forked from tensorflow/models
-
Notifications
You must be signed in to change notification settings - Fork 0
/
controller_test.py
775 lines (659 loc) · 28 KB
/
controller_test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
# Copyright 2022 The Orbit Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Tests for orbit.controller."""
import os
from absl import logging
from absl.testing import parameterized
import numpy as np
from orbit import controller
from orbit import runner
from orbit import standard_runner
import tensorflow as tf
def create_model():
x = tf.keras.layers.Input(shape=(3,), name="input")
y = tf.keras.layers.Dense(4, name="dense")(x)
model = tf.keras.Model(x, y)
return model
def summaries_with_matching_keyword(keyword, summary_dir):
"""Returns summary protos matching given keyword from event file."""
matches = []
event_paths = tf.io.gfile.glob(os.path.join(summary_dir, "events*"))
for event in tf.compat.v1.train.summary_iterator(event_paths[-1]):
if event.summary is not None:
for value in event.summary.value:
if keyword in value.tag:
matches.append(event.summary)
return matches
def dataset_fn(ctx):
del ctx
inputs = np.zeros((10, 3), dtype=np.float32)
targets = np.ones((10, 4), dtype=np.float32)
dataset = tf.data.Dataset.from_tensor_slices((inputs, targets))
dataset = dataset.repeat(100)
dataset = dataset.batch(10, drop_remainder=True)
return dataset
class TestRunner(standard_runner.StandardTrainer,
standard_runner.StandardEvaluator):
"""Implements the training and evaluation APIs for the test model."""
def __init__(self, return_numpy=False):
self.strategy = tf.distribute.get_strategy()
self.model = create_model()
self.optimizer = tf.keras.optimizers.RMSprop(learning_rate=0.1)
self.global_step = self.optimizer.iterations
self.train_loss = tf.keras.metrics.Mean("train_loss", dtype=tf.float32)
self.eval_loss = tf.keras.metrics.Mean("eval_loss", dtype=tf.float32)
self.return_numpy = return_numpy
train_dataset = self.strategy.distribute_datasets_from_function(dataset_fn)
eval_dataset = self.strategy.distribute_datasets_from_function(dataset_fn)
standard_runner.StandardTrainer.__init__(self, train_dataset)
standard_runner.StandardEvaluator.__init__(self, eval_dataset)
def train_step(self, iterator):
def _replicated_step(inputs):
"""Replicated training step."""
inputs, targets = inputs
with tf.GradientTape() as tape:
outputs = self.model(inputs)
loss = tf.reduce_mean(tf.keras.losses.MSE(targets, outputs))
grads = tape.gradient(loss, self.model.variables)
self.optimizer.apply_gradients(zip(grads, self.model.variables))
self.train_loss.update_state(loss)
self.strategy.run(_replicated_step, args=(next(iterator),))
def train_loop_end(self):
train_loss = self.train_loss.result()
return {
"loss": train_loss.numpy() if self.return_numpy else train_loss,
}
def build_eval_dataset(self):
return self.strategy.distribute_datasets_from_function(dataset_fn)
def eval_begin(self):
self.eval_loss.reset_states()
def eval_step(self, iterator):
def _replicated_step(inputs):
"""Replicated evaluation step."""
inputs, targets = inputs
outputs = self.model(inputs)
loss = tf.reduce_mean(tf.keras.losses.MSE(targets, outputs))
self.eval_loss.update_state(loss)
self.strategy.run(_replicated_step, args=(next(iterator),))
def eval_end(self):
eval_loss = self.eval_loss.result()
return {
"eval_loss": eval_loss.numpy() if self.return_numpy else eval_loss,
}
class TestEvaluator(standard_runner.StandardEvaluator):
"""Implements the training and evaluation APIs for the test model."""
def __init__(self):
self.strategy = tf.distribute.get_strategy()
self.model = create_model()
eval_dataset = self.strategy.distribute_datasets_from_function(dataset_fn)
standard_runner.StandardEvaluator.__init__(self, eval_dataset)
def eval_reduce(self, state, output):
state.append(output)
return state
def eval_begin(self):
return []
def eval_step(self, iterator):
def _replicated_step(inputs):
"""Replicated evaluation step."""
inputs, targets = inputs
outputs = self.model(inputs)
loss = tf.reduce_mean(tf.keras.losses.MSE(targets, outputs))
return loss
per_replica_losses = self.strategy.run(
_replicated_step, args=(next(iterator),))
mean_loss = self.strategy.reduce(
tf.distribute.ReduceOp.MEAN, per_replica_losses, axis=None)
return mean_loss
def eval_end(self, outputs):
return {
"eval_loss": tf.reduce_mean(outputs),
}
class TestEvaluatorNoOutput(runner.AbstractEvaluator):
def evaluate(self, num_steps):
pass
class TestEvaluatorWithNestedSummary(standard_runner.StandardEvaluator):
"""Implements the training and evaluation APIs for the test model."""
def __init__(self):
self.strategy = tf.distribute.get_strategy()
self.model = create_model()
dataset = self.strategy.distribute_datasets_from_function(dataset_fn)
dataset2 = self.strategy.distribute_datasets_from_function(dataset_fn)
self.loss = tf.keras.metrics.Mean("loss", dtype=tf.float32)
self.accuracy = tf.keras.metrics.CategoricalAccuracy(
"accuracy", dtype=tf.float32)
self.loss2 = tf.keras.metrics.Mean("loss", dtype=tf.float32)
self.accuracy2 = tf.keras.metrics.CategoricalAccuracy(
"accuracy", dtype=tf.float32)
standard_runner.StandardEvaluator.__init__(
self, eval_dataset={
"dataset": dataset,
"dataset2": dataset2
})
def eval_step(self, iterator):
def _replicated_step(loss, accuracy, inputs):
"""Replicated evaluation step."""
inputs, targets = inputs
outputs = self.model(inputs)
loss.update_state(tf.keras.losses.MSE(targets, outputs))
accuracy.update_state(targets, outputs)
self.strategy.run(
lambda inputs: _replicated_step(self.loss, self.accuracy, inputs),
args=(next(iterator["dataset"]),))
self.strategy.run(
lambda inputs: _replicated_step(self.loss2, self.accuracy2, inputs),
args=(next(iterator["dataset2"]),))
def eval_end(self):
return {
"dataset": {
"loss": self.loss.result(),
"accuracy": self.accuracy.result()
},
"dataset2": {
"loss": self.loss2.result(),
"accuracy": self.accuracy2.result()
},
}
class TestTrainerWithSummaries(standard_runner.StandardTrainer):
"""A Trainer model with summaries for testing purposes."""
def __init__(self):
self.strategy = tf.distribute.get_strategy()
self.model = create_model()
self.optimizer = tf.keras.optimizers.RMSprop(learning_rate=0.1)
self.global_step = self.optimizer.iterations
self.train_loss = tf.keras.metrics.Mean("train_loss", dtype=tf.float32)
train_dataset = self.strategy.distribute_datasets_from_function(dataset_fn)
standard_runner.StandardTrainer.__init__(
self,
train_dataset,
options=standard_runner.StandardTrainerOptions(
use_tpu_summary_optimization=True))
def build_train_dataset(self):
return self.strategy.distribute_datasets_from_function(dataset_fn)
def train_step(self, iterator):
def _replicated_step(inputs):
"""Replicated training step."""
inputs, targets = inputs
with tf.GradientTape() as tape:
outputs = self.model(inputs)
loss = tf.reduce_mean(tf.keras.losses.MSE(targets, outputs))
tf.summary.scalar("loss", loss)
grads = tape.gradient(loss, self.model.variables)
self.optimizer.apply_gradients(zip(grads, self.model.variables))
self.train_loss.update_state(loss)
self.strategy.run(_replicated_step, args=(next(iterator),))
class ControllerTest(tf.test.TestCase, parameterized.TestCase):
def setUp(self):
super().setUp()
self.model_dir = self.get_temp_dir()
def test_no_checkpoint(self):
test_runner = TestRunner()
# No checkpoint manager and no strategy.
test_controller = controller.Controller(
trainer=test_runner,
evaluator=test_runner,
global_step=test_runner.global_step,
steps_per_loop=2,
summary_dir=os.path.join(self.model_dir, "summaries/train"),
eval_summary_dir=os.path.join(self.model_dir, "summaries/eval"))
test_controller.train_and_evaluate(
train_steps=10, eval_steps=2, eval_interval=6)
self.assertEqual(test_runner.global_step, 10)
# Loss and accuracy values should be written into summaries.
self.assertNotEmpty(
tf.io.gfile.listdir(os.path.join(self.model_dir, "summaries/train")))
self.assertNotEmpty(
summaries_with_matching_keyword(
"loss", os.path.join(self.model_dir, "summaries/train")))
self.assertNotEmpty(
tf.io.gfile.listdir(os.path.join(self.model_dir, "summaries/eval")))
self.assertNotEmpty(
summaries_with_matching_keyword(
"eval_loss", os.path.join(self.model_dir, "summaries/eval")))
# No checkpoint, so global step starts from 0.
test_runner.global_step.assign(0)
test_controller.train_and_evaluate(
train_steps=10, eval_steps=2, eval_interval=6)
self.assertEqual(test_runner.global_step, 10)
def test_no_checkpoint_and_summaries(self):
test_runner = TestRunner()
# No checkpoint + summary directories.
test_controller = controller.Controller(
trainer=test_runner,
evaluator=test_runner,
global_step=test_runner.global_step,
steps_per_loop=2)
test_controller.train_and_evaluate(
train_steps=10, eval_steps=2, eval_interval=6)
self.assertEqual(test_runner.global_step, 10)
def test_has_checkpoint_no_summaries(self):
test_runner = TestRunner()
# Has checkpoint, but no summary directories.
checkpoint = tf.train.Checkpoint(model=test_runner.model)
checkpoint_manager = tf.train.CheckpointManager(
checkpoint,
self.model_dir,
max_to_keep=None,
step_counter=test_runner.global_step)
test_controller = controller.Controller(
trainer=test_runner,
evaluator=test_runner,
global_step=test_runner.global_step,
checkpoint_manager=checkpoint_manager,
steps_per_loop=2)
test_controller.train_and_evaluate(
train_steps=10, eval_steps=2, eval_interval=6)
self.assertEqual(test_runner.global_step, 10)
# No summaries are saved.
self.assertEmpty(tf.io.gfile.glob(
os.path.join(checkpoint_manager.directory, "events.*")))
def test_has_checkpoint_eval_summary_only(self):
test_runner = TestRunner()
# Has checkpoint, but no summary directories.
checkpoint = tf.train.Checkpoint(model=test_runner.model)
checkpoint_manager = tf.train.CheckpointManager(
checkpoint,
self.model_dir,
max_to_keep=None,
step_counter=test_runner.global_step)
test_controller = controller.Controller(
trainer=test_runner,
evaluator=test_runner,
global_step=test_runner.global_step,
checkpoint_manager=checkpoint_manager,
eval_summary_dir=os.path.join(self.model_dir, "summaries/eval"),
steps_per_loop=2)
test_controller.train_and_evaluate(
train_steps=10, eval_steps=2, eval_interval=6)
self.assertEqual(test_runner.global_step, 10)
# Training summaries are not saved.
self.assertEmpty(tf.io.gfile.glob(
os.path.join(checkpoint_manager.directory, "events.*")))
# Evaluation summaries are saved.
self.assertNotEmpty(tf.io.gfile.glob(
os.path.join(self.model_dir, "summaries/eval/events.*")))
def test_restore_from_most_recent_checkpoint(self):
test_runner = TestRunner()
checkpoint = tf.train.Checkpoint(model=test_runner.model)
checkpoint_manager = tf.train.CheckpointManager(
checkpoint,
self.model_dir,
max_to_keep=None,
step_counter=test_runner.global_step,
checkpoint_interval=5)
test_controller = controller.Controller(
trainer=test_runner,
global_step=test_runner.global_step,
checkpoint_manager=checkpoint_manager,
eval_summary_dir=os.path.join(self.model_dir, "summaries/eval"),
steps_per_loop=5)
test_controller.train(20)
self.assertLen(checkpoint_manager.checkpoints, 4)
restored_path = test_controller.restore_checkpoint()
self.assertEqual(restored_path, checkpoint_manager.checkpoints[-1])
@parameterized.named_parameters(("return_numpy", True),
("return_tensor", False))
def test_train_and_evaluate(self, return_numpy):
test_runner = TestRunner(return_numpy=return_numpy)
checkpoint = tf.train.Checkpoint(
model=test_runner.model, optimizer=test_runner.optimizer)
checkpoint_manager = tf.train.CheckpointManager(
checkpoint,
self.model_dir,
max_to_keep=None,
step_counter=test_runner.global_step,
checkpoint_interval=10)
test_controller = controller.Controller(
trainer=test_runner,
evaluator=test_runner,
global_step=test_runner.global_step,
steps_per_loop=2,
summary_dir=os.path.join(self.model_dir, "summaries/train"),
checkpoint_manager=checkpoint_manager,
eval_summary_dir=os.path.join(self.model_dir, "summaries/eval"))
test_controller.train_and_evaluate(
train_steps=10, eval_steps=2, eval_interval=6)
# Checkpoints are saved.
self.assertNotEmpty(tf.io.gfile.glob(os.path.join(self.model_dir, "ckpt*")))
# Loss and accuracy values should be written into summaries.
self.assertNotEmpty(
tf.io.gfile.listdir(os.path.join(self.model_dir, "summaries/train")))
self.assertNotEmpty(
summaries_with_matching_keyword(
"loss", os.path.join(self.model_dir, "summaries/train")))
self.assertNotEmpty(
tf.io.gfile.listdir(os.path.join(self.model_dir, "summaries/eval")))
self.assertNotEmpty(
summaries_with_matching_keyword(
"eval_loss", os.path.join(self.model_dir, "summaries/eval")))
def test_train_only(self):
test_runner = TestRunner()
checkpoint = tf.train.Checkpoint(
model=test_runner.model, optimizer=test_runner.optimizer)
checkpoint_manager = tf.train.CheckpointManager(
checkpoint,
self.model_dir,
max_to_keep=None,
step_counter=test_runner.global_step,
checkpoint_interval=10)
test_controller = controller.Controller(
trainer=test_runner,
global_step=test_runner.global_step,
steps_per_loop=2,
summary_dir=os.path.join(self.model_dir, "summaries/train"),
checkpoint_manager=checkpoint_manager,
eval_summary_dir=os.path.join(self.model_dir, "summaries/eval"),
)
test_controller.train(steps=10)
# Checkpoints are saved.
self.assertNotEmpty(tf.io.gfile.glob(os.path.join(self.model_dir, "ckpt*")))
# Only train summaries are written.
self.assertNotEmpty(
tf.io.gfile.listdir(os.path.join(self.model_dir, "summaries/train")))
self.assertNotEmpty(
summaries_with_matching_keyword(
"loss", os.path.join(self.model_dir, "summaries/train")))
self.assertFalse(
tf.io.gfile.exists(os.path.join(self.model_dir, "summaries/eval")))
def test_evaluate_only(self):
test_runner = TestRunner()
checkpoint = tf.train.Checkpoint(model=test_runner.model)
checkpoint.save(os.path.join(self.model_dir, "ckpt"))
checkpoint_manager = tf.train.CheckpointManager(
checkpoint,
self.model_dir,
max_to_keep=None,
step_counter=test_runner.global_step)
test_controller = controller.Controller(
evaluator=test_runner,
global_step=test_runner.global_step,
checkpoint_manager=checkpoint_manager,
summary_dir=os.path.join(self.model_dir, "summaries/train"),
eval_summary_dir=os.path.join(self.model_dir, "summaries/eval"))
eval_results = test_controller.evaluate(steps=2)
# Only eval summaries are written
self.assertFalse(
tf.io.gfile.exists(os.path.join(self.model_dir, "summaries/train")))
self.assertNotEmpty(
tf.io.gfile.listdir(os.path.join(self.model_dir, "summaries/eval")))
self.assertNotEmpty(
summaries_with_matching_keyword(
"eval_loss", os.path.join(self.model_dir, "summaries/eval")))
self.assertIn("eval_loss", eval_results)
# Tests continuous eval with timeout and timeout_fn.
done_file = os.path.join(self.model_dir, "summaries/eval/Done")
def timeout_fn():
with tf.io.gfile.GFile(done_file, "w") as f:
f.write("DONE")
return True
test_controller = controller.Controller(
evaluator=test_runner,
global_step=test_runner.global_step,
checkpoint_manager=checkpoint_manager,
eval_summary_dir=os.path.join(self.model_dir, "summaries/eval"))
test_controller.evaluate_continuously(
timeout=1, timeout_fn=timeout_fn, steps=2)
self.assertNotEmpty(tf.io.gfile.glob(done_file))
def test_no_eval_steps(self):
test_runner = TestRunner()
checkpoint = tf.train.Checkpoint(model=test_runner.model)
checkpoint.save(os.path.join(self.model_dir, "ckpt"))
checkpoint_manager = tf.train.CheckpointManager(
checkpoint,
self.model_dir,
max_to_keep=None,
step_counter=test_runner.global_step)
test_controller = controller.Controller(
evaluator=test_runner,
global_step=test_runner.global_step,
checkpoint_manager=checkpoint_manager)
test_controller.evaluate()
def test_already_trained_model(self):
test_runner = TestRunner()
test_runner.global_step.assign(10)
checkpoint = tf.train.Checkpoint(
model=test_runner.model, optimizer=test_runner.optimizer)
checkpoint_manager = tf.train.CheckpointManager(
checkpoint,
self.model_dir,
max_to_keep=None,
step_counter=test_runner.global_step,
checkpoint_interval=10)
test_controller = controller.Controller(
trainer=test_runner,
global_step=test_runner.global_step,
steps_per_loop=2,
checkpoint_manager=checkpoint_manager)
# `global_step` is already `train_steps`.
test_controller.train(steps=10)
def test_summaries_inside_train_fn(self):
test_runner = TestTrainerWithSummaries()
checkpoint = tf.train.Checkpoint(
model=test_runner.model, optimizer=test_runner.optimizer)
checkpoint_manager = tf.train.CheckpointManager(
checkpoint,
self.model_dir,
max_to_keep=None,
step_counter=test_runner.global_step)
test_controller = controller.Controller(
trainer=test_runner,
global_step=test_runner.global_step,
steps_per_loop=2,
summary_dir=os.path.join(self.model_dir, "summaries/train"),
summary_interval=2,
checkpoint_manager=checkpoint_manager,
)
test_controller.train(steps=10)
# Checkpoints are saved.
self.assertEmpty(tf.io.gfile.glob(os.path.join(self.model_dir, "ckpt*")))
# Only train summaries are written.
self.assertNotEmpty(
tf.io.gfile.listdir(os.path.join(self.model_dir, "summaries/train")))
self.assertNotEmpty(
summaries_with_matching_keyword(
"loss", os.path.join(self.model_dir, "summaries/train")))
self.assertFalse(
tf.io.gfile.exists(os.path.join(self.model_dir, "summaries/eval")))
def test_train_and_evaluate_with_same_summary_dir(self):
test_runner = TestRunner()
checkpoint = tf.train.Checkpoint(
model=test_runner.model, optimizer=test_runner.optimizer)
checkpoint_manager = tf.train.CheckpointManager(
checkpoint,
self.model_dir,
max_to_keep=None,
step_counter=test_runner.global_step)
test_controller = controller.Controller(
trainer=test_runner,
evaluator=test_runner,
global_step=test_runner.global_step,
steps_per_loop=2,
summary_dir=os.path.join(self.model_dir, "summaries"),
checkpoint_manager=checkpoint_manager,
eval_summary_dir=os.path.join(self.model_dir, "summaries"))
test_controller.train_and_evaluate(
train_steps=10, eval_steps=2, eval_interval=6)
# Loss and accuracy values should be written into summaries.
self.assertNotEmpty(
tf.io.gfile.listdir(os.path.join(self.model_dir, "summaries")))
self.assertNotEmpty(
summaries_with_matching_keyword(
"loss", os.path.join(self.model_dir, "summaries")))
self.assertNotEmpty(
summaries_with_matching_keyword(
"eval_loss", os.path.join(self.model_dir, "summaries")))
def test_early_stop_on_eval_loss(self):
test_runner = TestRunner()
class EarlyStopController(controller.Controller):
"""A subclass of Controller that supports early stopping."""
def train_and_evaluate(self,
train_steps: int = None,
eval_steps: int = None,
eval_interval: int = None):
while self.global_step.numpy() < train_steps:
interval = min(train_steps - self.global_step.numpy(), eval_interval)
num_steps = self.global_step.numpy() + interval
self.train(steps=num_steps, checkpoint_at_completion=False)
self.evaluate(steps=eval_steps)
# Early stop condition.
if test_runner.eval_loss.result() < 0.1:
logging.info(
"Training early stopped as eval_loss %s is less than 0.1",
test_runner.eval_loss.result())
return
checkpoint = tf.train.Checkpoint(
model=test_runner.model, optimizer=test_runner.optimizer)
checkpoint_manager = tf.train.CheckpointManager(
checkpoint,
self.model_dir,
max_to_keep=None,
step_counter=test_runner.global_step,
checkpoint_interval=10)
test_controller = EarlyStopController(
trainer=test_runner,
evaluator=test_runner,
global_step=test_runner.global_step,
steps_per_loop=2,
checkpoint_manager=checkpoint_manager)
test_controller.train_and_evaluate(
train_steps=10, eval_steps=6, eval_interval=2)
self.assertLess(test_runner.global_step, 10)
def test_evaluate_with_loss_output(self):
test_evaluator = TestEvaluator()
checkpoint = tf.train.Checkpoint(model=test_evaluator.model)
checkpoint.save(os.path.join(self.model_dir, "ckpt"))
checkpoint_manager = tf.train.CheckpointManager(
checkpoint, self.model_dir, max_to_keep=None)
test_controller = controller.Controller(
evaluator=test_evaluator,
global_step=tf.Variable(0, dtype=tf.int64),
checkpoint_manager=checkpoint_manager,
eval_summary_dir=os.path.join(self.model_dir, "summaries/eval"))
test_controller.evaluate(steps=5)
# Only eval summaries are written
self.assertNotEmpty(
tf.io.gfile.listdir(os.path.join(self.model_dir, "summaries/eval")))
self.assertNotEmpty(
summaries_with_matching_keyword(
"eval_loss", os.path.join(self.model_dir, "summaries/eval")))
def test_evaluate_with_no_output(self):
test_controller = controller.Controller(
evaluator=TestEvaluatorNoOutput(),
global_step=tf.Variable(0, dtype=tf.int64),
eval_summary_dir=os.path.join(self.model_dir, "summaries/eval"))
self.assertEqual(test_controller.evaluate(steps=5), {})
def test_train_and_evaluate_reset_datasets(self):
test_runner = TestRunner()
test_controller = controller.Controller(
trainer=test_runner,
evaluator=test_runner,
global_step=test_runner.global_step,
steps_per_loop=2)
test_controller.train_and_evaluate(
train_steps=10, eval_steps=2, eval_interval=6)
train_dataset = (
test_runner.strategy.distribute_datasets_from_function(dataset_fn))
eval_dataset = (
test_runner.strategy.distribute_datasets_from_function(dataset_fn))
test_runner.train_dataset = train_dataset
test_runner.eval_dataset = eval_dataset
test_controller.train_and_evaluate(
train_steps=10, eval_steps=2, eval_interval=6)
def test_eval_and_checkpoint_interval(self):
test_runner = TestRunner()
checkpoint = tf.train.Checkpoint(
model=test_runner.model, optimizer=test_runner.optimizer)
checkpoint_manager = tf.train.CheckpointManager(
checkpoint,
self.model_dir,
max_to_keep=None,
step_counter=test_runner.global_step,
checkpoint_interval=5)
test_controller = controller.Controller(
trainer=test_runner,
evaluator=test_runner,
global_step=test_runner.global_step,
steps_per_loop=10,
checkpoint_manager=checkpoint_manager,
summary_dir=self.model_dir)
test_controller.train_and_evaluate(
train_steps=10, eval_steps=2, eval_interval=5)
# Expect 3 checkpoints to be saved at step: 5, 10.
self.assertLen(
tf.io.gfile.glob(os.path.join(self.model_dir, "ckpt-*.data*")), 2)
# Expect evaluation is performed 2 times at step: 5, 10.
self.assertLen(
summaries_with_matching_keyword("eval_loss", self.model_dir), 2)
def test_evaluate_with_nested_summaries(self):
test_evaluator = TestEvaluatorWithNestedSummary()
test_controller = controller.Controller(
evaluator=test_evaluator,
global_step=tf.Variable(0, dtype=tf.int64),
eval_summary_dir=self.model_dir)
test_controller.evaluate(steps=5)
self.assertNotEmpty(
tf.io.gfile.listdir(os.path.join(self.model_dir, "dataset")))
self.assertNotEmpty(
summaries_with_matching_keyword(
"loss", os.path.join(self.model_dir, "dataset")))
self.assertNotEmpty(
summaries_with_matching_keyword(
"accuracy", os.path.join(self.model_dir, "dataset")))
self.assertNotEmpty(
tf.io.gfile.listdir(os.path.join(self.model_dir, "dataset2")))
self.assertNotEmpty(
summaries_with_matching_keyword(
"loss", os.path.join(self.model_dir, "dataset2")))
self.assertNotEmpty(
summaries_with_matching_keyword(
"accuracy", os.path.join(self.model_dir, "dataset2")))
def test_actions(self):
test_runner = TestRunner()
checkpoint = tf.train.Checkpoint(
model=test_runner.model, optimizer=test_runner.optimizer)
checkpoint_manager = tf.train.CheckpointManager(
checkpoint,
self.model_dir,
max_to_keep=None,
step_counter=test_runner.global_step,
checkpoint_interval=10)
class OutputRecorderAction:
"""Simple `Action` that just saves the outputs passed to `__call__`."""
def __init__(self):
self.outputs = []
def __call__(self, output):
self.outputs.append(output)
train_output_recorder = OutputRecorderAction()
eval_output_recorder = OutputRecorderAction()
test_controller = controller.Controller(
trainer=test_runner,
evaluator=test_runner,
train_actions=[train_output_recorder],
eval_actions=[eval_output_recorder],
global_step=test_runner.global_step,
steps_per_loop=2,
summary_dir=os.path.join(self.model_dir, "summaries/train"),
checkpoint_manager=checkpoint_manager,
eval_summary_dir=os.path.join(self.model_dir, "summaries/eval"))
test_controller.train_and_evaluate(
train_steps=10, eval_steps=2, eval_interval=6)
self.assertLen(train_output_recorder.outputs, 5)
for output in train_output_recorder.outputs:
self.assertIn("loss", output)
self.assertGreaterEqual(output["loss"], 0)
self.assertLen(eval_output_recorder.outputs, 2)
for output in eval_output_recorder.outputs:
self.assertIn("eval_loss", output)
self.assertGreaterEqual(output["eval_loss"], 0)
if __name__ == "__main__":
tf.test.main()