Skip to content

Latest commit

 

History

History
executable file
·
145 lines (115 loc) · 7.88 KB

README.md

File metadata and controls

executable file
·
145 lines (115 loc) · 7.88 KB

Differences between original repository and fork:

  • Compatibility with PyTorch >=2.5. (🔥)
  • Original pretrained models and converted ONNX models from GitHub releases page. (🔥)
  • Installation with requirements.txt file.
  • The wider_val.txt file for WIDERFace evaluation.
  • The following deprecations and errors has been fixed:
    • UserWarning: torch.meshgrid: in an upcoming release, it will be required to pass the indexing argument.
    • DeprecationWarning: 'np.float' is a deprecated alias for builtin 'float'.
    • FutureWarning: You are using 'torch.load' with 'weights_only=False'.
    • FutureWarning: Cython directive 'language_level' not set.
    • Cython Warning: Using deprecated NumPy API.
    • AttributeError: module 'numpy' has no attribute 'int'.
    • RuntimeError: result type Float can't be cast to the desired output type long int.
    • Fixed face bounding box drawing problem in the TensorRT example.
    • NameError: name 'warnings' is not defined.

Installation

pip install -r requirements.txt

Pretrained models

  • Download links:
Name Model Size (MB) Link SHA-256
YOLOv5-BlazeFace 0.5
4.4
PyTorch
ONNX
942997451c57981608d9e7eb7b0e964f2a83583b8add2409a2c5254a1f36f2d9
071cbb36cdb8d0d3dfb9305ba30f96c08a24342a4e835f48b4cc6bf1b185a564
YOLOv5n-0.5-Face 1.1
5.7
PyTorch
ONNX
9f7cdbcf5cd63f454c47b18e7400a69630b96a01efb7559367e91b6e962ad3bd
269eb1e54313f9d1f7941ed9939fa247767539bca5801fc7aa7895960e93ca43
YOLOv5n-Face 13.7
10.5
PyTorch
ONNX
794c94da54630f2ca66167fea25530c68133c61a2b14131b073c0d4064934e50
ee6ba4ccdc3c075d205c9703aec53a2aa3010c8d7fa08b0eff078e33a4b4fe6c
YOLOv5s-Face 54.4
30.9
PyTorch
ONNX
a594ade0f5e80f5cf15aef8997d285a3fb4b372a2af5262fbc6837d30318cda7
9083776982185402cfb3bd3cba8d453823068e72a0f9b0a6c6060439a850d9c5
YOLOv5m-Face 161.2
84.2
PyTorch
ONNX
ca90ccc1b76c06d330a501bdb2cba63d3740fd3ef39baea89c7acc602557a4a2
c7ea51072e5f5c1ead34be14b3f4a23f44477448c271bc161b99d122fa0d8f10
YOLOv5l-Face 356.4
181.7
PyTorch
ONNX
adfa3fbee5ba97ca86237cf8b45992aaea891ea481d59722da89bbd871a6a546
b8b13132e7dd609b82a7cf8ea76d7c6f7695cbd909dc77063e37166af0a12622
YOLOv5l-Face (non-original) 89.3
181.7
PyTorch
ONNX
7e20bf0c79888b230264e2b5d812a12a69c68bcf1a234b469f86c30d82bd6c2a
5340f05f54f3e22ca63234aa4f2622975fd23a62ccd656158f78c94dbeaa33f2
  • Evaluation results on WIDERFace dataset:
Name Easy Medium Hard GFLOPS Params(M)
YOLOv5-BlazeFace 90.4 88.7 78.0 2.6 0.182
YOLOv5n-0.5-Face 90.76 88.12 73.82 1.5 0.447
YOLOv5n-Face 93.61 91.52 80.53 5.6 1.726
YOLOv5s-Face 94.33 92.61 83.15 15.2 7.075
YOLOv5m-Face 95.30 93.76 85.28 48.2 21.063
YOLOv5l-Face 95.78 94.30 86.13 110.6 46.627
YOLOv5l-Face (non-original) 95.63 94.06 85.49 110.6 46.627

YOLOv5l-Face (non-original) model training took about 10.57 hours using NVIDIA RTX 4090. Results can be found in the yolov5l-face.txt file

Inference

python detect_face.py --weights weights/yolov5s-face.pt --source data/images/bus.jpg --save-img

WIDERFace evaluation

python test_widerface.py --weights weights/yolov5s-face.pt --dataset_folder data/widerface/val/images
cd widerface_evaluate
python setup.py build_ext --inplace
python evaluation.py

Export to ONNX format

pip install onnx onnxruntime
python export.py --weights weights/yolov5s-face.pt

Export to TensorRT format

pip install tensorrt pycuda
python export.py --weights weights/yolov5s-face.pt --onnx2trt

TensorRT Inference

python torch2trt/main.py --trt_path weights/yolov5s-face.trt --img_path data/images/bus.jpg

PyTorch vs TensorRT speed comparison

python torch2trt/speed.py --torch_path weights/yolov5s-face.pt --trt_path weights/yolov5s-face.trt

Training

  • Download WIDERFace training dataset.
  • Download WIDERFace validation dataset.
  • Download annotation files.
  • Move WIDERFace training images WIDER_train/images to data/widerface/tmp/train/images.
  • Move WIDERFace validation images WIDER_val/images to data/widerface/tmp/val/images.
  • Move training annotation file train/label.txt to data/widerface/tmp/train/label.txt.
  • Move validation annotation file val/label.txt to data/widerface/tmp/val/label.txt.
python data/train2yolo.py data/widerface/tmp/train data/widerface/train
python data/val2yolo.py data/widerface/tmp data/widerface/val
pip install tensorboard
  • Start training:
python train.py --data data/widerface.yaml --cfg models/yolov5n-0.5.yaml
python train.py --data data/widerface.yaml --cfg models/yolov5l.yaml --weights weights/yolov5l.pt
  • Resume training:
python train.py --data data/widerface.yaml --cfg models/yolov5n-0.5.yaml --resume
python train.py --data data/widerface.yaml --cfg models/yolov5l.yaml --resume