forked from open-mmlab/mmyolo
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathyolov6_m_syncbn_fast_8xb32-300e_coco.py
62 lines (56 loc) · 2.05 KB
/
yolov6_m_syncbn_fast_8xb32-300e_coco.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
_base_ = './yolov6_s_syncbn_fast_8xb32-300e_coco.py'
# ======================= Possible modified parameters =======================
# -----model related-----
# The scaling factor that controls the depth of the network structure
deepen_factor = 0.6
# The scaling factor that controls the width of the network structure
widen_factor = 0.75
# -----train val related-----
affine_scale = 0.9 # YOLOv5RandomAffine scaling ratio
# ============================== Unmodified in most cases ===================
model = dict(
backbone=dict(
type='YOLOv6CSPBep',
deepen_factor=deepen_factor,
widen_factor=widen_factor,
hidden_ratio=2. / 3,
block_cfg=dict(type='RepVGGBlock'),
act_cfg=dict(type='ReLU', inplace=True)),
neck=dict(
type='YOLOv6CSPRepPAFPN',
deepen_factor=deepen_factor,
widen_factor=widen_factor,
block_cfg=dict(type='RepVGGBlock'),
hidden_ratio=2. / 3,
block_act_cfg=dict(type='ReLU', inplace=True)),
bbox_head=dict(
type='YOLOv6Head', head_module=dict(widen_factor=widen_factor)))
mosaic_affine_pipeline = [
dict(
type='Mosaic',
img_scale=_base_.img_scale,
pad_val=114.0,
pre_transform=_base_.pre_transform),
dict(
type='YOLOv5RandomAffine',
max_rotate_degree=0.0,
max_shear_degree=0.0,
scaling_ratio_range=(1 - affine_scale, 1 + affine_scale),
# img_scale is (width, height)
border=(-_base_.img_scale[0] // 2, -_base_.img_scale[1] // 2),
border_val=(114, 114, 114))
]
train_pipeline = [
*_base_.pre_transform, *mosaic_affine_pipeline,
dict(
type='YOLOv5MixUp',
prob=0.1,
pre_transform=[*_base_.pre_transform, *mosaic_affine_pipeline]),
dict(type='YOLOv5HSVRandomAug'),
dict(type='mmdet.RandomFlip', prob=0.5),
dict(
type='mmdet.PackDetInputs',
meta_keys=('img_id', 'img_path', 'ori_shape', 'img_shape', 'flip',
'flip_direction'))
]
train_dataloader = dict(dataset=dict(pipeline=train_pipeline))