', 100, 0, 10, 'sum pt of hcal clusters, vetoing clusters part of photon'),
Plot1D('pfPhoIso03', 'pfPhoIso03', 100, 0, 1, 'PF absolute isolation dR=0.3, photon component (uncorrected)'),
Plot1D('pfChargedIso', 'pfChargedIso', 100, 0, 10, 'PF absolute isolation dR=0.3, charged component with dxy,dz match to PV'),
Plot1D('pfChargedIsoPFPV', 'pfChargedIsoPFPV', 100, 0, 5, 'PF absolute isolation dR=0.3, charged component (PF PV only)'),
Plot1D('pfChargedIsoWorstVtx', 'pfChargedIsoWorstVtx', 100, 0, 10,'PF absolute isolation dR=0.3, charged component (Vertex with largest isolation)'),
Plot1D('pdgId', 'pdgId', 1, 21.5, 22.5, 'PDG code assigned by the event reconstruction (not by MC truth)'),
Plot1D('pfRelIso03_all_Fall17V2', 'pfRelIso03_all_Fall17V2', 20, 0, 2, 'PF relative isolation dR=0.3, total (with rho*EA PU Fall17V2 corrections)'),
Plot1D('pfRelIso03_chg_Fall17V2', 'pfRelIso03_chg_Fall17V2', 20, 0, 2, 'PF relative isolation dR=0.3, charged component (with rho*EA PU Fall17V2 corrections)'),
Plot1D('pfRelIso03_all_quadratic', 'pfRelIso03_all_quadratic', 20, 0, 2, 'PF relative isolation dR=0.3, total (with quadraticEA*rho*rho + linearEA*rho corrections)'),
Plot1D('pfRelIso03_chg_quadratic', 'pfRelIso03_chg_quadratic', 20, 0, 2, 'PF relative isolation dR=0.3, charged hadron component (with quadraticEA*rho*rho + linearEA*rho corrections)'),
Plot1D('phi', 'phi', 20, -3.14159, 3.14159, 'phi'),
Plot1D('pixelSeed', 'pixelSeed', 2, -0.5, 1.5, 'has pixel seed'),
Plot1D('hasConversionTracks', 'hasConversionTracks', 2, -0.5, 1.5, 'Variable specifying if photon has associated conversion tracks (one-legged or two-legged)'),
Plot1D('pt', 'pt', 20, 0, 200, 'pt (corrected)'),
Plot1D('r9', 'r9', 20, 0, 1.1, 'R9 of the supercluster, calculated with full 5x5 region'),
Plot1D('seedGain', 'seedGain', 12, 0.5, 12.5, 'Gain of the seed crystal'),
Plot1D('seediEtaOriX', 'seediEtaOriX', 200, -90, 110, 'iEta/iX of seed crystal'),
Plot1D('seediPhiOriY', 'seediPhiOriY', 380, -10, 370, 'iPhi/iY of seed crystal'),
Plot1D('sieie', 'sieie', 100, 0, 0.05, 'sigma_IetaIeta of the supercluster, calculated with full 5x5 region'),
Plot1D('sipip', 'sipip', 100, 0, 0.05, 'sigmaIphiIphi of the supercluster'),
Plot1D('sieip', 'sieip', 100, -0.0002, 0.0002, 'sigma_IetaIphi of the supercluster, calculated with full 5x5 region'),
Plot1D('s4', 's4', 100, 0.4, 1, 'e2x2/e5x5 of the supercluster, calculated with full 5x5 region'),
Plot1D('etaWidth', 'etaWidth', 100, 0, 0.03, 'Width of the photon supercluster in eta'),
Plot1D('phiWidth', 'phiWidth', 100, 0, 0.1, 'Width of the photon supercluster in phi'),
Plot1D('x_calo', 'x_calo', 100, -150, 150, 'photon supercluster position on calorimeter, x coordinate (cm)'),
Plot1D('y_calo', 'y_calo', 100, -150, 150, 'photon supercluster position on calorimeter, y coordinate (cm)'),
Plot1D('z_calo', 'z_calo', 100, -330, 330, 'photon supercluster position on calorimeter, y coordinate (cm)'),
Plot1D('esEffSigmaRR', 'esEffSigmaRR', 100, 0, 10, 'preshower sigmaRR'),
Plot1D('esEnergyOverRawE', 'esEnergyOverRawE', 100, 0, 0.2, 'ratio of preshower energy to raw supercluster energy'),
NoPlot('vidNestedWPBitmap'),
NoPlot('vidNestedWPBitmap_Fall17V2'),
)
),
Proton_multiRP = cms.PSet(
sels = cms.PSet(),
plots = cms.VPSet(
Count1D('_size', 3, -0.5, 2.5, 'bon'),
Plot1D('arm', 'arm', 2, -0.5, 1.5, '0 = sector45, 1 = sector56'),
Plot1D('t', 't', 20, -500, -0.003, 'Mandelstam variable t'),
Plot1D('thetaX', 'thetaX', 20, -0.0004, 0.0004, 'scattering angle in the y direction'),
Plot1D('thetaY', 'thetaY', 20, -0.001, 0.001, 'scattering angle in the x direction'),
Plot1D('time', 'time', 20, -1000, -1000, 'time'),
Plot1D('timeUnc', 'timeUnc', 20, 0, 0, 'time uncertainty'),
Plot1D('xi', 'xi', 20, 0, 0.3, 'fractional momentum loss'),
)
),
Proton_singleRP = cms.PSet(
sels = cms.PSet(),
plots = cms.VPSet(
Count1D('_size', 3, -0.5, 2.5, 'bon'),
Plot1D('xi', 'xi', 20, 0, 0.3, 'fractional momentum loss'),
Plot1D('thetaY', 'thetaY', 20, -0.001, 0.001, 'scattering angle in the x direction'),
Plot1D('decRPId', 'decRPId', 20, 0, 200, 'Detector ID'),
)
),
Pileup = cms.PSet(
sels = cms.PSet(),
plots = cms.VPSet(
Plot1D('gpudensity', 'gpudensity', 20, 0, 0.9, 'Generator-level PU vertices / mm'),
Plot1D('nPU', 'nPU', 20, 0, 60, 'the number of pileup interactions that have been added to the event in the current bunch crossing'),
Plot1D('nTrueInt', 'nTrueInt', 20, 0, 60, 'the true mean number of the poisson distribution for this event from which the number of interactions each bunch crossing has been sampled'),
Plot1D('pudensity', 'pudensity', 5, -0.5, 4.5, 'PU vertices / mm'),
Plot1D('sumEOOT', 'sumEOOT', 20, 0, 800, 'number of early out of time pileup'),
Plot1D('sumLOOT', 'sumLOOT', 20, 0, 300, 'number of late out of time pileup'),
Plot1D('pthatmax','pthatmax',20, 0, 400, 'Maximum pt-hat'),
)
),
PuppiMET = cms.PSet(
sels = cms.PSet(),
plots = cms.VPSet(
Plot1D('covXX', 'covXX', 20, 0, 40000, 'xx element of met covariance matrix'),
Plot1D('covXY', 'covXY', 20, -8000, 8000, 'xy element of met covariance matrix'),
Plot1D('covYY', 'covYY', 20, 0, 50000, 'yy element of met covariance matrix'),
Plot1D('phi', 'phi', 20, -3.14159, 3.14159, 'phi'),
Plot1D('pt', 'pt', 20, 0, 400, 'pt'),
Plot1D('significance', 'significance', 20, 0, 200, 'PuppiMET significance'),
Plot1D('sumEt', 'sumEt', 20, 600, 5000, 'scalar sum of Et'),
Plot1D('sumPtUnclustered', 'sumPtUnclustered', 20, 0, 3000, 'sumPt used for PuppiMET significance'),
Plot1D('ptUnclusteredUp', 'ptUnclusteredUp', 20, 0, 400, 'pt Unclustered Up'),
Plot1D('ptUnclusteredDown', 'ptUnclusteredDown', 20, 0, 400, 'pt Unclustered Down'),
Plot1D('phiUnclusteredUp', 'phiUnclusteredUp', 20, -3.14159, 3.14159, 'phi Unclustered Up'),
Plot1D('phiUnclusteredDown', 'phiUnclusteredDown', 20, -3.14159, 3.14159, 'phi Unclustered Down'),
)
),
RawPFMET = cms.PSet(
sels = cms.PSet(),
plots = cms.VPSet(
Plot1D('phi', 'phi', 20, -3.14159, 3.14159, 'phi'),
Plot1D('pt', 'pt', 20, 0, 400, 'pt'),
Plot1D('sumEt', 'sumEt', 20, 400, 4000, 'scalar sum of Et'),
)
),
RawPuppiMET = cms.PSet(
sels = cms.PSet(),
plots = cms.VPSet(
Plot1D('phi', 'phi', 20, -3.14159, 3.14159, 'phi'),
Plot1D('pt', 'pt', 20, 0, 400, 'pt'),
Plot1D('sumEt', 'sumEt', 20, 400, 4000, 'scalar sum of Et'),
)
),
SV = cms.PSet(
sels = cms.PSet(),
plots = cms.VPSet(
Count1D('_size', 14, -0.5, 13.5),
Plot1D('chi2', 'chi2', 20, -2000, 2000, 'reduced chi2, i.e. chi/ndof'),
Plot1D('dlen', 'dlen', 20, 0, 4, 'decay length in cm'),
Plot1D('dlenSig', 'dlenSig', 20, 0, 50, 'decay length significance'),
Plot1D('dxy', 'dxy', 20, 0, 4, '2D decay length in cm'),
Plot1D('dxySig', 'dxySig', 20, 0, 50, '2D decay length significance'),
Plot1D('eta', 'eta', 20, -3, 3, 'eta'),
Plot1D('mass', 'mass', 20, 0, 8, 'mass'),
Plot1D('ndof', 'ndof', 20, -1, 19, 'number of degrees of freedom'),
Plot1D('pAngle', 'pAngle', 20, -3.1416, 3.1416, 'pointing angle, i.e. acos(p_SV * (SV - PV)) '),
Plot1D('phi', 'phi', 20, -3.14159, 3.14159, 'phi'),
Plot1D('pt', 'pt', 20, 0, 200, 'pt'),
Plot1D('x', 'x', 20, -0.5, 0.5, 'secondary vertex X position, in cm'),
Plot1D('y', 'y', 20, -0.5, 0.5, 'secondary vertex Y position, in cm'),
Plot1D('z', 'z', 20, -10, 10, 'secondary vertex Z position, in cm'),
Plot1D('ntracks', 'ntracks', 11, -0.5, 10.5, 'number of tracks'),
Plot1D('charge', 'charge', 11 , -0.5, 10.5, 'sum of the charge of the SV tracks'),
)
),
SoftActivityJet = cms.PSet(
sels = cms.PSet(),
plots = cms.VPSet(
Count1D('_size', 7, -0.5, 6.5, 'jets clustered from charged candidates compatible with primary vertex (charge()!=0 && pvAssociationQuality()>=5 && vertexRef().key()==0)'),
Plot1D('eta', 'eta', 20, -3, 3, 'eta'),
Plot1D('phi', 'phi', 20, -3.14159, 3.14159, 'phi'),
Plot1D('pt', 'pt', 20, 0, 200, 'pt'),
)
),
SubJet = cms.PSet(
sels = cms.PSet(),
plots = cms.VPSet(
Count1D('_size', 9, -0.5, 8.5, 'slimmedJetsAK8PFPuppiSoftDropPacked::SubJets, i.e. soft-drop subjets for ak8 fat jets for boosted'),
Plot1D('btagDeepFlavB', 'btagDeepFlavB', 20, -1, 1, 'DeepJet b+bb+lepb tag discriminator'),
Plot1D('btagUParTAK4B', 'btagUParTAK4B', 20, -1, 1, 'UnifiedParT b vs. udscg'),
Plot1D('eta', 'eta', 20, -4, 4, 'eta'),
Plot1D('hadronFlavour', 'hadronFlavour', 6, -0.5, 5.5, 'flavour from hadron ghost clustering'),
Plot1D('mass', 'mass', 20, -200, 200, 'mass'),
Plot1D('n2b1', 'n2b1', 20, 0, 1, 'N2 (beta=1)'),
Plot1D('n3b1', 'n3b1', 20, 0, 5, 'N3 (beta=1)'),
Plot1D('nBHadrons', 'nBHadrons', 4, -0.5, 3.5, 'number of b-hadrons'),
Plot1D('nCHadrons', 'nCHadrons', 4, -0.5, 3.5, 'number of c-hadrons'),
Plot1D('phi', 'phi', 20, -3.14159, 3.14159, 'phi'),
Plot1D('pt', 'pt', 20, 0, 200, 'pt'),
Plot1D('rawFactor', 'rawFactor', 20, -0.5, 0.5, '1 - Factor to get back to raw pT'),
Plot1D('area', 'area', 25, 0, 2.5, 'jet catchment area, for JECs'),
Plot1D('tau1', 'tau1', 20, 0, 1, 'Nsubjettiness (1 axis)'),
Plot1D('tau2', 'tau2', 20, 0, 1, 'Nsubjettiness (2 axis)'),
Plot1D('tau3', 'tau3', 20, 0, 1, 'Nsubjettiness (3 axis)'),
Plot1D('tau4', 'tau4', 20, 0, 1, 'Nsubjettiness (4 axis)'),
NoPlot('subGenJetAK8Idx'),
)
),
Tau = cms.PSet(
sels = cms.PSet(),
plots = cms.VPSet(
Count1D('_size', 7, -0.5, 6.5, "slimmedTaus after basic selection (pt > 18 && tauID('decayModeFindingNewDMs') && (tauID('byLooseCombinedIsolationDeltaBetaCorr3Hits') || tauID('byVLooseIsolationMVArun2v1DBoldDMwLT') || tauID('byVLooseIsolationMVArun2v1DBnewDMwLT') || tauID('byVLooseIsolationMVArun2v1DBdR03oldDMwLT')))"),
Plot1D('charge', 'charge', 3, -1.5, 1.5, 'electric charge'),
Plot1D('chargedIso', 'chargedIso', 20, 0, 200, 'charged isolation'),
Plot1D('decayMode', 'decayMode', 12, -0.5, 11.5, 'decayMode()'),
Plot1D('decayModePNet', 'decayModePNet', 13, -1.5, 11.5, 'decay mode of the highest PNet tau score (CHS jets)'),
Plot1D('decayModeUParT', 'decayModeUParT', 13, -1.5, 11.5, 'decay mode of the highest UParT tau score (PUPPI jets)'),
Plot1D('dxy', 'dxy', 20, -1000, 1000, 'd_{xy} of lead track with respect to PV, in cm (with sign)'),
Plot1D('dz', 'dz', 20, -20, 20, 'd_{z} of lead track with respect to PV, in cm (with sign)'),
Plot1D('eta', 'eta', 20, -3, 3, 'eta'),
Plot1D('genPartFlav', 'genPartFlav', 6, -0.5, 5.5, 'Flavour of genParticle for MC matching to status==2 taus: 1 = prompt electron, 2 = prompt muon, 3 = tau->e decay, 4 = tau->mu decay, 5 = hadronic tau decay, 0 = unknown or unmatched'),
NoPlot('genPartIdx'),
Plot1D('idAntiEleDeadECal', 'idAntiEleDeadECal', 2, -0.5, 1.5, "tauID('againstElectronDeadECAL')"),
Plot1D('idAntiMu', 'idAntiMu', 11, -0.5, 10.5, 'Anti-muon discriminator V3: : int 1 = Loose, 2 = Tight'),
Plot1D('idDecayModeOldDMs', 'idDecayModeOldDMs', 2, -0.5, 1.5, "tauID('decayModeFinding')"),
Plot1D('idDecayModeNewDMs', 'idDecayModeNewDMs', 2, -0.5, 1.5, "tauID('decayModeFindingNewDMs')"),
Plot1D('idDeepTau2018v2p5VSe', 'idDeepTau2018v2p5VSe', 11, -0.5, 10.5, 'byDeepTau2018v2p5VSe ID working points (deepTau2018v2p5): int 1 = VVVLoose, 2 = VVLoose, 3 = VLoose, 4 = Loose, 5 = Medium, 6 = Tight, 7 = VTight, 8 = VVTight'),
Plot1D('idDeepTau2018v2p5VSjet', 'idDeepTau2018v2p5VSjet', 11, -0.5, 10.5, 'byDeepTau2018v2p5VSjet ID working points (deepTau2018v2p5): int 1 = VVVLoose, 2 = VVLoose, 3 = VLoose, 4 = Loose, 5 = Medium, 6 = Tight, 7 = VTight, 8 = VVTight'),
Plot1D('idDeepTau2018v2p5VSmu', 'idDeepTau2018v2p5VSmu', 11, -0.5, 10.5, 'byDeepTau2018v2p5VSmu ID working points (deepTau2018v2p5): int 1 = VLoose, 2 = Loose, 3 = Medium, 4 = Tight'),
NoPlot('jetIdx'),
Plot1D('leadTkDeltaEta', 'leadTkDeltaEta', 20, -0.1, 0.1, 'eta of the leading track, minus tau eta'),
Plot1D('leadTkDeltaPhi', 'leadTkDeltaPhi', 20, -0.1, 0.1, 'phi of the leading track, minus tau phi'),
Plot1D('leadTkPtOverTauPt', 'leadTkPtOverTauPt', 20, 0, 2, 'pt of the leading track divided by tau pt'),
Plot1D('mass', 'mass', 20, 0, 5, 'mass'),
Plot1D('neutralIso', 'neutralIso', 20, 0, 200, 'neutral (photon) isolation'),
Plot1D('phi', 'phi', 20, -3.14159, 3.14159, 'phi'),
Plot1D('photonsOutsideSignalCone', 'photonsOutsideSignalCone', 20, 0, 30, 'sum of photons outside signal cone'),
Plot1D('pt', 'pt', 20, 0, 200, 'pt'),
Plot1D('puCorr', 'puCorr', 20, 0, 90, 'pileup correction'),
Plot1D('rawDeepTau2018v2p5VSe', 'rawDeepTau2018v2p5VSe', 20, 0, 1, 'byDeepTau2018v2p5VSe raw output discriminator (deepTau2018v2p5)'),
Plot1D('rawDeepTau2018v2p5VSjet', 'rawDeepTau2018v2p5VSjet', 20, 0, 1, 'byDeepTau2018v2p5VSjet raw output discriminator (deepTau2018v2p5)'),
Plot1D('rawDeepTau2018v2p5VSmu', 'rawDeepTau2018v2p5VSmu', 20, 0, 1, 'byDeepTau2018v2p5VSmu raw output discriminator (deepTau2018v2p5)'),
Plot1D('rawPNetVSe', 'rawPNetVSe', 20, 0, 1, 'byPNetVSe raw output discriminator (PNet 2023 - CHS Jets)'),
Plot1D('rawPNetVSjet', 'rawPNetVSjet', 20, 0, 1, 'byPNetVSjet raw output discriminator (PNet 2023 - CHS Jets)'),
Plot1D('rawPNetVSmu', 'rawPNetVSmu', 20, 0, 1, 'byPNetVSmu raw output discriminator (PNet 2023 - CHS Jets)'),
Plot1D('rawUParTVSe', 'rawUParTVSe', 20, 0, 1, 'byUParTVSe raw output discriminator (UParT 2024 - PUPPI Jets)'),
Plot1D('rawUParTVSjet', 'rawUParTVSjet', 20, 0, 1, 'byUParTVSjet raw output discriminator (UParT 2024 - PUPPI Jets)'),
Plot1D('rawUParTVSmu', 'rawUParTVSmu', 20, 0, 1, 'byUParTVSmu raw output discriminator (UParT 2024 - PUPPI Jets)'),
Plot1D('rawIso', 'rawIso', 20, 0, 200, 'combined isolation (deltaBeta corrections)'),
Plot1D('rawIsodR03', 'rawIsodR03', 20, 0, 200, 'combined isolation (deltaBeta corrections, dR=0.3)'),
Plot1D('ptCorrPNet', 'ptCorrPNet', 20, 0, 2, 'pt correction (PNet 2023 - CHS Jets)'),
Plot1D('qConfPNet', 'qConfPNet', 20, -0.5, 0.5, 'signed charge confidence (PNet 2023 - CHS Jets)'),
Plot1D('probDM0PNet', 'probDM0PNet', 20, 0, 1, 'normalised probablity of decayMode 0, 1h+0pi0 (PNet 2023 - CHS Jets)'),
Plot1D('probDM1PNet', 'probDM1PNet', 20, 0, 1, 'normalised probablity of decayMode 1, 1h+1pi0 (PNet 2023 - CHS Jets)'),
Plot1D('probDM2PNet', 'probDM2PNet', 20, 0, 1, 'normalised probablity of decayMode 2, 1h+2pi0 (PNet 2023 - CHS Jets)'),
Plot1D('probDM10PNet', 'probDM10PNet', 20, 0, 1, 'normalised probablity of decayMode 10, 3h+0pi0 (PNet 2023 - CHS Jets)'),
Plot1D('probDM11PNet', 'probDM11PNet', 20, 0, 1, 'normalised probablity of decayMode 11, 3h+1pi0 (PNet 2023 - CHS Jets)'),
Plot1D('ptCorrUParT', 'ptCorrUParT', 20, 0, 2, 'pt correction (UParT 2024 - PUPPI Jets)'),
Plot1D('qConfUParT', 'qConfUUParT', 20, -0.5, 0.5, 'signed charge confidence (UParT 2024 - PUPPI Jets)'),
Plot1D('probDM0UParT', 'probDM0UParT', 20, 0, 1, 'normalised probablity of decayMode 0, 1h+0pi0 (UParT 2024 - PUPPI Jets)'),
Plot1D('probDM1UParT', 'probDM1UParT', 20, 0, 1, 'normalised probablity of decayMode 1, 1h+1pi0 (UParT 2024 - PUPPI Jets)'),
Plot1D('probDM2UParT', 'probDM2UParT', 20, 0, 1, 'normalised probablity of decayMode 2, 1h+2pi0 (UParT 2024 - PUPPI Jets)'),
Plot1D('probDM10UParT', 'probDM10UParT', 20, 0, 1, 'normalised probablity of decayMode 10, 3h+0pi0 (UParT 2024 - PUPPI Jets)'),
Plot1D('probDM11UParT', 'probDM11UParT', 20, 0, 1, 'normalised probablity of decayMode 11, 3h+1pi0 (UParT 2024 - PUPPI Jets)'),
)
),
TauProd = cms.PSet(
sels = cms.PSet(),
plots = cms.VPSet(
Count1D('_size', 40, -0.5, 5.5, 'tau decay products'),
Plot1D('pt', 'pt', 20, 0, 200, 'pt'),
Plot1D('phi', 'phi', 20, -3.14159, 3.14159, 'phi'),
Plot1D('eta', 'eta', 20, -5, 5, 'eta'),
Plot1D('pdgId', 'pdgId', 200, -10250, 10250, 'PDG code assigned by the event reconstruction (not by MC truth)'),
NoPlot('status'),
)
),
TrkMET = cms.PSet(
sels = cms.PSet(),
plots = cms.VPSet(
Plot1D('phi', 'phi', 20, -3.14159, 3.14159, 'phi'),
Plot1D('pt', 'pt', 20, 0, 400, 'pt'),
Plot1D('sumEt', 'sumEt', 20, 0, 2000, 'scalar sum of Et'),
)
),
TrigObj = cms.PSet(
sels = cms.PSet(
Electron = cms.string('id == 11'),
HT = cms.string('id == 3'),
Jet = cms.string('id == 1'),
MET = cms.string('id == 2'),
MHT = cms.string('id == 4'),
Muon = cms.string('id == 13'),
Photon = cms.string('id == 22'),
Tau = cms.string('id == 15')
),
plots = cms.VPSet(
Count1D('_size', 28, -0.5, 27.5),
Plot1D('eta', 'eta', 20, -5, 5, 'eta'),
Plot1D('filterBits', 'filterBits', 31, 0, 31, 'extra bits of associated information, object- and era-dependent: see branch documentation', bitset=True),
Plot1D('id', 'id', 20, 0, 30, 'ID of the object: 11 = Electron (PixelMatched e/gamma), 22 = Photon (PixelMatch-vetoed e/gamma), 13 = Muon, 14 = Tau, 1 = Jet, 2 = MET, 3 = HT, 4 = MHT'),
Plot1D('l1charge', 'l1charge', 3, -1.5, 1.5, 'charge of associated L1 seed'),
Plot1D('l1iso', 'l1iso', 4, -0.5, 3.5, 'iso of associated L1 seed'),
Plot1D('l1pt', 'l1pt', 20, 0, 200, 'pt of associated L1 seed'),
Plot1D('l1pt_2', 'l1pt_2', 20, 0, 200, 'pt of associated secondary L1 seed'),
Plot1D('l2pt', 'l2pt', 20, 0, 200, "pt of associated 'L2' seed (i.e. HLT before tracking/PF)"),
Plot1D('phi', 'phi', 20, -3.14159, 3.14159, 'phi'),
Plot1D('pt', 'pt', 40, 0, 400, 'pt'),
)
),
boostedTau = cms.PSet(
sels = cms.PSet(),
plots = cms.VPSet(
Count1D('_size', 7, -0.5, 6.5, "slimmedBoostedTaus after basic selection (pt > 40 && tauID('decayModeFindingNewDMs') && (tauID('byVVLooseIsolationMVArun2017v2DBoldDMwLT2017') || tauID('byVVLooseIsolationMVArun2017v2DBoldDMdR0p3wLT2017') || tauID('byVVLooseIsolationMVArun2017v2DBnewDMwLT2017')))"),
Plot1D('charge', 'charge', 3, -1.5, 1.5, 'electric charge'),
Plot1D('chargedIso', 'chargedIso', 20, 0, 200, 'charged isolation'),
Plot1D('decayMode', 'decayMode', 12, -0.5, 11.5, 'decayMode()'),
Plot1D('eta', 'eta', 20, -3, 3, 'eta'),
Plot1D('genPartFlav', 'genPartFlav', 6, -0.5, 5.5, 'Flavour of genParticle for MC matching to status==2 taus: 1 = prompt electron, 2 = prompt muon, 3 = tau->e decay, 4 = tau->mu decay, 5 = hadronic tau decay, 0 = unknown or unmatched'),
NoPlot('genPartIdx'),
Plot1D('idAntiEle2018', 'idAntiEle2018', 11, -0.5, 10.5, 'Anti-electron MVA discriminator V6 (2018): int 1 = VLoose, 2 = Loose, 3 = Medium, 4 = Tight, 5 = VTight'),
Plot1D('idAntiMu', 'idAntiMu', 11, -0.5, 10.5, 'Anti-muon discriminator V3: : int 1 = Loose, 2 = Tight'),
Plot1D('idMVAnewDM2017v2', 'idMVAnewDM2017v2', 11, -0.5, 10.5, 'IsolationMVArun2017v2DBnewDMwLT ID working point (2017v2): int 1 = VVLoose, 2 = VLoose, 3 = Loose, 4 = Medium, 5 = Tight, 6 = VTight, 7 = VVTight'),
Plot1D('idMVAoldDM2017v2', 'idMVAoldDM2017v2', 11, -0.5, 10.5, 'IsolationMVArun2017v2DBoldDMwLT ID working point (2017v2): int 1 = VVLoose, 2 = VLoose, 3 = Loose, 4 = Medium, 5 = Tight, 6 = VTight, 7 = VVTight'),
NoPlot('jetIdx'),
Plot1D('leadTkDeltaEta', 'leadTkDeltaEta', 20, -0.1, 0.1, 'eta of the leading track, minus tau eta'),
Plot1D('leadTkDeltaPhi', 'leadTkDeltaPhi', 20, -0.1, 0.1, 'phi of the leading track, minus tau phi'),
Plot1D('leadTkPtOverTauPt', 'leadTkPtOverTauPt', 20, 0, 2, 'pt of the leading track divided by tau pt'),
Plot1D('mass', 'mass', 20, 0, 5, 'mass'),
Plot1D('neutralIso', 'neutralIso', 20, 0, 200, 'neutral (photon) isolation'),
Plot1D('phi', 'phi', 20, -3.14159, 3.14159, 'phi'),
Plot1D('photonsOutsideSignalCone', 'photonsOutsideSignalCone', 20, 0, 30, 'sum of photons outside signal cone'),
Plot1D('pt', 'pt', 20, 0, 200, 'pt'),
Plot1D('puCorr', 'puCorr', 20, 0, 90, 'pileup correction'),
Plot1D('rawAntiEle2018', 'rawAntiEle2018', 20, -100, 100, 'Anti-electron MVA discriminator V6 raw output discriminator (2018)'),
Plot1D('rawAntiEleCat2018', 'rawAntiEleCat2018', 20, -100, 100, 'Anti-electron MVA discriminator V6 category (2018)'),
Plot1D('rawIso', 'rawIso', 20, 0, 200, 'combined isolation (deltaBeta corrections)'),
Plot1D('rawIsodR03', 'rawIsodR03', 20, 0, 200, 'combined isolation (deltaBeta corrections, dR=0.3)'),
Plot1D('rawMVAnewDM2017v2', 'rawMVAnewDM2017v2', 20, -1, 1, 'byIsolationMVArun2017v2DBnewDMwLT raw output discriminator (2017v2)'),
Plot1D('rawMVAoldDM2017v2', 'rawMVAoldDM2017v2', 20, -1, 1, 'byIsolationMVArun2017v2DBoldDMwLT raw output discriminator (2017v2)'),
Plot1D('rawBoostedDeepTauRunIIv2p0VSe', 'rawBoostedDeepTauRunIIv2p0VSe', 20, 0, 1, 'BoostedDeepTau(v2p0) tagger for boostedTaus raw scores Vs e'),
Plot1D('rawBoostedDeepTauRunIIv2p0VSjet', 'rawBoostedDeepTauRunIIv2p0VSjet', 20, 0, 1, 'BoostedDeepTau(v2p0) tagger for boostedTaus raw scores Vs jet'),
Plot1D('rawBoostedDeepTauRunIIv2p0VSmu', 'rawBoostedDeepTauRunIIv2p0VSmu', 20, 0, 1, 'BoostedDeepTau(v2p0) tagger for boostedTaus raw scores Vs mu'),
)
),
L1PreFiringWeight = cms.PSet(
sels = cms.PSet(),
plots = cms.VPSet(
Plot1D('Nom', 'Nom', 21, 0.8, 1.01, 'L1 prefiring weight nominal'),
Plot1D('Up', 'Up', 21, 0.8, 1.01, 'L1 prefiring weight uncertainy up'),
Plot1D('Dn', 'Dn', 21, 0.8, 1.01, 'L1 prefiring weight uncertainty down'),
Plot1D('ECAL_Nom', 'ECAL_Nom', 21, 0.8, 1.01, 'L1 prefiring weight for ECAL objects nominal'),
Plot1D('Muon_Nom', 'Muon_Nom', 21, 0.8, 1.01, 'L1 prefiring weight for muons nominal'),
)
),
BeamSpot = cms.PSet(
sels = cms.PSet(),
plots = cms.VPSet(
Plot1D('z', 'z', 20, 0.5, 1.5, 'BeamSpot center, z coordinate (cm)'),
Plot1D('zError', 'zError', 20, 0., 0.01, 'Error on BeamSpot center, z coordinate (cm)'),
Plot1D('sigmaZ', 'sigmaZ', 20, 0., 10, 'Width of BeamSpot in z (cm)'),