-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathcreate_noisy.py
executable file
·261 lines (204 loc) · 9.53 KB
/
create_noisy.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
import os
from data_loader import load_word_dataset
import random
import numpy as np
import sys
def load_dataset(f_name):
contents = []
with open(f_name) as f:
contents = f.readlines()
x_char = []
y_char = []
sent_x = []
sent_y = []
all_sent_x = []
all_sent_y = []
all_sent_segs = []
seg_flags = []
skip = False
for i, line in enumerate(contents[:-1]):
if (skip):
skip = False
continue
data = line.split('\t')
next_data = contents[i+1].split()
char, label, flag = data
flag = flag.strip('\n')
if (label != 'SPACE'):
seg_flags.append(int(flag))
else:
seg_flags.append(0)
sent_x.append(char)
sent_y.append(label)
x_char.append(char)
y_char.append(label)
if not next_data:
all_sent_x.append(sent_x)
all_sent_y.append(sent_y)
all_sent_segs.append(seg_flags)
sent_x = []
sent_y = []
seg_flags = []
skip = True
continue
return all_sent_x, all_sent_y, all_sent_segs, x_char, y_char
def create_noisy_dataset_word(all_sent_x_word, all_sent_y_word, delete_spc_prob, insert_spc_prob ):
corrupt_x = []
corrupt_y = []
count_dels = 0
count_ins = 0
for i, (sentence_x, sentence_y) in enumerate( zip(all_sent_x_word, all_sent_y_word)):
corrupt_sent_x = []
corrupt_sent_y = []
j = 0
while j < len(sentence_x):
word = sentence_x[j]
label = sentence_y[j]
#If current word is space just append it to the output
if word == ' ':
corrupt_sent_x.append(word)
corrupt_sent_y.append(label)
j += 1
continue
if j < len(sentence_x) - 1:
next_word = sentence_x[j+1]
if next_word == ' ':
if j+2 < len(sentence_x):
word_aft_spc = sentence_x[j+2]
label_aft_spc = sentence_y[j+2]
sample_del = np.random.uniform()
if sample_del < delete_spc_prob:
count_dels += 1
merged_token = word + word_aft_spc
merged_label = random.choice([label,label_aft_spc ] )
corrupt_sent_x.append(merged_token)
corrupt_sent_y.append(merged_label)
j = j + 3
continue
j += 1
corrupt_token = ''
for char in word[:-1]:
sample_ins = np.random.uniform()
corrupt_token += char
if sample_ins < insert_spc_prob:
count_ins += 1
corrupt_sent_x.append(corrupt_token)
corrupt_sent_y.append(label)
corrupt_sent_x.append(' ')
corrupt_sent_y.append('SPACE')
corrupt_token = ''
corrupt_token += word[-1]
corrupt_sent_x.append(corrupt_token)
corrupt_sent_y.append(label)
corrupt_x.append(corrupt_sent_x)
corrupt_y.append(corrupt_sent_y)
print ('Dels', count_dels)
print ('Ins', count_ins)
print ('Dels/Ins ratio', count_dels / count_ins)
return corrupt_x, corrupt_y
def remove_space(x_data, y_data):
x_no_spc = []
y_no_spc = []
for (sentence_x, sentence_y) in zip(x_data, y_data):
new_sent_x = []
new_sent_y = []
for (word,label) in zip(sentence_x, sentence_y):
if label != 'SPACE':
new_sent_x.append(word)
new_sent_y.append(label)
x_no_spc.append(new_sent_x)
y_no_spc.append(new_sent_y)
return x_no_spc, y_no_spc
def remove_file(f_name):
try:
os.remove(f_name)
except OSError:
pass
def save_dataset_format_train(f_name, x_data, y_data):
remove_file(f_name)
with open(f_name, 'w') as f:
for _, (sentence, sent_labels) in enumerate(zip(x_data, y_data)):
counter = 1
for _, (word, label) in enumerate( zip(sentence, sent_labels)):
f.write(str(counter) + '\t' + word + '\t' + label +'\n' )
counter +=1
f.write('\n')
def save_dataset_format_test(f_name, x_data):
remove_file(f_name)
with open(f_name, 'w') as f:
for _, sentence in enumerate(x_data,):
for _, word in enumerate( sentence ):
f.write( word +'\n' )
f.write('\n')
def save_train_dataset_char_corrupt(f_name, x_data, y_data):
remove_file(f_name)
with open(f_name, 'w') as f:
for _, (sentence, labels) in enumerate(zip(x_data, y_data)):
for _, (word, label) in enumerate( zip(sentence, labels)):
for j, char in enumerate(word):
f.write(char + '\t' + label + '\n' )
f.write('\n')
def load_dataset_char_corrupt(f_name):
with open(f_name, 'r') as f:
all_x = []
sent_x = []
all_labels = []
sent_y = []
for line in f:
data = line.split('\t')
if data[0] == '\n':
all_x.append(sent_x)
sent_x = []
all_labels.append(sent_y)
sent_y = []
continue
x = data[0]
sent_x.append(x)
label = data[1]
sent_y.append(label)
return all_x, all_labels
if __name__ == '__main__':
random.seed(0)
f_name_train = 'data/words/en-ud-train1.2.conllu'
f_name_val = 'data/words/en-ud-dev1.2.conllu'
f_name_test = 'data/words/en-ud-test1.2.conllu'
all_sent_x_word_train, all_sent_y_word_train, _, _ = load_word_dataset(f_name_train)
all_sent_x_word_val, all_sent_y_word_val, _, _ = load_word_dataset(f_name_val)
all_sent_x_word_test, all_sent_y_word_test, _, _ = load_word_dataset(f_name_test)
delete_spc_prob = 0.1
insert_spc_prob = 0.05
corrupt_x_train, corrupt_y_train = create_noisy_dataset_word(all_sent_x_word_train, all_sent_y_word_train,
delete_spc_prob, insert_spc_prob )
corrupt_x_val, corrupt_y_val = create_noisy_dataset_word(all_sent_x_word_val, all_sent_y_word_val,
delete_spc_prob, insert_spc_prob )
corrupt_x_test, corrupt_y_test = create_noisy_dataset_word(all_sent_x_word_test, all_sent_y_word_test,
delete_spc_prob, insert_spc_prob )
#Used for marmot clean text score
clean_x_no_spc_train, clean_y_no_spc_train = remove_space(all_sent_x_word_train, all_sent_y_word_train)
clean_x_no_spc_test, clean_y_no_spc_test = remove_space(all_sent_x_word_test, all_sent_y_word_test)
#Used for marmot corrupt score
corrupt_x_no_spc_train, corrupt_y_no_spc_train = remove_space(corrupt_x_train, corrupt_y_train)
corrupt_x_no_spc_test, corrupt_y_no_spc_test = remove_space(corrupt_x_test, corrupt_y_test)
#Save both clean and corrupt datasets in marmot expected format
CORRUPT = False
if CORRUPT == True:
f_name_word_train_corrupt = 'data/words/corrupt/en-ud-train1.2_cor' + str(delete_spc_prob)+ '-' +str(insert_spc_prob) + '.conllu'
f_name_word_test_corrupt = 'data/words/corrupt/en-ud-val1.2_cor' + str(delete_spc_prob)+ '-' +str(insert_spc_prob) + '.conllu'
f_name_test_input_corrupt = 'data/words/corrupt/en-ud-test1.2_cor' + str(delete_spc_prob)+ '-' +str(insert_spc_prob) + '.conllu'
save_dataset_format_train(f_name_word_train_corrupt, corrupt_x_no_spc_train, corrupt_y_no_spc_train )
# save_dataset_format_train(f_name_word_test_corrupt, corrupt_x_no_spc_test, corrupt_y_no_spc_test )
save_dataset_format_test(f_name_test_input_corrupt, corrupt_x_no_spc_test)
#These files are for our char model
f_name_char_train_corrupt = 'data/char/corrupt/en-ud-train1.2_cor' + str(delete_spc_prob)+ '-' +str(insert_spc_prob) + '.conllu'
f_name_char_val_corrupt = 'data/char/corrupt/en-ud-val1.2_cor' + str(delete_spc_prob)+ '-' +str(insert_spc_prob) + '.conllu'
f_name_char_test_corrupt = 'data/char/corrupt/en-ud-test1.2_cor' + str(delete_spc_prob)+ '-' +str(insert_spc_prob) + '.conllu'
save_train_dataset_char_corrupt(f_name_char_train_corrupt, corrupt_x_train, corrupt_y_train)
save_train_dataset_char_corrupt(f_name_char_val_corrupt, corrupt_x_val, corrupt_y_val)
save_train_dataset_char_corrupt(f_name_char_test_corrupt, corrupt_x_test, corrupt_y_test)
else:
f_name_word_train_clean = 'data/words/clean/en-ud-train1.2_marmot_clean.txt'
f_name_word_test_clean = 'data/words/clean/en-ud-test1.2_marmot_clean_labels.txt'
f_name_test_input_clean = 'data/words/clean/en-ud-test1.2_marmot_clean_test_input.txt'
save_dataset_format_train(f_name_word_train_clean, clean_x_no_spc_train, clean_y_no_spc_train )
# save_dataset_format_train(f_name_word_test_clean, clean_x_no_spc_test, clean_y_no_spc_test )
save_dataset_format_test(f_name_test_input_clean, clean_x_no_spc_test)