-
Notifications
You must be signed in to change notification settings - Fork 3
/
polyrat.tex
5994 lines (5758 loc) · 204 KB
/
polyrat.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
%+*** 111,112document.tex
% arara: indent: {overwrite: on, trace: on, localSettings: yes}
%===================================
%
% Last edited: Hughes
% 11/18/12 (v19)
%
%===================================
\chapter{Polynomial and Rational Functions}
\minitoc
\section{Polynomial functions}
\reformatstepslist{P} % the steps list should be P1, P2, \ldots
In your previous mathematics classes you have studied \emph{linear} and
\emph{quadratic} functions. The most general forms of these types of
functions can be represented (respectively) by the functions $f$
and $g$ that have formulas
\begin{equation}\label{poly:eq:linquad}
f(x)=mx+b, \qquad g(x)=ax^2+bx+c
\end{equation}
We know that $m$ is the slope of $f$, and that $a$ is the \emph{leading coefficient}
of $g$. We also know that the \emph{signs} of $m$ and $a$ completely
determine the behavior of the functions $f$ and $g$. For example, if $m>0$
then $f$ is an \emph{increasing} function, and if $m<0$ then $f$ is
a \emph{decreasing} function. Similarly, if $a>0$ then $g$ is
\emph{concave up} and if $a<0$ then $g$ is \emph{concave down}. Graphical
representations of these statements are given in \cref{poly:fig:linquad}.
\begin{figure}[!htb]
\setlength{\figurewidth}{.2\textwidth}
\begin{subfigure}{\figurewidth}
\begin{tikzpicture}
\begin{axis}[
framed,
xmin=-10,xmax=10,
ymin=-10,ymax=10,
minor xtick={-8,-4,...,8},
minor ytick={-8,-4,...,8},
xtick={-11},
ytick={-11},
grid=minor,
]
\addplot expression[domain=-10:8]{(x+2)};
\end{axis}
\end{tikzpicture}
\caption{$m>0$}
\end{subfigure}
\hfill
\begin{subfigure}{\figurewidth}
\begin{tikzpicture}
\begin{axis}[
framed,
xmin=-10,xmax=10,
ymin=-10,ymax=10,
minor xtick={-8,-4,...,8},
minor ytick={-8,-4,...,8},
xtick={-11},
ytick={-11},
grid=minor,
]
\addplot expression[domain=-10:8]{-(x+2)};
\end{axis}
\end{tikzpicture}
\caption{$m<0$}
\end{subfigure}
\hfill
\begin{subfigure}{\figurewidth}
\begin{tikzpicture}
\begin{axis}[
framed,
xmin=-10,xmax=10,
ymin=-10,ymax=10,
minor xtick={-8,-4,...,8},
minor ytick={-8,-4,...,8},
xtick={-11},
ytick={-11},
grid=minor,
]
\addplot expression[domain=-4:4]{(x^2-6)};
\end{axis}
\end{tikzpicture}
\caption{$a>0$}
\end{subfigure}
\hfill
\begin{subfigure}{\figurewidth}
\begin{tikzpicture}
\begin{axis}[
framed,
xmin=-10,xmax=10,
ymin=-10,ymax=10,
minor xtick={-8,-4,...,8},
minor ytick={-8,-4,...,8},
xtick={-11},
ytick={-11},
grid=minor,
]
\addplot expression[domain=-4:4]{-(x^2-6)};
\end{axis}
\end{tikzpicture}
\caption{$a<0$}
\end{subfigure}
\caption{Typical graphs of linear and quadratic functions.}
\label{poly:fig:linquad}
\end{figure}
Let's look a little more closely at the formulas for $f$ and $g$ in
\cref{poly:eq:linquad}. Note that the \emph{degree}
of $f$ is $1$ since the highest power of $x$ that is present in the
formula for $f(x)$ is $1$. Since $f$ has $2$ terms, we may call it
a \emph{bi}nomial function. Similarly, the degree of $g$ is $2$ since
the highest power of $x$ that is present in the formula for $g(x)$
is $2$. Since $g$ has $3$ terms, we may call it a \emph{tri}nomial
function.
In this section we will build upon our knowledge of these elementary
functions. In particular, we will generalize our knowledege of
the functions $f$ and $g$
to the study of a \emph{poly}nomial function $p$ that has any degree (and
any number of terms) that we wish. The only restriction that we will
enforce is that the degree of $p$ must be an integer.
%===================================
% Author: Hughes
% Date: March 2012
%===================================
\begin{essentialskills}
%===================================
% Author: Hughes
% Date: March 2012
%===================================
\begin{problem}[Quadratic functions]
Every quadratic function has the form $y=ax^2+bx+c$; state the value
of $a$ for each of the following functions, and hence decide if the
parabola that represents the function opens upward or downward.
\begin{multicols}{2}
\begin{subproblem}
$F(x)=x^2+3$
\begin{shortsolution}
$a=1$; the parabola opens upward.
\end{shortsolution}
\end{subproblem}
\begin{subproblem}
$G(t)=4-5t^2$
\begin{shortsolution}
$a=-5$; the parabola opens downward.
\end{shortsolution}
\end{subproblem}
\begin{subproblem}
$H(y)=4y^2-96y+8$
\begin{shortsolution}
$a=4$; the parabola opens upward.
\end{shortsolution}
\end{subproblem}
\begin{subproblem}
$K(z)=-19z^2$
\begin{shortsolution}
$m=-19$; the parabola opens downward.
\end{shortsolution}
\end{subproblem}
\end{multicols}
Now let's generalize our findings for the most general quadratic function $g$
that has formula $g(x)=a_2x^2+a_1x+a_0$. Complete the following sentences.
\begin{subproblem}
When $a_2>0$, the parabola that represents $y=g(x)$ opens $\ldots$
\begin{shortsolution}
When $a_2>0$, the parabola that represents the function opens upward.
\end{shortsolution}
\end{subproblem}
\begin{subproblem}
When $a_2<0$, the parabola that represents $y=g(x)$ opens $\ldots$
\begin{shortsolution}
When $a_2<0$, the parabola that represents the function opens downward.
\end{shortsolution}
\end{subproblem}
\end{problem}
\end{essentialskills}
\subsection*{Power functions with positive exponents}
The study of polynomials will rely upon a good knowledge
of power functions| you may reasonably ask, what is a power function?
\begin{pccdefinition}[Power functions]
The most general formula for a power functions is
\[
f(x) = a_n x^n
\]
where $n$ can be any real number.
Note that for this section we will only be concerned with the
case when $n$ is a positive integer.
\end{pccdefinition}
You may find assurance in the fact that you are already very comfortable
with power functions that have $n=1$ (linear) and $n=2$ (quadratic). Let's
explore some power functions that you might not be so familiar with.
As you read \cref{poly:ex:oddpow,poly:ex:evenpow}, try and spot
as many patterns and similarities as you can.
%===================================
% Author: Hughes
% Date: March 2012
%===================================
\begin{pccexample}[Power functions with odd positive exponents]
\label{poly:ex:oddpow}
Graph each the functions $f$, $g$, and $h$ that have
formulas
\[
f(x)=x^3, \qquad g(x)=x^5, \qquad h(x)=x^7
\]
and state their domain, and their long-run behavior as $x\rightarrow\pm\infty$
\begin{pccsolution}
The functions $f$, $g$, and $h$ are plotted in \cref{poly:fig:oddpow}.
The domain of each of the functions $f$, $g$, and $h$ is $(-\infty,\infty)$. Note that
the long-run behavior of each of the functions is the same, and in particular
\begin{align*}
f(x)\rightarrow\infty & \text{ as } x\rightarrow\infty \\
\mathllap{\text{and }} f(x)\rightarrow-\infty & \text{ as } x\rightarrow-\infty
\end{align*}
The same results hold for $g$ and $h$. Note that the range of each of the
functions $f$, $g$, and $h$ is $(-\infty,\infty)$.
It appears from \cref{poly:fig:oddpow} that each of the functions $f$, $g$,
and $h$ are symmetric about the origin. Remember from REF
\fixthis{need reference to definition about even and odd functions- doesn't
exist yet}
that a function that exhibits this behavior is called \emph{odd}. We can
test a function algebraically to see if it is odd by evaluating $f(-x)$; let's
do that for each of the functions $f$, $g$, and $h$:
\begin{align*}
f(-x) & =(-x)^3 & g(-x) & =(-x)^5 & h(-x) & =(-x)^7 \\
& =-x^3 & & =-x^5 & & =-x^7 \\
& =-f(x) & & =-g(x) & & =-h(x)
\end{align*}
We conclude that each of the functions $f$, $g$, and $h$ are odd.
\end{pccsolution}
\end{pccexample}
\begin{figure}[!htb]
\begin{minipage}{.45\textwidth}
\begin{tikzpicture}
\begin{axis}[
framed,
xmin=-1.5,xmax=1.5,
ymin=-5,ymax=5,
xtick={-1.0,-0.5,...,1.0},
minor ytick={-3,-1,...,3},
grid=both,
legend pos=north west,
]
\addplot expression[domain=-1.5:1.5]{x^3};
\addplot expression[domain=-1.379:1.379]{x^5};
\addplot expression[domain=-1.258:1.258]{x^7};
\addplot[soldot]coordinates{(-1,-1)} node[axisnode,anchor=north west]{$(-1,-1)$};
\addplot[soldot]coordinates{(1,1)} node[axisnode,anchor=south east]{$(1,1)$};
\legend{$f$,$g$,$h$}
\end{axis}
\end{tikzpicture}
\caption{Odd power functions}
\label{poly:fig:oddpow}
\end{minipage}%
\hfill
\begin{minipage}{.45\textwidth}
\begin{tikzpicture}
\begin{axis}[
framed,
xmin=-2.5,xmax=2.5,
ymin=-5,ymax=5,
xtick={-2.0,-1.5,...,2.0},
minor ytick={-3,-1,...,3},
grid=both,
legend pos=south east,
]
\addplot expression[domain=-2.236:2.236]{x^2};
\addplot expression[domain=-1.495:1.495]{x^4};
\addplot expression[domain=-1.307:1.307]{x^6};
\addplot[soldot]coordinates{(-1,1)} node[axisnode,anchor=east]{$(-1,1)$};
\addplot[soldot]coordinates{(1,1)} node[axisnode,anchor=west]{$(1,1)$};
\legend{$F$,$G$,$H$}
\end{axis}
\end{tikzpicture}
\caption{Even power functions}
\label{poly:fig:evenpow}
\end{minipage}%
\end{figure}
%===================================
% Author: Hughes
% Date: March 2012
%===================================
\begin{pccexample}[Power functions with even positive exponents]\label{poly:ex:evenpow}%
Graph each the functions $F$, $G$, and $H$ that
have formulas
\[
F(x)=x^2, \qquad G(x)=x^4, \qquad H(x)=x^6
\]
and state their domain, and their long-run behavior as $x\rightarrow\pm\infty$
\begin{pccsolution}
The functions $F$, $G$, and $H$ are plotted in \cref{poly:fig:evenpow}. The domain
of each of the functions is $(-\infty,\infty)$. Note that the long-run behavior
of each of the functions is the same, and in particular
\begin{align*}
F(x)\rightarrow\infty & \text{ as } x\rightarrow\infty \\
\mathllap{\text{and }} F(x)\rightarrow\infty & \text{ as } x\rightarrow-\infty
\end{align*}
The same result holds for $G$ and $H$. Note that the range of each of
the functions $F$, $G$, and $H$ is $[0,\infty)$.
It appears from \cref{poly:fig:evenpow} that each of the functions $F$, $G$,
and $H$ are symmetric across the vertical axis. Remember from REF
\fixthis{need reference to definition about even and odd functions- doesn't
exist yet}
that a function that exhibits this behavior is called \emph{even}. We can
test a function algebraically to see if it is even by evaluating $f(-x)$; let;s
do that for each of the functions $F$, $G$, and $H$:
\begin{align*}
F(-x) & =(-x)^2 & G(-x) & =(-x)^4 & H(-x) & =(-x)^6 \\
& =x^2 & & =x^4 & & =x^6 \\
& =F(x) & & =G(x) & & =H(x)
\end{align*}
We conclude that each of the functions $F$, $G$, and $H$ are even.
\end{pccsolution}
\end{pccexample}
\begin{doyouunderstand}
\begin{problem}
Repeat \cref{poly:ex:oddpow,poly:ex:evenpow} using (respectively) the
functions that have the following formulas.
\begin{subproblem}
$f(x)=-x^3, \qquad g(x)=-x^5, \qquad h(x)=-x^7$
\begin{shortsolution}
The functions $f$, $g$, and $h$ have domain $(-\infty,\infty)$ and
are graphed below.
\begin{tikzpicture}
\begin{axis}[
framed,
xmin=-1.5,xmax=1.5,
ymin=-5,ymax=5,
xtick={-1.0,-0.5,...,0.5},
minor ytick={-3,-1,...,3},
grid=both,
legend pos=north east,
]
\addplot expression[domain=-1.5:1.5]{-x^3};
\addplot expression[domain=-1.379:1.379]{-x^5};
\addplot expression[domain=-1.258:1.258]{-x^7};
\legend{$f$,$g$,$h$}
\end{axis}
\end{tikzpicture}
Note that
\begin{align*}
f(x)\rightarrow-\infty & \text{ as } x\rightarrow\infty \\
\mathllap{\text{and }} f(x)\rightarrow\infty & \text{ as } x\rightarrow-\infty
\end{align*}
The same is true for $g$ and $h$. The range of $f$, $g$, and $h$
is $(-\infty,\infty)$.
Each of the functions $f$, $g$, and $h$ are odd
\begin{align*}
f(-x) & =-(-x)^3 & g(-x) & =-(-x)^5 & h(-x) & =-(-x)^7 \\
& =x^3 & & =x^5 & & =x^7 \\
& =-f(x) & & =-g(x) & & =-h(x)
\end{align*}
\end{shortsolution}
\end{subproblem}
\begin{subproblem}
$F(x)=-x^2, \qquad G(x)=-x^4, \qquad H(x)=-x^6$
\begin{shortsolution}
The functions $F$, $G$, and $H$ have domain $(-\infty,\infty)$ and
are graphed below.
\begin{tikzpicture}
\begin{axis}[
framed,
xmin=-2.5,xmax=2.5,
ymin=-5,ymax=5,
xtick={-1.0,-0.5,...,0.5},
minor ytick={-3,-1,...,3},
grid=both,
legend pos=north east,
]
\addplot expression[domain=-2.236:2.236]{-x^2};
\addplot expression[domain=-1.495:1.495]{-x^4};
\addplot expression[domain=-1.307:1.307]{-x^6};
\legend{$F$,$G$,$H$}
\end{axis}
\end{tikzpicture}
Note that
\begin{align*}
F(x)\rightarrow-\infty & \text{ as } x\rightarrow\infty \\
\mathllap{\text{and }} F(x)\rightarrow-\infty & \text{ as } x\rightarrow-\infty
\end{align*}
The same is true for $G$ and $H$. The range of $F$, $G$, and $H$
is $(-\infty,0]$.
Each of the functions $F$, $G$, and $H$ are even
\begin{align*}
F(-x) & =-(-x)^2 & G(-x) & =-(-x)^4 & H(-x) & =-(-x)^6 \\
& =-x^2 & & =-x^4 & & =-x^6 \\
& =F(x) & & =G(x) & & =H(x)
\end{align*}
\end{shortsolution}
\end{subproblem}
\end{problem}
\end{doyouunderstand}
\subsection*{Polynomial functions}
Now that we have a little more familiarity with power functions,
we can define polynomial functions. Provided that you were comfortable
with our opening discussion about linear and quadratic functions (see
$f$ and $g$ in \cref{poly:eq:linquad}) then there is every chance
that you'll be able to master polynomial functions as well; just remember
that polynomial functions are a natural generalization of linear
and quadratic functions. Once you've studied the examples and problems
in this section, you'll hopefully agree that polynomial functions
are remarkably predictable.
%===================================
% Author: Hughes
% Date: May 2011
%===================================
\begin{pccdefinition}[Polynomial functions]
The most general formula for a polynomial function, $p$, is
\[
p(x)=a_nx^n+a_{n-1}x^{n-1}+\ldots+a_1x+a_0
\]
where $a_n$, $a_{n-1}$, $a_{n-2}$, \ldots, $a_0$ are real numbers.
\begin{itemize}
\item We call $n$ the degree of the polynomial, and require that $n$
is a non-negative integer;
\item $a_n$, $a_{n-1}$, $a_{n-2}$, \ldots, $a_0$ are called the coefficients;
\item We typically write polynomial functions in descending powers of $x$.
\end{itemize}
In particular, we call $a_n$ the \emph{leading} coefficient, and $a_nx^n$ the
\emph{leading term}.
Note that if a polynomial is given in factored form, then the degree can be found
by counting the number of linear factors.
\end{pccdefinition}
%===================================
% Author: Hughes
% Date: March 2012
%===================================
\begin{pccexample}[Polynomial or not]
Decide if the following formulas correspond to polynomial functions
or not; if so, state the degree of the polynomial.
\begin{multicols}{3}
\begin{enumerate}
\item $p(x)=x^2-3$
\item $q(x)=-4x^{\nicefrac{1}{2}}+10$
\item $r(x)=10x^5$
\item $s(x)=x^{-2}+x^{23}$
\item $f(x)=-8$
\item $g(x)=3^x$
\item $h(x)=\sqrt[3]{x^7}-x^2+x$
\item $k(x)=4x(x+2)(x-3)$
\item $j(x)=x^2(x-4)(5-x)$
\end{enumerate}
\end{multicols}
\begin{pccsolution}
\begin{enumerate}
\item $p$ is a polynomial, and its degree is $2$.
\item $q$ is \emph{not} a polynomial, because $\frac{1}{2}$ is not an integer.
\item $r$ is a polynomial, and its degree is $5$.
\item $s$ is \emph{not} a polynomial, because $-2$ is not a positive integer.
\item $f$ is a polynomial, and its degree is $0$.
\item $g$ is \emph{not} a polynomial, because the independent
variable, $x$, is in the exponent.
\item $h$ is \emph{not} a polynomial, because $\frac{7}{3}$ is not an integer.
\item $k$ is a polynomial, and its degree is $3$.
\item $j$ is a polynomial, and its degree is $4$.
\end{enumerate}
\end{pccsolution}
\end{pccexample}
%===================================
% Author: Hughes
% Date: March 2012
%===================================
\begin{pccexample}[Typical graphs]\label{poly:ex:typical}
\Cref{poly:fig:typical} shows graphs of some polynomial functions;
the ticks have deliberately been left off the axis to allow us to concentrate
on the features of each graph. Note in particular that:
\begin{itemize}
\item \cref{poly:fig:typical1} shows a degree-$1$ polynomial (you might also
classify the function as linear) whose leading coefficient, $a_1$, is positive.
\item \cref{poly:fig:typical2} shows a degree-$2$ polynomial (you might also
classify the function as quadratic) whose leading coefficient, $a_2$, is positive.
\item \cref{poly:fig:typical3} shows a degree-$3$ polynomial whose leading coefficient, $a_3$,
is positive| compare its overall
shape and long-run behavior to the functions described in \cref{poly:ex:oddpow}.
\item \cref{poly:fig:typical4} shows a degree-$4$ polynomial whose leading coefficient, $a_4$,
is positive|compare its overall shape and long-run behavior to the functions described in \cref{poly:ex:evenpow}.
\item \cref{poly:fig:typical5} shows a degree-$5$ polynomial whose leading coefficient, $a_5$,
is positive| compare its overall
shape and long-run behavior to the functions described in \cref{poly:ex:oddpow}.
\end{itemize}
\end{pccexample}
%===================================
% Author: Hughes
% Date: May 2011
%===================================
\begin{figure}[!htb]
\begin{widepage}
\setlength{\figurewidth}{\textwidth/6}
\begin{subfigure}{\figurewidth}
\begin{tikzpicture}
\begin{axis}[
framed,
xmin=-10,xmax=10,
ymin=-10,ymax=10,
minor xtick={-8,-4,...,8},
minor ytick={-8,-4,...,8},
xtick={-11},
ytick={-11},
grid=minor,
]
\addplot expression[domain=-10:8]{(x+2)};
\end{axis}
\end{tikzpicture}
\caption{$a_1>0$}
\label{poly:fig:typical1}
\end{subfigure}
\hfill
\begin{subfigure}{\figurewidth}
\begin{tikzpicture}
\begin{axis}[
framed,
xmin=-10,xmax=10,
ymin=-10,ymax=10,
minor xtick={-8,-4,...,8},
minor ytick={-8,-4,...,8},
xtick={-11},
ytick={-11},
grid=minor,
]
\addplot expression[domain=-4:4]{(x^2-6)};
\end{axis}
\end{tikzpicture}
\caption{$a_2>0$}
\label{poly:fig:typical2}
\end{subfigure}
\hfill
\begin{subfigure}{\figurewidth}
\begin{tikzpicture}
\begin{axis}[
framed,
xmin=-10,xmax=10,
ymin=-10,ymax=10,
minor xtick={-8,-4,...,8},
minor ytick={-8,-4,...,8},
xtick={-11},
ytick={-11},
grid=minor,
]
\addplot expression[domain=-7.5:7.5]{0.05*(x+6)*x*(x-6)};
\end{axis}
\end{tikzpicture}
\caption{$a_3>0$}
\label{poly:fig:typical3}
\end{subfigure}
\hfill
\begin{subfigure}{\figurewidth}
\begin{tikzpicture}
\begin{axis}[
framed,
xmin=-10,xmax=10,
ymin=-10,ymax=10,
minor xtick={-8,-4,...,8},
minor ytick={-8,-4,...,8},
xtick={-11},
ytick={-11},
grid=minor,
]
\addplot expression[domain=-2.35:5.35,samples=100]{0.2*(x-5)*x*(x-3)*(x+2)};
\end{axis}
\end{tikzpicture}
\caption{$a_4>0$}
\label{poly:fig:typical4}
\end{subfigure}
\hfill
\begin{subfigure}{\figurewidth}
\begin{tikzpicture}
\begin{axis}[
framed,
xmin=-10,xmax=10,
ymin=-10,ymax=10,
minor xtick={-8,-4,...,8},
minor ytick={-8,-4,...,8},
xtick={-11},
ytick={-11},
grid=minor,
]
\addplot expression[domain=-5.5:6.3,samples=100]{0.01*(x+2)*x*(x-3)*(x+5)*(x-6)};
\end{axis}
\end{tikzpicture}
\caption{$a_5>0$}
\label{poly:fig:typical5}
\end{subfigure}
\end{widepage}
\caption{Graphs to illustrate typical curves of polynomial functions.}
\label{poly:fig:typical}
\end{figure}
%===================================
% Author: Hughes
% Date: March 2012
%===================================
\begin{doyouunderstand}
\begin{problem}
Use \cref{poly:ex:typical} and \cref{poly:fig:typical} to help you sketch
the graphs of polynomial functions that have negative leading coefficients| note
that there are many ways to do this! The intention with this problem
is to use your knowledge of transformations- in particular, \emph{reflections}-
to guide you.
\begin{shortsolution}
$a_1<0$:
\begin{tikzpicture}
\begin{axis}[
framed,
xmin=-10,xmax=10,
ymin=-10,ymax=10,
xtick={-11},
ytick={-11},
]
\addplot expression[domain=-10:8]{-(x+2)};
\end{axis}
\end{tikzpicture}
$a_2<0$
\begin{tikzpicture}
\begin{axis}[
framed,
xmin=-10,xmax=10,
ymin=-10,ymax=10,
xtick={-11},
ytick={-11},
]
\addplot expression[domain=-4:4]{-(x^2-6)};
\end{axis}
\end{tikzpicture}
$a_3<0$
\begin{tikzpicture}
\begin{axis}[
framed,
xmin=-10,xmax=10,
ymin=-10,ymax=10,
xtick={-11},
ytick={-11},
]
\addplot expression[domain=-7.5:7.5]{-0.05*(x+6)*x*(x-6)};
\end{axis}
\end{tikzpicture}
$a_4<0$
\begin{tikzpicture}
\begin{axis}[
framed,
xmin=-10,xmax=10,
ymin=-10,ymax=10,
xtick={-11},
ytick={-11},
]
\addplot expression[domain=-2.35:5.35,samples=100]{-0.2*(x-5)*x*(x-3)*(x+2)};
\end{axis}
\end{tikzpicture}
$a_5<0$
\begin{tikzpicture}
\begin{axis}[
framed,
xmin=-10,xmax=10,
ymin=-10,ymax=10,
xtick={-11},
ytick={-11},
]
\addplot expression[domain=-5.5:6.3,samples=100]{-0.01*(x+2)*x*(x-3)*(x+5)*(x-6)};
\end{axis}
\end{tikzpicture}
\end{shortsolution}
\end{problem}
\end{doyouunderstand}
The main intention behind \cref{poly:ex:typical} was to provide sketches
of some typical polynomial functions. The graphs in \cref{poly:fig:typical}
do not have much detail| in \cref{poly:ex:detail} we study two polynomial
functions in much more depth.
%===================================
% Author: Hughes
% Date: August 2012
%===================================
\begin{pccexample}\label{poly:ex:detail}
Study the graphs of the polynomial functions $p$ and $q$ defined by the following
formulas:
\begin{multicols}{2}
\begin{enumerate}
\item $p(x)=\frac{1}{8}(x+6)(x+1)(x-5)$
\item $q(x)=\frac{x}{20}(x+4)(x-3)(x-6)$
\end{enumerate}
\end{multicols}
Describe the long-run behavior, the intervals of increase and decrease,
and the intervals of concavity of each function.
Determine if each function is odd, even, or neither.
\begin{pccsolution}
\begin{enumerate}
\item The first observation we note about the function $p$ is that
since it has three linear factors, the degree of $p$ is $3$. We
can illustrate this further by expanding the formula for $p(x)$
\[
p(x)=\frac{x^3}{8}+\frac{x^2}{4}-\frac{29x}{8}-\frac{15}{4}
\]
The curve $y=p(x)$ is graphed in \cref{poly:fig:detailed1}. There are
three zeros of $p$: $-6$, $-1$, and $5$.
In order to determine the long-rung behavior of $p$, we examine the leading
term of $p(x)$ which is $\frac{x^3}{8}$. If we view \cref{poly:fig:detailed1}
on a larger viewing window (imagine zooming out), then we can visualize that the overall
shape of the curve $y=p(x)$ will look like the curve $y=\frac{x^3}{8}$ (see \cref{poly:fig:oddpow}).
We can approximate the intervals of increase and decrease using
\cref{poly:fig:detailed1}. $p$ is increasing on (approximately) the
interval $(-\infty,-3.9)\cup (2.2,\infty)$ and decreasing on (approximately)
the interval $(-3.9,2.2)$.
We may similarly approximate the intervals of concavity: $p$ is concave down
on (approximately) the interval $(-\infty,-0.5)$ and is concave up on
(approximately) the interval $(-0.5,\infty)$.
Remember that all of the power functions in \cref{poly:ex:oddpow}
have \emph{odd} exponents and are \emph{odd} functions. Does it therefore
follow that since $p$ is a degree-$3$ polynomial and $3$ is an odd number,
that $p$ is an odd function? Let's evaluate $p(-x)$ to find out
\begin{align*}
p(-x) & =\frac{1}{8}(-x+6)(-x+1)(-x-5) \\
& \ne -p(x) \text{ or } p(x)
\end{align*}
We therefore conclude that $p$ is neither odd nor even; this is confirmed visually in
\cref{poly:fig:detailed1} since the curve $y=p(x)$ is not symmetric about the origin
nor about the vertical axis.
\begin{figure}[!htb]
\setlength{\figurewidth}{.4\textwidth}
\begin{subfigure}{\figurewidth}
\begin{tikzpicture}
\begin{axis}[
framed,
xmin=-10,xmax=10,
ymin=-10,ymax=10,
xtick={-8,-6,...,8},
minor xtick={-9,-7,...,9},
ytick={-8,-6,...,8},
minor ytick={-9,-7,...,9},
grid=major,
]
\addplot expression[domain=-7.0872:5.9608,samples=50]{1/8*(x+6)*(x+1)*(x-5)};
\addplot[soldot]coordinates{(-6,0)(-1,0)(5,0)};
\end{axis}
\end{tikzpicture}
\caption{$y=\frac{1}{8}(x+6)(x+1)(x-5)$}
\label{poly:fig:detailed1}
\end{subfigure}
\hfill
\begin{subfigure}{\figurewidth}
\begin{tikzpicture}
\begin{axis}[
framed,
xmin=-10,xmax=10,
ymin=-10,ymax=10,
xtick={-8,-6,...,8},
minor xtick={-9,-7,...,9},
ytick={-8,-6,...,8},
minor ytick={-9,-7,...,9},
grid=major,
]
\addplot expression[domain=-4.551:6.739,samples=50]{x/20*(x+4)*(x-3)*(x-6)};
\addplot[soldot]coordinates{(-4,0)(0,0)(3,0)(6,0)};
\end{axis}
\end{tikzpicture}
\caption{$y=\frac{x}{20}(x+4)(x-3)(x-6)$}
\label{poly:fig:detailed2}
\end{subfigure}
\caption{The functions $p$ and $q$.}
\label{poly:fig:detailed}
\end{figure}
\item The degree of $q$ is $4$ since it has four linear factors. $q$ has
four zeros: $-4$, $0$, $3$, and $6$. Furthermore,
me may expand the formula for $q(x)$
\[
q(x)=\frac{x^4}{20}-\frac{x^3}{4}-\frac{9x^2}{10}+\frac{18x}{5}
\]
which allows to see that the leading term of $q$ is $\frac{x^4}{20}$. If
we imagine viewing \cref{poly:fig:detailed2} on a larger viewing
window, then we can visualize that the overall shape of the curve $y=q(x)$
will look like $y=\frac{x^4}{20}$ (see \cref{poly:fig:evenpow}).
Using \cref{poly:fig:detailed2} as a guide, we see that $q$ is increasing
on (approximately) the interval $(-2.2,1.5)\cup (4.8,\infty)$ and decreasing
on (approximately) the interval $(-\infty,-2.2)\cup (1.5,4.8)$.
We can also approximate the intervals of concavity: $q$ is concave up on
(approximately) the interval $(-\infty,-1)\cup (3.1,\infty)$, and is concave
down on (approximately) the interval $(-1,3.1)$.
The power functions in \cref{poly:ex:evenpow} have \emph{even}
exponents and are \emph{even} functions. Since $q$ has degree $4$, which
is an even number, does it therefore follow that $q$ is an even function?
Let's evaluate $q(-x)$ to find out
\begin{align*}
q(-x) & =-\frac{x}{20}(-x+4)(-x-3)(-x-6) \\
& \ne q(x) \text{ or } -q(x)
\end{align*}
We conclude that $q$ is neither even nor odd; this is confirmed visually in
\cref{poly:fig:detailed2}, since the curve $y=q(x)$ is not symmetric about
the vertical axis nor about the origin.
\end{enumerate}
\end{pccsolution}
\end{pccexample}
The polynomial functions in \cref{poly:ex:detail} had many differences,
but they also had one feature in common| at each of their zeros, the
curve of the function \emph{crossed through} the horizontal axis. Not
all polynomial functions exhibit this behavior as we shall see in
the next example.
%===================================
% Author: Hughes
% Date: May 2011
%===================================
\begin{pccexample}[Multiple zeros]
Consider the polynomial functions $p$, $q$, and $r$ which are
graphed in \cref{poly:fig:moremultiple}.
The formulas for $p$, $q$, and $r$ are as follows
\begin{align*}
p(x) & =(x-3)^2(x+4)^2 \\
q(x) & =x(x+2)^2(x-1)^2(x-3) \\
r(x) & =x(x-3)^3(x+1)^2
\end{align*}
Find the degree of $p$, $q$, and $r$, and decide if the functions bounce off or cut
through the horizontal axis at each of their zeros.
\begin{pccsolution}
The degree of $p$ is 4. Referring to \cref{poly:fig:bouncep},
the curve bounces off the horizontal axis at both zeros, $3$ and $4$.
The degree of $q$ is 6. Referring to \cref{poly:fig:bounceq},
the curve bounces off the horizontal axis at $-2$ and $1$, and cuts
through the horizontal axis at $0$ and $3$.
The degree of $r$ is 6. Referring to \cref{poly:fig:bouncer},
the curve bounces off the horizontal axis at $-1$, and cuts through
the horizontal axis at $0$ and at $3$, although is flattened immediately to the left and right of $3$.
\end{pccsolution}
\end{pccexample}
\setlength{\figurewidth}{0.25\textwidth}
\begin{figure}[!htb]
\begin{subfigure}{\figurewidth}
\begin{tikzpicture}
\begin{axis}[
xmin=-6,xmax=5,
ymin=-30,ymax=200,
xtick={-4,-2,...,4},
]
\addplot expression[domain=-5.63733:4.63733,samples=50]{(x-3)^2*(x+4)^2};
\addplot[soldot]coordinates{(3,0)(-4,0)};
\end{axis}
\end{tikzpicture}
\caption{$y=p(x)$}
\label{poly:fig:bouncep}
\end{subfigure}
\hfill
\begin{subfigure}{\figurewidth}
\begin{tikzpicture}
\begin{axis}[
xmin=-3,xmax=4,
xtick={-2,...,3},
ymin=-60,ymax=40,
]
\addplot+[samples=50] expression[domain=-2.49011:3.11054]{x*(x+2)^2*(x-1)^2*(x-3)};
\addplot[soldot]coordinates{(-2,0)(0,0)(1,0)(3,0)};
\end{axis}
\end{tikzpicture}
\caption{$y=q(x)$}
\label{poly:fig:bounceq}
\end{subfigure}
\hfill
\begin{subfigure}{\figurewidth}
\begin{tikzpicture}
\begin{axis}[
xmin=-2,xmax=4,
xtick={-1,...,3},
ymin=-40,ymax=40,
]
\addplot expression[domain=-1.53024:3.77464,samples=50]{x*(x-3)^3*(x+1)^2};
\addplot[soldot]coordinates{(-1,0)(0,0)(3,0)};
\end{axis}
\end{tikzpicture}
\caption{$y=r(x)$}
\label{poly:fig:bouncer}
\end{subfigure}
\caption{}
\label{poly:fig:moremultiple}
\end{figure}
\begin{pccdefinition}[Multiple zeros]\label{poly:def:multzero}
Let $p$ be a polynomial that has a repeated linear factor $(x-a)^n$. Then we say
that $p$ has a multiple zero at $a$ of multiplicity $n$ and
\begin{itemize}
\item if the factor $(x-a)$ is repeated an even number of times, the graph of $y=p(x)$ does not
cross the $x$ axis at $a$, but `bounces' off the horizontal axis at $a$.
\item if the factor $(x-a)$ is repeated an odd number of times, the graph of $y=p(x)$ crosses the
horizontal axis at $a$, but it looks `flattened' there
\end{itemize}
If $n=1$, then we say that $p$ has a \emph{simple} zero at $a$.
\end{pccdefinition}
%===================================
% Author: Hughes
% Date: May 2011
%===================================
\begin{pccexample}[Find a formula]
Find formulas for the polynomial functions, $p$ and $q$, graphed in \cref{poly:fig:findformulademoboth}.
\begin{figure}[!htb]
\begin{subfigure}{.45\textwidth}
\begin{tikzpicture}
\begin{axis}[framed,
xmin=-5,xmax=5,
ymin=-10,ymax=10,
xtick={-4,-2,...,4},
minor xtick={-3,-1,...,3},
ytick={-8,-6,...,8},
grid=both]
\addplot expression[domain=-3.25842:2.25842,samples=50]{-x*(x-2)*(x+3)*(x+1)};
\addplot[soldot]coordinates{(1,8)}node[axisnode,inner sep=.35cm,anchor=west]{$(1,8)$};
\addplot[soldot]coordinates{(-3,0)(-1,0)(0,0)(2,0)};
\end{axis}
\end{tikzpicture}
\caption{$p$}
\label{poly:fig:findformulademo}
\end{subfigure}
\hfill
\begin{subfigure}{.45\textwidth}
\begin{tikzpicture}
\begin{axis}[framed,
xmin=-5,xmax=5,
ymin=-10,ymax=10,
xtick={-4,-2,...,4},
minor xtick={-3,-1,...,3},
ytick={-8,-6,...,8},
grid=both]
\addplot expression[domain=-4.33:4.08152]{-.25*(x+2)^2*(x-3)};
\addplot[soldot]coordinates{(2,4)}node[axisnode,anchor=south west]{$(2,4)$};
\addplot[soldot]coordinates{(-2,0)(3,0)};
\end{axis}
\end{tikzpicture}
\caption{$q$}
\label{poly:fig:findformulademo1}
\end{subfigure}
\caption{}
\label{poly:fig:findformulademoboth}
\end{figure}
\begin{pccsolution}
\begin{enumerate}
\item We begin by noting that the horizontal intercepts of $p$ are $(-3,0)$, $(-1,0)$, $(0,0)$ and $(2,0)$.
We also note that each zero is simple (multiplicity $1$).
If we assume that $p$ has no other zeros, then we can start by writing
\begin{align*}
p(x) & =(x+3)(x+1)(x-0)(x-2) \\
& =x(x+3)(x+1)(x-2) \\
\end{align*}
According to \cref{poly:fig:findformulademo}, the point $(1,8)$ lies
on the curve $y=p(x)$.
Let's check if the formula we have written satisfies this requirement
\begin{align*}
p(1) & = (1)(4)(2)(-1) \\
& = -8
\end{align*}
which is clearly not correct| it is close though. We can correct this by
multiplying $p$ by a constant $k$; so let's assume that
\[
p(x)=kx(x+3)(x+1)(x-2)
\]
Then $p(1)=-8k$, and if this is to equal $8$, then $k=-1$. Therefore
the formula for $p(x)$ is
\[
p(x)=-x(x+3)(x+1)(x-2)
\]
\item The function $q$ has a zero at $-2$ of multiplicity $2$, and zero of
multiplicity $1$ at $3$ (so $3$ is a simple zero of $q$); we can therefore assume that $q$ has the form
\[
q(x)=k(x+2)^2(x-3)
\]