-
Notifications
You must be signed in to change notification settings - Fork 0
/
dan.py
391 lines (300 loc) · 16.5 KB
/
dan.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
import json
import random
import time
from collections import defaultdict
from copy import deepcopy
from math import ceil
import numpy as np
import torch
from tqdm import tqdm
from synonym_retrieval import SynonymRetrieval
from encoder_base import BaseFNN
######################################################
######################################################
################## FNN BNE #################
######################################################
######################################################
class EncoderDAN(BaseFNN):
def __init__(self, **kwargs):
super().__init__(**kwargs)
def batch_step(self, positive_samples_batch, negative_name_samples, normalize=True, train=True):
losses = {}
# determine which embeddings to sample everything from that's not an anchor name
train_vectors = self.sampling.train_embeddings.norm_vectors if normalize else self.sampling.train_embeddings.vectors
if train:
anchor_embeddings = self.sampling.train_embeddings
else:
anchor_embeddings = self.sampling.validation_embeddings
prototype_embeddings = self.sampling.pretrained_prototype_embeddings
if train:
# set model back to train mode if batchnorm is used
self.model.train()
# clear gradients w.r.t. parameters
self.optimizer.zero_grad()
batch_len = len(positive_samples_batch)
################################################
##### FIRST COLLECT DATA ########
################################################
anchor_name_batch = []
grounding_batch = []
for (concept, anchor, positive) in positive_samples_batch:
# anchor
anchor_name_idx = anchor_embeddings.items[anchor]
if normalize:
anchor_vector = anchor_embeddings.norm_vectors[anchor_name_idx]
else:
anchor_vector = anchor_embeddings.vectors[anchor_name_idx]
anchor_name_batch.append(anchor_vector)
# grounding
concept_idx = prototype_embeddings.items[concept]
if normalize:
concept_vector = prototype_embeddings.norm_vectors[concept_idx]
else:
concept_vector = prototype_embeddings.vectors[concept_idx]
##### crucial step: averaging concept prototype and pretrained anchor #####
grounding_vector = np.average([concept_vector, anchor_vector], axis=0)
###########################################################################
grounding_batch.append(grounding_vector)
input_anchor_name_batch = torch.FloatTensor(np.array(anchor_name_batch)).to(self.device).reshape(batch_len,
self.input_size)
online_anchor_name_batch = self.model(input_anchor_name_batch)
if train:
assert self.model.training
################################################
##### SEMANTIC SIMILARITY ########
################################################
positive_name_batch = []
for (concept, anchor, positive) in positive_samples_batch:
positive_name_idx = self.sampling.train_embeddings.items[positive]
positive_vector = train_vectors[positive_name_idx]
positive_name_batch.append(positive_vector)
input_positive_name_batch = torch.FloatTensor(np.array(positive_name_batch)).to(self.device).reshape(
batch_len, self.input_size)
online_positive_name_batch = self.model(input_positive_name_batch)
positive_name_distance = self.positive_distance(online_anchor_name_batch, online_positive_name_batch)
losses['positive_name_distance'] = positive_name_distance
negative_name_batch = []
for (concept, anchor, positive) in positive_samples_batch:
negative_name_vectors = []
for negative in negative_name_samples[anchor]:
negative_name_idx = self.sampling.train_embeddings.items[negative]
negative_vector = train_vectors[negative_name_idx]
negative_name_vectors.append(negative_vector)
negative_name_batch += negative_name_vectors
input_negative_name_batch = torch.FloatTensor(np.array(negative_name_batch)).to(self.device).reshape(
-1, self.input_size)
online_negative_name_batch = self.model(input_negative_name_batch).reshape(
batch_len, self.amount_negative_names, self.output_size)
negative_name_distance = self.negative_distance(online_anchor_name_batch, online_negative_name_batch)
triplet_name = self.triplet_loss(positive_name_distance, negative_name_distance)
losses['negative_name_distance'] = negative_name_distance
losses['semantic_similarity'] = triplet_name
######################################################
##### CONTEXTUAL MEANINGFULNESS ########
######################################################
losses['contextual'] = self.pretrained_loss(online_anchor_name_batch, input_anchor_name_batch)
######################################################
##### CONCEPTUAL GROUNDING ########
######################################################
grounding_batch = torch.FloatTensor(np.array(grounding_batch)).to(self.device).reshape(-1, self.input_size)
losses['grounding'] = self.pretrained_loss(online_anchor_name_batch, grounding_batch)
################################################
##### MULTI-TASK LOSS ########
################################################
loss = self.combined_loss(losses)
losses['loss'] = loss
if train:
# getting gradients w.r.t. parameters
loss.backward()
# updating parameters
self.optimizer.step()
losses = {k: v.item() for k, v in losses.items()}
return losses
@staticmethod
def process_losses(losses):
avg_losses = defaultdict(list)
for loss_dict in losses:
for loss_type, loss in loss_dict.items():
avg_losses[loss_type].append(loss)
avg_losses = {k: np.mean(v) for k, v in avg_losses.items()}
return avg_losses
def train(self, include_validation=True, stopping_criterion=True, random_neg_sampling=False,
amount_negative_names=1, reinitialize=False, normalize=True, verbose=True, update_iteration=100, outfile=''):
if reinitialize:
self.reinitialize_model()
self.loss_cache = defaultdict(dict)
self.stopping_criterion_cache = {}
self.amount_negative_names = amount_negative_names
assert self.amount_negative_names
positive_train_samples = self.sampling.positive_sampling(validation=False)
positive_validation_samples = self.sampling.positive_sampling(validation=True)
stopping_criterion_cache = {}
if stopping_criterion:
self.num_epochs = 1000
torch.requires_grad = True
# iterate over epochs
start = time.time()
for epoch in tqdm(range(self.num_epochs), total=self.num_epochs, disable=True):
# determine epoch ref
if reinitialize:
epoch_ref = epoch
else:
epoch_ref = max(self.loss_cache) + 1 if self.loss_cache else 1
print('Started epoch {}'.format(epoch_ref))
print('Train negative sampling...')
embeddings = self.extract_online_dan_embeddings(prune=True, normalize=normalize)
self.sampling.load_online_negative_embeddings(embeddings, prune=True)
references = {anchor: concept for (concept, anchor, positive) in positive_train_samples}
negative_train_samples = self.sampling.negative_name_sampling(references, online=True, validation=False,
amount_negative=self.amount_negative_names,
verbose=True,
random_sampling = random_neg_sampling)
# iterate over shuffled batches
print('Training...')
train_losses = []
iteration = 0
random.shuffle(positive_train_samples)
for i in tqdm(range(0, len(positive_train_samples), self.batch_size), disable=not verbose):
batch = positive_train_samples[i: i + self.batch_size]
train_loss = self.batch_step(batch, negative_name_samples=negative_train_samples, normalize=normalize, train=True)
train_losses.append(train_loss)
iteration += 1
if verbose:
if iteration % update_iteration == 0:
avg_train_losses = self.process_losses(train_losses)
print('Iteration: {}. Average training losses: {}'.format(iteration, avg_train_losses))
# update training loss
avg_train_losses = self.process_losses(train_losses)
self.loss_cache[epoch_ref]['train'] = avg_train_losses
print('Epoch: {}. Average training losses: {}.'.format(epoch_ref, avg_train_losses))
# optionally calculate validation loss
if include_validation:
print('Validation negative sampling...')
embeddings = self.extract_online_dan_embeddings(prune=True, normalize=normalize)
self.sampling.load_online_negative_embeddings(embeddings, prune=True)
references = {anchor: concept for (concept, anchor, positive) in positive_validation_samples}
negative_validation_samples = self.sampling.negative_name_sampling(references, online=True, validation=True,
amount_negative=self.amount_negative_names,
verbose=True,
random_sampling=random_neg_sampling)
print('Validating...')
validation_losses = []
random.shuffle(positive_validation_samples)
for i in tqdm(range(0, len(positive_validation_samples), self.batch_size), disable=not verbose):
batch = positive_validation_samples[i: i + self.batch_size]
validation_loss = self.batch_step(batch, negative_name_samples=negative_validation_samples,
normalize=normalize, train=False)
validation_losses.append(validation_loss)
avg_validation_losses = self.process_losses(validation_losses)
self.loss_cache[epoch_ref]['validation'] = avg_validation_losses
print('Epoch: {}. Validation losses: {}.'.format(epoch_ref, avg_validation_losses))
# optionally calculate stopping criterion
print('Calculating validation mAP as stopping criterion...')
if stopping_criterion:
validation_mAP = self.stopping_criterion()
stopping_criterion_cache[epoch_ref] = validation_mAP
stop, best_checkpoint = self.stop_training(epoch_ref)
if stop:
self.best_checkpoint = best_checkpoint
data = {'losses': self.loss_cache,
'stopping_criterion': self.stopping_criterion_cache,
'best_checkpoint': best_checkpoint}
with open('{}.json'.format(outfile), 'w') as f:
json.dump(data, f)
return
# save intermediate results
if outfile:
data = {'losses': self.loss_cache,
'stopping_criterion': stopping_criterion_cache}
with open('{}.json'.format(outfile), 'w') as f:
json.dump(data, f)
self.save_model('{}_{}.cpt'.format(outfile, epoch_ref))
print('-------------------------------------------------------------------------------------------------')
print('-------------------------------------------------------------------------------------------------')
print('Finished training!')
print('Ran {} epochs. Final average training losses: {}.'.format(
max(self.loss_cache), self.loss_cache[max(self.loss_cache.keys())]
))
end = time.time()
print('Training time: {} seconds'.format(round(end-start, 2)))
def stop_training(self, epoch_ref):
# returns True if stopping criterion has been fulfilled
lookback_batch = 10
if epoch_ref <= lookback_batch:
return False, None
sorted_values = sorted(self.stopping_criterion_cache.items())
lookback = sorted_values[epoch_ref-lookback_batch:epoch_ref+1]
if lookback[-1][1] <= lookback[0][1]:
stop = True
best_checkpoint = sorted_values[np.argmax([x for _, x in sorted_values])][0]
else:
stop = False
best_checkpoint = None
return stop, best_checkpoint
def stopping_criterion(self):
metrics = self.synonym_retrieval_test(validation=True)
mAP = metrics['mAP']
return mAP
def extract_metrics(self, ranker, ranking, outfile=''):
metrics = {'mAP': ranker.mean_average_precision(ranking),
'Acc': ranker.ranking_accuracy(ranking),
'MRR': ranker.mean_reciprocal_rank(ranking)}
if outfile:
print('Saving...')
with open(outfile, 'w') as f:
json.dump(metrics, f)
return metrics
def synonym_retrieval_test(self, validation=False, baseline=False, outfile=''):
data = self.sampling.data
ontology = data['ontology']
if validation:
test = data['validation']
else:
test = data['test']
test_pairs = {reference: concept for (concept, reference, positive) in test}
ranker = SynonymRetrieval()
ranker.load_ontology(ontology)
if baseline:
train_embeddings = deepcopy(self.sampling.pretrained_name_embeddings)
else:
train_embeddings = self.extract_online_dan_embeddings(prune=False, normalize=True)
test_embeddings = deepcopy(train_embeddings)
ranker.load_train_vectors_object(train_embeddings)
ranker.load_test_vectors_object(test_embeddings)
test_ranking = ranker.synonym_retrieval_test(test_pairs)
instances, rankings = zip(*test_ranking)
metrics = self.extract_metrics(ranker, rankings, outfile=outfile)
return metrics
def synonym_retrieval_zeroshot(self, isolated=True, baseline=False, outfile=''):
data = self.sampling.data
ontology = data['ontology']
test_pairs = data['zero-shot']
ranker = SynonymRetrieval()
ranker.load_ontology(ontology)
if baseline:
train_embeddings = deepcopy(self.sampling.pretrained_name_embeddings)
else:
train_embeddings = self.extract_online_dan_embeddings(prune=False, normalize=True)
test_embeddings = deepcopy(train_embeddings)
ranker.load_train_vectors_object(train_embeddings)
ranker.load_test_vectors_object(test_embeddings)
test_ranking = ranker.synonym_retrieval_zeroshot(test_pairs, isolated=isolated)
instances, rankings = zip(*test_ranking)
metrics = self.extract_metrics(ranker, rankings, outfile=outfile)
return metrics
def synonym_retrieval_train(self, baseline=False, outfile=''):
data = self.sampling.data
ontology = data['ontology']
train = data['train']
train_pairs = {reference: concept for (concept, reference, positive) in train}
ranker = SynonymRetrieval()
ranker.load_ontology(ontology)
if baseline:
train_embeddings = deepcopy(self.sampling.pretrained_name_embeddings)
else:
train_embeddings = self.extract_online_dan_embeddings(prune=False, normalize=True)
ranker.load_train_vectors_object(train_embeddings)
train_ranking = ranker.synonym_retrieval_train(train_pairs)
instances, rankings = zip(*train_ranking)
metrics = self.extract_metrics(ranker, rankings, outfile=outfile)
return metrics