-
Notifications
You must be signed in to change notification settings - Fork 9
/
Copy pathvsrl_eval.py
521 lines (425 loc) · 20.3 KB
/
vsrl_eval.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
# AUTORIGHTS
# ---------------------------------------------------------
# QAHOI
# Copyright (c) 2021 Junwen Chen. All Rights Reserved.
# Licensed under the Apache License, Version 2.0 [see LICENSE for details]
# ---------------------------------------------------------
# Copyright (c) 2017, Saurabh Gupta
#
# This file is part of the VCOCO dataset hooks and is available
# under the terms of the Simplified BSD License provided in
# LICENSE. Please retain this notice and LICENSE if you use
# this file (or any portion of it) in your project.
# ---------------------------------------------------------
# vsrl_data is a dictionary for each action class:
# image_id - Nx1
# ann_id - Nx1
# label - Nx1
# action_name - string
# role_name - ['agent', 'obj', 'instr']
# role_object_id - N x K matrix, obviously [:,0] is same as ann_id
import numpy as np
from pycocotools.coco import COCO
import os, json
import copy
import pickle
import argparse
class VCOCOeval(object):
def __init__(self, vsrl_annot_file, coco_annot_file,
split_file):
"""Input:
vslr_annot_file: path to the vcoco annotations
coco_annot_file: path to the coco annotations
split_file: image ids for split
"""
self.COCO = COCO(coco_annot_file)
self.VCOCO = _load_vcoco(vsrl_annot_file)
self.image_ids = np.loadtxt(open(split_file, 'r'))
# simple check
assert np.all(np.equal(np.sort(np.unique(self.VCOCO[0]['image_id'])), np.sort(self.image_ids)))
self._init_coco()
self._init_vcoco()
def _init_vcoco(self):
actions = [x['action_name'] for x in self.VCOCO]
roles = [x['role_name'] for x in self.VCOCO]
self.actions = actions
self.actions_to_id_map = {v: i for i, v in enumerate(self.actions)}
self.num_actions = len(self.actions)
self.roles = roles
def _init_coco(self):
category_ids = self.COCO.getCatIds()
categories = [c['name'] for c in self.COCO.loadCats(category_ids)]
self.category_to_id_map = dict(zip(categories, category_ids))
self.classes = ['__background__'] + categories
self.num_classes = len(self.classes)
self.json_category_id_to_contiguous_id = {
v: i + 1 for i, v in enumerate(self.COCO.getCatIds())}
self.contiguous_category_id_to_json_id = {
v: k for k, v in self.json_category_id_to_contiguous_id.items()}
def _get_vcocodb(self):
vcocodb = copy.deepcopy(self.COCO.loadImgs(self.image_ids.tolist()))
for entry in vcocodb:
self._prep_vcocodb_entry(entry)
self._add_gt_annotations(entry)
# print
if 0:
nums = np.zeros((self.num_actions), dtype=np.int32)
for entry in vcocodb:
for aid in range(self.num_actions):
nums[aid] += np.sum(np.logical_and(entry['gt_actions'][:, aid]==1, entry['gt_classes']==1))
for aid in range(self.num_actions):
print('Action %s = %d'%(self.actions[aid], nums[aid]))
return vcocodb
def _prep_vcocodb_entry(self, entry):
entry['boxes'] = np.empty((0, 4), dtype=np.float32)
entry['is_crowd'] = np.empty((0), dtype=np.bool)
entry['gt_classes'] = np.empty((0), dtype=np.int32)
entry['gt_actions'] = np.empty((0, self.num_actions), dtype=np.int32)
entry['gt_role_id'] = np.empty((0, self.num_actions, 2), dtype=np.int32)
def _add_gt_annotations(self, entry):
ann_ids = self.COCO.getAnnIds(imgIds=entry['id'], iscrowd=None)
objs = self.COCO.loadAnns(ann_ids)
# Sanitize bboxes -- some are invalid
valid_objs = []
valid_ann_ids = []
width = entry['width']
height = entry['height']
for i, obj in enumerate(objs):
if 'ignore' in obj and obj['ignore'] == 1:
continue
# Convert form x1, y1, w, h to x1, y1, x2, y2
x1 = obj['bbox'][0]
y1 = obj['bbox'][1]
x2 = x1 + np.maximum(0., obj['bbox'][2] - 1.)
y2 = y1 + np.maximum(0., obj['bbox'][3] - 1.)
x1, y1, x2, y2 = clip_xyxy_to_image(
x1, y1, x2, y2, height, width)
# Require non-zero seg area and more than 1x1 box size
if obj['area'] > 0 and x2 > x1 and y2 > y1:
obj['clean_bbox'] = [x1, y1, x2, y2]
valid_objs.append(obj)
valid_ann_ids.append(ann_ids[i])
num_valid_objs = len(valid_objs)
assert num_valid_objs == len(valid_ann_ids)
boxes = np.zeros((num_valid_objs, 4), dtype=entry['boxes'].dtype)
is_crowd = np.zeros((num_valid_objs), dtype=entry['is_crowd'].dtype)
gt_classes = np.zeros((num_valid_objs), dtype=entry['gt_classes'].dtype)
gt_actions = -np.ones((num_valid_objs, self.num_actions), dtype=entry['gt_actions'].dtype)
gt_role_id = -np.ones((num_valid_objs, self.num_actions, 2), dtype=entry['gt_role_id'].dtype)
for ix, obj in enumerate(valid_objs):
cls = self.json_category_id_to_contiguous_id[obj['category_id']]
boxes[ix, :] = obj['clean_bbox']
gt_classes[ix] = cls
is_crowd[ix] = obj['iscrowd']
gt_actions[ix, :], gt_role_id[ix, :, :] = \
self._get_vsrl_data(valid_ann_ids[ix],
valid_ann_ids, valid_objs)
entry['boxes'] = np.append(entry['boxes'], boxes, axis=0)
entry['gt_classes'] = np.append(entry['gt_classes'], gt_classes)
entry['is_crowd'] = np.append(entry['is_crowd'], is_crowd)
entry['gt_actions'] = np.append(entry['gt_actions'], gt_actions, axis=0)
entry['gt_role_id'] = np.append(entry['gt_role_id'], gt_role_id, axis=0)
def _get_vsrl_data(self, ann_id, ann_ids, objs):
""" Get VSRL data for ann_id."""
action_id = -np.ones((self.num_actions), dtype=np.int32)
role_id = -np.ones((self.num_actions, 2), dtype=np.int32)
# check if ann_id in vcoco annotations
in_vcoco = np.where(self.VCOCO[0]['ann_id'] == ann_id)[0]
if in_vcoco.size > 0:
action_id[:] = 0
role_id[:] = -1
else:
return action_id, role_id
for i, x in enumerate(self.VCOCO):
assert x['action_name'] == self.actions[i]
has_label = np.where(np.logical_and(x['ann_id'] == ann_id, x['label'] == 1))[0]
if has_label.size > 0:
action_id[i] = 1
assert has_label.size == 1
rids = x['role_object_id'][has_label]
assert rids[0, 0] == ann_id
for j in range(1, rids.shape[1]):
if rids[0, j] == 0:
# no role
continue
aid = np.where(ann_ids == rids[0, j])[0]
assert aid.size > 0
role_id[i, j - 1] = aid
return action_id, role_id
def _collect_detections_for_image(self, dets, image_id):
agents = np.empty((0, 4 + self.num_actions), dtype=np.float32) # 4 + 26 = 30
roles = np.empty((0, 5 * self.num_actions, 2), dtype=np.float32) # (5 * 26), 2
for det in dets: # loop all detection instance
if det['image_id'] == image_id:# might be several
this_agent = np.zeros((1, 4 + self.num_actions), dtype=np.float32)
this_role = np.zeros((1, 5 * self.num_actions, 2), dtype=np.float32)
this_agent[0, :4] = det['person_box']
for aid in range(self.num_actions): # loop 26 actions
for j, rid in enumerate(self.roles[aid]):
if rid == 'agent':
#if aid == 10:
# this_agent[0, 4 + aid] = det['talk_' + rid]
#if aid == 16:
# this_agent[0, 4 + aid] = det['work_' + rid]
#if (aid != 10) and (aid != 16):
this_agent[0, 4 + aid] = det[self.actions[aid] + '_' + rid]
else:
this_role[0, 5 * aid: 5 * aid + 5, j-1] = det[self.actions[aid] + '_' + rid]
agents = np.concatenate((agents, this_agent), axis=0)
roles = np.concatenate((roles, this_role), axis=0)
return agents, roles
def _do_eval(self, detections_file, ovr_thresh=0.5):
vcocodb = self._get_vcocodb()
self._do_agent_eval(vcocodb, detections_file, ovr_thresh=ovr_thresh)
self._do_role_eval(vcocodb, detections_file, ovr_thresh=ovr_thresh, eval_type='scenario_1')
self._do_role_eval(vcocodb, detections_file, ovr_thresh=ovr_thresh, eval_type='scenario_2')
def _do_role_eval(self, vcocodb, detections_file, ovr_thresh=0.5, eval_type='scenario_1'):
with open(detections_file, 'rb') as f:
dets = pickle.load(f)
tp = [[[] for r in range(2)] for a in range(self.num_actions)]
fp = [[[] for r in range(2)] for a in range(self.num_actions)]
sc = [[[] for r in range(2)] for a in range(self.num_actions)]
npos = np.zeros((self.num_actions), dtype=np.float32)
for i in range(len(vcocodb)):
image_id = vcocodb[i]['id']
gt_inds = np.where(vcocodb[i]['gt_classes'] == 1)[0]
# person boxes
gt_boxes = vcocodb[i]['boxes'][gt_inds]
gt_actions = vcocodb[i]['gt_actions'][gt_inds]
# some peorson instances don't have annotated actions
# we ignore those instances
ignore = np.any(gt_actions == -1, axis=1)
assert np.all(gt_actions[np.where(ignore==True)[0]]==-1)
for aid in range(self.num_actions):
npos[aid] += np.sum(gt_actions[:, aid] == 1)
pred_agents, pred_roles = self._collect_detections_for_image(dets, image_id)
for aid in range(self.num_actions):
if len(self.roles[aid])<2:
# if action has no role, then no role AP computed
continue
for rid in range(len(self.roles[aid])-1):
# keep track of detected instances for each action for each role
covered = np.zeros((gt_boxes.shape[0]), dtype=np.bool)
# get gt roles for action and role
gt_role_inds = vcocodb[i]['gt_role_id'][gt_inds, aid, rid]
gt_roles = -np.ones_like(gt_boxes)
for j in range(gt_boxes.shape[0]):
if gt_role_inds[j] > -1:
gt_roles[j] = vcocodb[i]['boxes'][gt_role_inds[j]]
agent_boxes = pred_agents[:, :4]
role_boxes = pred_roles[:, 5 * aid: 5 * aid + 4, rid]
agent_scores = pred_roles[:, 5 * aid + 4, rid]
valid = np.where(np.isnan(agent_scores) == False)[0]
#valid = np.where(agent_scores != 0)[0]
agent_scores = agent_scores[valid]
agent_boxes = agent_boxes[valid, :]
role_boxes = role_boxes[valid, :]
idx = agent_scores.argsort()[::-1]
for j in idx:
pred_box = agent_boxes[j, :]
overlaps = get_overlap(gt_boxes, pred_box)
# matching happens based on the person
jmax = overlaps.argmax()
ovmax = overlaps.max()
# if matched with an instance with no annotations
# continue
if ignore[jmax]:
continue
# overlap between predicted role and gt role
if np.all(gt_roles[jmax, :] == -1): # if no gt role
if eval_type == 'scenario_1':
if np.all(role_boxes[j, :] == 0.0) or np.all(np.isnan(role_boxes[j, :])):
# if no role is predicted, mark it as correct role overlap
ov_role = 1.0
else:
# if a role is predicted, mark it as false
ov_role = 0.0
elif eval_type == 'scenario_2':
# if no gt role, role prediction is always correct, irrespective of the actual predition
ov_role = 1.0
else:
raise ValueError('Unknown eval type')
else:
ov_role = get_overlap(gt_roles[jmax, :].reshape((1, 4)), role_boxes[j, :])
is_true_action = (gt_actions[jmax, aid] == 1)
sc[aid][rid].append(agent_scores[j])
if is_true_action and (ovmax>=ovr_thresh) and (ov_role>=ovr_thresh):
if covered[jmax]:
fp[aid][rid].append(1)
tp[aid][rid].append(0)
else:
fp[aid][rid].append(0)
tp[aid][rid].append(1)
covered[jmax] = True
else:
fp[aid][rid].append(1)
tp[aid][rid].append(0)
# compute ap for each action
role_ap = np.zeros((self.num_actions, 2), dtype=np.float32)
role_ap[:] = np.nan
for aid in range(self.num_actions):
if len(self.roles[aid])<2:
continue
for rid in range(len(self.roles[aid])-1):
a_fp = np.array(fp[aid][rid], dtype=np.float32)
a_tp = np.array(tp[aid][rid], dtype=np.float32)
a_sc = np.array(sc[aid][rid], dtype=np.float32)
# sort in descending score order
idx = a_sc.argsort()[::-1]
a_fp = a_fp[idx]
a_tp = a_tp[idx]
a_sc = a_sc[idx]
a_fp = np.cumsum(a_fp)
a_tp = np.cumsum(a_tp)
rec = a_tp / float(npos[aid])
#check
assert(np.amax(rec) <= 1)
prec = a_tp / np.maximum(a_tp + a_fp, np.finfo(np.float64).eps)
role_ap[aid, rid] = voc_ap(rec, prec)
print('---------Reporting Role AP (%)------------------')
for aid in range(self.num_actions):
if len(self.roles[aid])<2: continue
for rid in range(len(self.roles[aid])-1):
print('{: >23}: AP = {:0.2f} (#pos = {:d})'.format(self.actions[aid]+'-'+self.roles[aid][rid+1], role_ap[aid, rid]*100.0, int(npos[aid])))
print('Average Role [%s] AP = %.2f'%(eval_type, np.nanmean(role_ap) * 100.00))
print('---------------------------------------------')
print('Average Role [%s] AP = %.2f, omitting the action "point"'%(eval_type, (np.nanmean(role_ap) * 25 - role_ap[-3][0]) / 24 * 100.00))
print('---------------------------------------------')
def _do_agent_eval(self, vcocodb, detections_file, ovr_thresh=0.5):
with open(detections_file, 'rb') as f:
dets = pickle.load(f)
tp = [[] for a in range(self.num_actions)]
fp = [[] for a in range(self.num_actions)]
sc = [[] for a in range(self.num_actions)]
npos = np.zeros((self.num_actions), dtype=np.float32)
for i in range(len(vcocodb)):
image_id = vcocodb[i]['id']# img ID, not the full name (e.g. id= 165, 'file_name' = COCO_train2014_000000000165.jpg )
gt_inds = np.where(vcocodb[i]['gt_classes'] == 1)[0]# index of the person's box among all object boxes
# person boxes
gt_boxes = vcocodb[i]['boxes'][gt_inds] # all person's boxes in this image
gt_actions = vcocodb[i]['gt_actions'][gt_inds] # index of Nx26 binary matrix indicating the actions
# some peorson instances don't have annotated actions
# we ignore those instances
ignore = np.any(gt_actions == -1, axis=1)
for aid in range(self.num_actions):
npos[aid] += np.sum(gt_actions[:, aid] == 1)# how many actions are involved in this image(for all the human)
pred_agents, _ = self._collect_detections_for_image(dets, image_id)
# For each image, we have a pred_agents. For example, there are 2 people detected, then pred_agents is a 2x(4+26) matrix. Each row stands for a human, 0-3 human box, 4-25 the score for each action.
for aid in range(self.num_actions):
# keep track of detected instances for each action
covered = np.zeros((gt_boxes.shape[0]), dtype=np.bool)# gt_boxes.shape[0] is the number of people in this image
agent_scores = pred_agents[:, 4 + aid]# score of this action for all people in this image
agent_boxes = pred_agents[:, :4] # predicted buman box for all people in this image
# remove NaNs
# If only use agent, there should be no NAN cause there is no object information provided. Just give a agent score.
valid = np.where(np.isnan(agent_scores) == False)[0]
agent_scores = agent_scores[valid]
agent_boxes = agent_boxes[valid, :]
# sort in descending order
idx = agent_scores.argsort()[::-1]# For this action, sort score of all people. A action cam be done by many people.
for j in idx: # Each predicted person
pred_box = agent_boxes[j, :]# It's predicted human box
overlaps = get_overlap(gt_boxes, pred_box)# overlap between this predict human and all human gt_boxes
jmax = overlaps.argmax()# Find the idx of gt human box that matches this predicted human
ovmax = overlaps.max()
# if matched with an instance with no annotations
# continue
if ignore[jmax]:
continue
is_true_action = (gt_actions[jmax, aid] == 1)# Is this person actually doing this action according to gt?
sc[aid].append(agent_scores[j]) # The predicted score of this person doing this action. In descending order.
if is_true_action and (ovmax>=ovr_thresh): # bounding box IOU is larger than 0.5 and this this person is doing this action.
if covered[jmax]:
fp[aid].append(1)
tp[aid].append(0)
else:# first time see this gt human
fp[aid].append(0)
tp[aid].append(1)
covered[jmax] = True
else:
fp[aid].append(1)
tp[aid].append(0)
# compute ap for each action
agent_ap = np.zeros((self.num_actions), dtype=np.float32)
for aid in range(self.num_actions):
a_fp = np.array(fp[aid], dtype=np.float32)
a_tp = np.array(tp[aid], dtype=np.float32)
a_sc = np.array(sc[aid], dtype=np.float32)
# sort in descending score order
idx = a_sc.argsort()[::-1]# For each action, sort the score of all predicted people in all images
a_fp = a_fp[idx]
a_tp = a_tp[idx]
a_sc = a_sc[idx]
a_fp = np.cumsum(a_fp)
a_tp = np.cumsum(a_tp)
rec = a_tp / float(npos[aid])
#check
assert(np.amax(rec) <= 1)
prec = a_tp / np.maximum(a_tp + a_fp, np.finfo(np.float64).eps)
agent_ap[aid] = voc_ap(rec, prec)
print('---------Reporting Agent AP (%)------------------')
for aid in range(self.num_actions):
print('{: >20}: AP = {:0.2f} (#pos = {:d})'.format(self.actions[aid], agent_ap[aid]*100.0, int(npos[aid])))
print('Average Agent AP = %.2f'%(np.nansum(agent_ap) * 100.00/self.num_actions))
print('---------------------------------------------')
def _load_vcoco(vcoco_file):
print('loading vcoco annotations...')
with open(vcoco_file, 'r') as f:
vsrl_data = json.load(f)
for i in range(len(vsrl_data)):
vsrl_data[i]['role_object_id'] = \
np.array(vsrl_data[i]['role_object_id']).reshape((len(vsrl_data[i]['role_name']), -1)).T
for j in ['ann_id', 'label', 'image_id']:
vsrl_data[i][j] = np.array(vsrl_data[i][j]).reshape((-1, 1))
return vsrl_data
def clip_xyxy_to_image(x1, y1, x2, y2, height, width):
x1 = np.minimum(width - 1., np.maximum(0., x1))
y1 = np.minimum(height - 1., np.maximum(0., y1))
x2 = np.minimum(width - 1., np.maximum(0., x2))
y2 = np.minimum(height - 1., np.maximum(0., y2))
return x1, y1, x2, y2
def get_overlap(boxes, ref_box):
ixmin = np.maximum(boxes[:, 0], ref_box[0])
iymin = np.maximum(boxes[:, 1], ref_box[1])
ixmax = np.minimum(boxes[:, 2], ref_box[2])
iymax = np.minimum(boxes[:, 3], ref_box[3])
iw = np.maximum(ixmax - ixmin + 1., 0.)
ih = np.maximum(iymax - iymin + 1., 0.)
inters = iw * ih
# union
uni = ((ref_box[2] - ref_box[0] + 1.) * (ref_box[3] - ref_box[1] + 1.) +
(boxes[:, 2] - boxes[:, 0] + 1.) *
(boxes[:, 3] - boxes[:, 1] + 1.) - inters)
overlaps = inters / uni
return overlaps
def voc_ap(rec, prec):
""" ap = voc_ap(rec, prec)
Compute VOC AP given precision and recall.
[as defined in PASCAL VOC]
"""
# correct AP calculation
# first append sentinel values at the end
mrec = np.concatenate(([0.], rec, [1.]))
mpre = np.concatenate(([0.], prec, [0.]))
# compute the precision envelope
for i in range(mpre.size - 1, 0, -1):
mpre[i - 1] = np.maximum(mpre[i - 1], mpre[i])
# to calculate area under PR curve, look for points
# where X axis (recall) changes value
i = np.where(mrec[1:] != mrec[:-1])[0]
# and sum (\Delta recall) * prec
ap = np.sum((mrec[i + 1] - mrec[i]) * mpre[i + 1])
return ap
def get_args_parser():
parser = argparse.ArgumentParser('QAHOI vcoco eval', add_help=False)
parser.add_argument('--vcoco_path', type=str, required=True)
parser.add_argument('--detections', type=str, required=True)
return parser
if __name__ == "__main__":
parser = argparse.ArgumentParser(parents=[get_args_parser()])
args = parser.parse_args()
vsrl_annot_file = os.path.join(args.vcoco_path, 'data', 'vcoco_test.json')
coco_annot_file = os.path.join(args.vcoco_path, 'data', 'instances_vcoco_all_2014.json')
split_file = os.path.join(args.vcoco_path, 'data', 'vcoco_test.ids')
vcocoeval = VCOCOeval(vsrl_annot_file, coco_annot_file, split_file)
vcocoeval._do_eval(args.detections, ovr_thresh=0.5)