forked from bao-qian/lightsabers
-
Notifications
You must be signed in to change notification settings - Fork 0
/
infer.ss
240 lines (208 loc) · 7.29 KB
/
infer.ss
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
;; infer.ss
;; a type inferencer for simply typed lambda calculus
(load "pmatch.scm")
;; utilities
(define-syntax letv*
(syntax-rules ()
[(_ () body ...) (begin body ...)]
[(_ ([x0 v0] [x1 v1] ...) body ...)
(let-values ([x0 v0])
(letv* ([x1 v1] ...)
body ...))]))
(define fatal
(lambda (who . args)
(display who) (display ": ")
(for-each display args)
(display "\n")
(error 'infer "")))
(define add1
(lambda (x)
(+ x 1)))
;;;;;;;;;;;;;;;;;;;;;;;;;; types ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
(define var (lambda (v) (vector v)))
(define var? vector?)
(define ext (lambda (x v s) `((,x . ,v) . ,s)))
(define s0 '())
;;;;;;;;;;;;;;;;;;;;;;;; unification ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
(define walk
(lambda (x s)
(let ([slot (assq x s)])
(cond
[(not slot) x]
[(var? (cdr slot)) (walk (cdr slot) s)]
[else (cdr slot)]))))
(define occurs
(lambda (u v)
(cond
[(eq? u v) #t]
[(pair? v)
(or (occurs u (car v)) (occurs u (cdr v)))]
[else #f])))
(define unify
(lambda (u v s)
(let ([u (walk u s)]
[v (walk v s)])
(cond
[(eq? u v) s]
[(var? u) (and (not (occurs u v)) (ext u v s))]
[(var? v) (and (not (occurs v u)) (ext v u s))]
[(and (pair? u) (pair? v))
(let ((s^ (unify (car u) (car v) s)))
(and s^ (unify (cdr u) (cdr v) s^)))]
[(equal? u v) s]
[else #f]))))
(define reify
(lambda (x s)
(define name
(lambda (n)
(string->symbol
(string-append "t" (number->string n)))))
(define reify1
(lambda (x n s)
(let ((x (walk x s)))
(cond
[(pair? x)
(letv* ([(u n1 s1) (reify1 (car x) n s)]
[(v n2 s2) (reify1 (cdr x) n1 s1)])
(values (cons u v) n2 s2))]
[(var? x)
(let ([v* (name n)])
(values v* (add1 n) (ext x v* s)))]
[else (values x n s)]))))
(letv* ([(x* n* s*) (reify1 x 0 s)]) x*)))
;;;;;;;;;;;;;;;;;;;;;;;;;; environment ;;;;;;;;;;;;;;;;;;;;;;;;;;;
(define ext-env (lambda (x v s) `((,x . ,v) . ,s)))
(define lookup
(lambda (x env)
(let ((slot (assq x env)))
(cond
[(not slot) (error 'lookup "unbound variable ~a" x)]
[else (cdr slot)]))))
(define env0
`((zero? . (int -> bool))
(add1 . (int -> int))
(sub1 . (int -> int))
(= . (int -> (int -> bool)))
(<= . (int -> (int -> bool)))
(< . (int -> (int -> bool)))
(>= . (int -> (int -> bool)))
(> . (int -> (int -> bool)))
(* . (int -> (int -> int)))
(- . (int -> (int -> int)))
(+ . (int -> (int -> int)))))
;;;;;;;;;;;;;;;;;;;;;;;;;;; inferencer ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
(define infer
(lambda (exp)
(define infer1
(lambda (exp env s)
(pmatch exp
[,x (guard (number? x)) (values 'int s)]
[,x (guard (boolean? x)) (values 'bool s)]
[,x (guard (string? x)) (values 'string s)]
[,x (guard (symbol? x)) (values (lookup x env) s)]
[(if ,test ,conseq ,alt)
(letv* ([(t1 s1) (infer1 test env s)]
[(s1^) (unify t1 'bool s1)])
(cond
[s1^
(letv* ([(t2 s2) (infer1 conseq env s1^)]
[(t3 s3) (infer1 alt env s2)]
[(s4) (unify t2 t3 s3)])
(cond
[s4 (values t3 s4)]
[else
(fatal 'infer
"branches must have the same type \n\n"
" - expression: " exp "\n"
" - true branch type: " (reify t2 s3) "\n"
" - false branch type: " (reify t3 s3)) ]))]
[else
(fatal 'infer
"test is not of type bool \n\n"
"expression: " exp "\n"
"irritant: " test "\n"
"type: " (reify t1 s1) )]))]
[(lambda (,x) ,body)
(letv* ([(t1) (var x)]
[(env*) (ext-env x t1 env)]
[(t2 s^) (infer1 body env* s)])
(values `(,t1 -> ,t2) s^))]
[(,e1 ,e2)
(letv* ([(t1 s1) (infer1 e1 env s)]
[(t2 s2) (infer1 e2 env s1)]
[(t3) (var 't3)]
[(t4) (var 't4)]
[(s3) (unify t1 `(,t3 -> ,t4) s2)])
(cond
[(not s3)
(fatal 'infer
"trying to apply non-function:\n\n"
" - irritant: " e1 "\n"
" - type: " (reify t1 s1) )]
[else
(let ([s4 (unify t2 t3 s3)])
(cond
[(not s4)
(fatal 'infer
"wrong argument type: \n\n"
" - function: " e1 "\n"
" - function type: " (reify t1 s3) "\n"
" - expected type: " (reify t3 s3) "\n"
" - argument type: " (reify t2 s3) "\n"
" - argument: " e2 )]
[else
(values t4 s4)]))]))])))
(letv* ([(t s) (infer1 exp env0 s0)])
(reify t s))))
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; tests ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
; correct programs
(infer 1)
; => int
(infer #t)
; => bool
(infer '(lambda (v) v))
; => (t0 -> t0)
(infer '(lambda (f) (lambda (x) (f x))))
; => ((t0 -> t1) -> (t0 -> t1))
(infer '(lambda (f) (lambda (x) (f (f x)))))
; => ((t0 -> t0) -> (t0 -> t0))
(infer '((lambda (f) (lambda (x) (f (f x)))) add1))
; => (int -> int)
(infer '(if (zero? 1) #t #f))
; => bool
(infer '(lambda (f) (lambda (x) (f ((+ x) 1)))))
; => ((int -> t0) -> (int -> t0))
(infer '(lambda (m) (lambda (n) (lambda (f) (lambda (x) ((m (n f)) x))))))
; => ((t0 -> (t1 -> t2)) -> ((t3 -> t0) -> (t3 -> (t1 -> t2))))
(infer '((lambda (f) (f 1)) (lambda (v) v)))
; => int
(infer '(if (zero? 1) #f #t))
; => bool
(define S '(lambda (x) (lambda (y) (lambda (z) ((x z) (y z))))))
(define K '(lambda (x) (lambda (y) x)))
(infer S)
; => ((t0 -> (t1 -> t2)) -> ((t0 -> t1) -> (t0 -> t2)))
(infer `(,S ,K))
; => ((t0 -> t1) -> (t0 -> t0))
(infer `((,S ,K) ,K))
; => (t0 -> t0)
; incorrect programs
(infer '(lambda (f) (f f)))
;; infer: trying to apply function to wrong type argument:
;; - function: f
;; - function type: (t0 -> t1)
;; - expected type: t0
;; - argument type: (t0 -> t1)
;; - argument: f
(infer '(if (zero? 1) #t 1))
;; infer: branches of conditional must have the same type
;; - expression: (if (zero? 1) #t 1)
;; - true branch type: bool
;; - false branch type: int
(infer '((lambda (x) ((+ 1) x)) "hello"))
;; infer: trying to apply function to wrong type argument:
;; - function: (lambda (x) ((+ 1) x))
;; - function type: (int -> int)
;; - expected type: int
;; - argument type: string
;; - argument: hello