Skip to content

Latest commit

 

History

History
114 lines (85 loc) · 4.18 KB

File metadata and controls

114 lines (85 loc) · 4.18 KB

PyTorch ResNext101 32x16d inference

Description

This document has instructions for running ResNext101 32x16d inference.

Datasets

ImageNet

The ImageNet validation dataset is used to run ResNext101 32x16d accuracy tests.

Download and extract the ImageNet2012 dataset from http://www.image-net.org/, then move validation images to labeled subfolders, using the valprep.sh shell script

After running the data prep script, your folder structure should look something like this:

imagenet
└── val
    ├── ILSVRC2012_img_val.tar
    ├── n01440764
    │   ├── ILSVRC2012_val_00000293.JPEG
    │   ├── ILSVRC2012_val_00002138.JPEG
    │   ├── ILSVRC2012_val_00003014.JPEG
    │   ├── ILSVRC2012_val_00006697.JPEG
    │   └── ...
    └── ...

The folder that contains the val directory should be set as the DATASET_DIR (for example: export DATASET_DIR=/home/<user>/imagenet).

Quick Start Scripts

Script name Description
inference_realtime.sh Runs multi instance realtime inference using 4 cores per instance with synthetic data for the specified precision (fp32, avx-fp32, int8, avx-int8, bf16, or bf32).
inference_throughput.sh Runs multi instance batch inference using 1 instance per socket with synthetic data for the specified precision (fp32, avx-fp32m int8, avx-int8, bf16, or bf32).
accuracy.sh Measures the inference accuracy (providing a DATASET_DIR environment variable is required) for the specified precision (fp32, avx-fp32, int8, avx-int8, bf16, or bf32).

Note: The avx-int8 and avx-fp32 precisions run the same scripts as int8 and fp32, except that the DNNL_MAX_CPU_ISA environment variable is unset. The environment variable is otherwise set to DNNL_MAX_CPU_ISA=AVX512_CORE_AMX.

Follow the instructions to setup your bare metal environment on either Linux or Windows systems. Once all the setup is done, the Model Zoo can be used to run a quickstart script. Ensure that you have a clone of the Model Zoo Github repository.

git clone https://github.com/IntelAI/models.git

Run on Linux

Follow link to install Miniconda and build Pytorch, IPEX, TorchVison and Jemalloc.

  • Set Jemalloc Preload for better performance

    After Jemalloc setup, set the following environment variables.

    export LD_PRELOAD="<path to the jemalloc directory>/lib/libjemalloc.so":$LD_PRELOAD
    export MALLOC_CONF="oversize_threshold:1,background_thread:true,metadata_thp:auto,dirty_decay_ms:9000000000,muzzy_decay_ms:9000000000"
    
  • Set IOMP preload for better performance

    IOMP should be installed in your conda env. Set the following environment variables.

    export LD_PRELOAD=<path to the intel-openmp directory>/lib/libiomp5.so:$LD_PRELOAD
    
  • Set ENV to use AMX if you are using SPR

    export DNNL_MAX_CPU_ISA=AVX512_CORE_AMX
    
  • Run the model:

    cd models
    
    # Set environment variables
    export DATASET_DIR=<path_to_Imagenet_Dataset>
    export OUTPUT_DIR=<path to the directory where log files will be written>
    export PRECISION=<precision to run>
    
    # Run a quickstart script 
    bash quickstart/image_recognition/pytorch/resnext-32x16d/inference/cpu/inference_realtime.sh
    

Run on Windows

If not already setup, please follow instructions for environment setup on Windows.

Using Windows CMD.exe, run:

cd models

# Env vars
set DATASET_DIR=<path to the Imagenet Dataset>
set OUTPUT_DIR=<path to the directory where log files will be written>
set PRECISION=<precision to run>

#Run a quickstart script for fp32 precision(FP32 inference_realtime or inference_throughput or accuracy)
bash quickstart\image_recognition\pytorch\resnext-32x16d\inference\cpu\inference_realtime.sh

License

LICENSE