We read every piece of feedback, and take your input very seriously.
To see all available qualifiers, see our documentation.
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
I use map to execute some code.
############## Testing of IPyrallel on DEAP ################################### creator.create("FitnessMin", base.Fitness, weights=(-1.0,)) creator.create("Individual", gp.PrimitiveTree, fitness=creator.FitnessMin) toolbox = base.Toolbox() **#Using Parallell Processing import ipyparallel as ipp, time rc= ipp.Client() # pool = rc.load_balanced_view() rc[:].use_cloudpickle() pool= rc[:] toolbox.register("map", pool.map)** toolbox.register("expr", gp.genHalfAndHalf, pset=pset, min_=1, max_=2) toolbox.register("individual", tools.initIterate, creator.Individual, toolbox.expr) toolbox.register("population", tools.initRepeat, list, toolbox.individual) toolbox.register("compile", gp.compile, pset=pset) def evalSymbReg(individual, points): func = toolbox.compile(expr=individual) # Transform the tree expression in a callable function # and the real function : x**4 + x**3 + x**2 + x sqerrors = ((func(x) - x**4 - x**3 - x**2 - x)**2 for x in points) return math.fsum(sqerrors) / len(points), toolbox.register("evaluate", evalSymbReg, points=[x/10. for x in range(-10,10)]) toolbox.register("select", tools.selTournament, tournsize=3) toolbox.register("mate", gp.cxOnePoint) toolbox.register("expr_mut", gp.genFull, min_=0, max_=2) toolbox.register("mutate", gp.mutUniform, expr=toolbox.expr_mut, pset=pset) toolbox.decorate("mate", gp.staticLimit(key=operator.attrgetter("height"), max_value=17)) toolbox.decorate("mutate", gp.staticLimit(key=operator.attrgetter("height"), max_value=17)) def main(): random.seed(318) pop = toolbox.population(n=300) hof = tools.HallOfFame(1) stats_fit = tools.Statistics(lambda ind: ind.fitness.values) stats_size = tools.Statistics(len) mstats = tools.MultiStatistics(fitness=stats_fit, size=stats_size) mstats.register("avg", np.mean) mstats.register("std", np.std) mstats.register("min", np.min) mstats.register("max", np.max) pop, log = algorithms.eaSimple(pop, toolbox, 0.5, 0.1, 40, stats=mstats, halloffame=hof, verbose=True) # print log return pop, log, hof
I got this error :
--------------------------------------------------------------------------- TypeError Traceback (most recent call last) <ipython-input-11-978da9be5b87> in <module>() 1 if __name__ == "__main__": ----> 2 pop, log, hof= main() <ipython-input-10-6ff69ab06682> in main() 15 16 pop, log = algorithms.eaSimple(pop, toolbox, 0.5, 0.1, 40, stats=mstats, ---> 17 halloffame=hof, verbose=True) 18 # print log 19 return pop, log, hof D:\_devs\Python01\Anaconda27\lib\site-packages\deap\algorithms.pyc in eaSimple(population, toolbox, cxpb, mutpb, ngen, stats, halloffame, verbose) 145 # Evaluate the individuals with an invalid fitness 146 invalid_ind = [ind for ind in population if not ind.fitness.valid] --> 147 fitnesses = toolbox.map(toolbox.evaluate, invalid_ind) 148 for ind, fit in zip(invalid_ind, fitnesses): 149 ind.fitness.values = fit <decorator-gen-141> in map(self, f, *sequences, **kwargs) D:\_devs\Python01\Anaconda27\lib\site-packages\ipyparallel\client\view.pyc in sync_results(f, self, *args, **kwargs) 48 self._in_sync_results = True 49 try: ---> 50 ret = f(self, *args, **kwargs) 51 finally: 52 self._in_sync_results = False D:\_devs\Python01\Anaconda27\lib\site-packages\ipyparallel\client\view.pyc in map(self, f, *sequences, **kwargs) 613 assert len(sequences) > 0, "must have some sequences to map onto!" 614 pf = ParallelFunction(self, f, block=block, **kwargs) --> 615 return pf.map(*sequences) 616 617 @sync_results D:\_devs\Python01\Anaconda27\lib\site-packages\ipyparallel\client\remotefunction.pyc in map(self, *sequences) 283 and mismatched sequence lengths will be padded with None. 284 """ --> 285 return self(*sequences, __ipp_mapping=True) 286 287 __all__ = ['remote', 'parallel', 'RemoteFunction', 'ParallelFunction'] <decorator-gen-131> in __call__(self, *sequences, **kwargs) D:\_devs\Python01\Anaconda27\lib\site-packages\ipyparallel\client\remotefunction.pyc in sync_view_results(f, self, *args, **kwargs) 74 view = self.view 75 if view._in_sync_results: ---> 76 return f(self, *args, **kwargs) 77 view._in_sync_results = True 78 try: D:\_devs\Python01\Anaconda27\lib\site-packages\ipyparallel\client\remotefunction.pyc in __call__(self, *sequences, **kwargs) 257 view = self.view if balanced else client[t] 258 with view.temp_flags(block=False, **self.flags): --> 259 ar = view.apply(f, *args) 260 ar.owner = False 261 D:\_devs\Python01\Anaconda27\lib\site-packages\ipyparallel\client\view.pyc in apply(self, f, *args, **kwargs) 209 ``f(*args, **kwargs)``. 210 """ --> 211 return self._really_apply(f, args, kwargs) 212 213 def apply_async(self, f, *args, **kwargs): <decorator-gen-140> in _really_apply(self, f, args, kwargs, targets, block, track) D:\_devs\Python01\Anaconda27\lib\site-packages\ipyparallel\client\view.pyc in sync_results(f, self, *args, **kwargs) 48 self._in_sync_results = True 49 try: ---> 50 ret = f(self, *args, **kwargs) 51 finally: 52 self._in_sync_results = False <decorator-gen-139> in _really_apply(self, f, args, kwargs, targets, block, track) D:\_devs\Python01\Anaconda27\lib\site-packages\ipyparallel\client\view.pyc in save_ids(f, self, *args, **kwargs) 33 n_previous = len(self.client.history) 34 try: ---> 35 ret = f(self, *args, **kwargs) 36 finally: 37 nmsgs = len(self.client.history) - n_previous D:\_devs\Python01\Anaconda27\lib\site-packages\ipyparallel\client\view.pyc in _really_apply(self, f, args, kwargs, targets, block, track) 555 for ident in _idents: 556 future = self.client.send_apply_request(self._socket, f, args, kwargs, track=track, --> 557 ident=ident) 558 futures.append(future) 559 if track: D:\_devs\Python01\Anaconda27\lib\site-packages\ipyparallel\client\client.pyc in send_apply_request(self, socket, f, args, kwargs, metadata, track, ident) 1387 bufs = serialize.pack_apply_message(f, args, kwargs, 1388 buffer_threshold=self.session.buffer_threshold, -> 1389 item_threshold=self.session.item_threshold, 1390 ) 1391 D:\_devs\Python01\Anaconda27\lib\site-packages\ipyparallel\serialize\serialize.pyc in pack_apply_message(f, args, kwargs, buffer_threshold, item_threshold) 164 165 arg_bufs = list(chain.from_iterable( --> 166 serialize_object(arg, buffer_threshold, item_threshold) for arg in args)) 167 168 kw_keys = sorted(kwargs.keys()) D:\_devs\Python01\Anaconda27\lib\site-packages\ipyparallel\serialize\serialize.pyc in <genexpr>((arg,)) 164 165 arg_bufs = list(chain.from_iterable( --> 166 serialize_object(arg, buffer_threshold, item_threshold) for arg in args)) 167 168 kw_keys = sorted(kwargs.keys()) D:\_devs\Python01\Anaconda27\lib\site-packages\ipyparallel\serialize\serialize.pyc in serialize_object(obj, buffer_threshold, item_threshold) 110 buffers.extend(_extract_buffers(cobj, buffer_threshold)) 111 --> 112 buffers.insert(0, pickle.dumps(cobj, PICKLE_PROTOCOL)) 113 return buffers 114 D:\_devs\Python01\Anaconda27\lib\site-packages\cloudpickle\cloudpickle.pyc in dumps(obj, protocol) 627 628 cp = CloudPickler(file,protocol) --> 629 cp.dump(obj) 630 631 return file.getvalue() D:\_devs\Python01\Anaconda27\lib\site-packages\cloudpickle\cloudpickle.pyc in dump(self, obj) 105 self.inject_addons() 106 try: --> 107 return Pickler.dump(self, obj) 108 except RuntimeError as e: 109 if 'recursion' in e.args[0]: D:\_devs\Python01\Anaconda27\lib\pickle.pyc in dump(self, obj) 222 if self.proto >= 2: 223 self.write(PROTO + chr(self.proto)) --> 224 self.save(obj) 225 self.write(STOP) 226 D:\_devs\Python01\Anaconda27\lib\pickle.pyc in save(self, obj) 329 330 # Save the reduce() output and finally memoize the object --> 331 self.save_reduce(obj=obj, *rv) 332 333 def persistent_id(self, obj): D:\_devs\Python01\Anaconda27\lib\site-packages\cloudpickle\cloudpickle.pyc in save_reduce(self, func, args, state, listitems, dictitems, obj) 527 else: 528 save(func) --> 529 save(args) 530 write(pickle.REDUCE) 531 D:\_devs\Python01\Anaconda27\lib\pickle.pyc in save(self, obj) 284 f = self.dispatch.get(t) 285 if f: --> 286 f(self, obj) # Call unbound method with explicit self 287 return 288 D:\_devs\Python01\Anaconda27\lib\pickle.pyc in save_tuple(self, obj) 552 if n <= 3 and proto >= 2: 553 for element in obj: --> 554 save(element) 555 # Subtle. Same as in the big comment below. 556 if id(obj) in memo: D:\_devs\Python01\Anaconda27\lib\pickle.pyc in save(self, obj) 284 f = self.dispatch.get(t) 285 if f: --> 286 f(self, obj) # Call unbound method with explicit self 287 return 288 D:\_devs\Python01\Anaconda27\lib\site-packages\cloudpickle\cloudpickle.pyc in save_function(self, obj, name) 203 or getattr(obj.__code__, 'co_filename', None) == '<stdin>' 204 or themodule is None): --> 205 self.save_function_tuple(obj) 206 return 207 else: D:\_devs\Python01\Anaconda27\lib\site-packages\cloudpickle\cloudpickle.pyc in save_function_tuple(self, func) 251 252 # save the rest of the func data needed by _fill_function --> 253 save(f_globals) 254 save(defaults) 255 save(dct) D:\_devs\Python01\Anaconda27\lib\pickle.pyc in save(self, obj) 284 f = self.dispatch.get(t) 285 if f: --> 286 f(self, obj) # Call unbound method with explicit self 287 return 288 D:\_devs\Python01\Anaconda27\lib\pickle.pyc in save_dict(self, obj) 653 654 self.memoize(obj) --> 655 self._batch_setitems(obj.iteritems()) 656 657 dispatch[DictionaryType] = save_dict D:\_devs\Python01\Anaconda27\lib\pickle.pyc in _batch_setitems(self, items) 685 for k, v in tmp: 686 save(k) --> 687 save(v) 688 write(SETITEMS) 689 elif n: D:\_devs\Python01\Anaconda27\lib\pickle.pyc in save(self, obj) 329 330 # Save the reduce() output and finally memoize the object --> 331 self.save_reduce(obj=obj, *rv) 332 333 def persistent_id(self, obj): D:\_devs\Python01\Anaconda27\lib\site-packages\cloudpickle\cloudpickle.pyc in save_reduce(self, func, args, state, listitems, dictitems, obj) 545 546 if state is not None: --> 547 save(state) 548 write(pickle.BUILD) 549 D:\_devs\Python01\Anaconda27\lib\pickle.pyc in save(self, obj) 284 f = self.dispatch.get(t) 285 if f: --> 286 f(self, obj) # Call unbound method with explicit self 287 return 288 D:\_devs\Python01\Anaconda27\lib\pickle.pyc in save_dict(self, obj) 653 654 self.memoize(obj) --> 655 self._batch_setitems(obj.iteritems()) 656 657 dispatch[DictionaryType] = save_dict D:\_devs\Python01\Anaconda27\lib\pickle.pyc in _batch_setitems(self, items) 685 for k, v in tmp: 686 save(k) --> 687 save(v) 688 write(SETITEMS) 689 elif n: D:\_devs\Python01\Anaconda27\lib\pickle.pyc in save(self, obj) 329 330 # Save the reduce() output and finally memoize the object --> 331 self.save_reduce(obj=obj, *rv) 332 333 def persistent_id(self, obj): D:\_devs\Python01\Anaconda27\lib\site-packages\cloudpickle\cloudpickle.pyc in save_reduce(self, func, args, state, listitems, dictitems, obj) 545 546 if state is not None: --> 547 save(state) 548 write(pickle.BUILD) 549 D:\_devs\Python01\Anaconda27\lib\pickle.pyc in save(self, obj) 284 f = self.dispatch.get(t) 285 if f: --> 286 f(self, obj) # Call unbound method with explicit self 287 return 288 D:\_devs\Python01\Anaconda27\lib\pickle.pyc in save_tuple(self, obj) 566 write(MARK) 567 for element in obj: --> 568 save(element) 569 570 if id(obj) in memo: D:\_devs\Python01\Anaconda27\lib\pickle.pyc in save(self, obj) 284 f = self.dispatch.get(t) 285 if f: --> 286 f(self, obj) # Call unbound method with explicit self 287 return 288 D:\_devs\Python01\Anaconda27\lib\pickle.pyc in save_dict(self, obj) 653 654 self.memoize(obj) --> 655 self._batch_setitems(obj.iteritems()) 656 657 dispatch[DictionaryType] = save_dict D:\_devs\Python01\Anaconda27\lib\pickle.pyc in _batch_setitems(self, items) 685 for k, v in tmp: 686 save(k) --> 687 save(v) 688 write(SETITEMS) 689 elif n: D:\_devs\Python01\Anaconda27\lib\pickle.pyc in save(self, obj) 329 330 # Save the reduce() output and finally memoize the object --> 331 self.save_reduce(obj=obj, *rv) 332 333 def persistent_id(self, obj): D:\_devs\Python01\Anaconda27\lib\site-packages\cloudpickle\cloudpickle.pyc in save_reduce(self, func, args, state, listitems, dictitems, obj) 545 546 if state is not None: --> 547 save(state) 548 write(pickle.BUILD) 549 D:\_devs\Python01\Anaconda27\lib\pickle.pyc in save(self, obj) 284 f = self.dispatch.get(t) 285 if f: --> 286 f(self, obj) # Call unbound method with explicit self 287 return 288 D:\_devs\Python01\Anaconda27\lib\pickle.pyc in save_dict(self, obj) 653 654 self.memoize(obj) --> 655 self._batch_setitems(obj.iteritems()) 656 657 dispatch[DictionaryType] = save_dict D:\_devs\Python01\Anaconda27\lib\pickle.pyc in _batch_setitems(self, items) 685 for k, v in tmp: 686 save(k) --> 687 save(v) 688 write(SETITEMS) 689 elif n: D:\_devs\Python01\Anaconda27\lib\pickle.pyc in save(self, obj) 284 f = self.dispatch.get(t) 285 if f: --> 286 f(self, obj) # Call unbound method with explicit self 287 return 288 D:\_devs\Python01\Anaconda27\lib\pickle.pyc in save_dict(self, obj) 653 654 self.memoize(obj) --> 655 self._batch_setitems(obj.iteritems()) 656 657 dispatch[DictionaryType] = save_dict D:\_devs\Python01\Anaconda27\lib\pickle.pyc in _batch_setitems(self, items) 684 write(MARK) 685 for k, v in tmp: --> 686 save(k) 687 save(v) 688 write(SETITEMS) D:\_devs\Python01\Anaconda27\lib\pickle.pyc in save(self, obj) 304 reduce = getattr(obj, "__reduce_ex__", None) 305 if reduce: --> 306 rv = reduce(self.proto) 307 else: 308 reduce = getattr(obj, "__reduce__", None) TypeError: can't pickle member_descriptor objects
The text was updated successfully, but these errors were encountered:
Are you able to reduce this to an MRE @arita37?
Sorry, something went wrong.
The error that the traceback shows should not appear anymore thanks to #262. @arita37 can you try running your code again?
I think we can just go ahead and close this, @pierreglaser.
No branches or pull requests
I use map to execute some code.
I got this error :
The text was updated successfully, but these errors were encountered: