forked from open-mmlab/mmaction2
-
Notifications
You must be signed in to change notification settings - Fork 0
/
rawframe_dataset.py
212 lines (182 loc) · 7.74 KB
/
rawframe_dataset.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
# Copyright (c) OpenMMLab. All rights reserved.
import copy
import os.path as osp
import torch
from mmaction.datasets.pipelines import Resize
from .base import BaseDataset
from .builder import DATASETS
@DATASETS.register_module()
class RawframeDataset(BaseDataset):
"""Rawframe dataset for action recognition.
The dataset loads raw frames and apply specified transforms to return a
dict containing the frame tensors and other information.
The ann_file is a text file with multiple lines, and each line indicates
the directory to frames of a video, total frames of the video and
the label of a video, which are split with a whitespace.
Example of a annotation file:
.. code-block:: txt
some/directory-1 163 1
some/directory-2 122 1
some/directory-3 258 2
some/directory-4 234 2
some/directory-5 295 3
some/directory-6 121 3
Example of a multi-class annotation file:
.. code-block:: txt
some/directory-1 163 1 3 5
some/directory-2 122 1 2
some/directory-3 258 2
some/directory-4 234 2 4 6 8
some/directory-5 295 3
some/directory-6 121 3
Example of a with_offset annotation file (clips from long videos), each
line indicates the directory to frames of a video, the index of the start
frame, total frames of the video clip and the label of a video clip, which
are split with a whitespace.
.. code-block:: txt
some/directory-1 12 163 3
some/directory-2 213 122 4
some/directory-3 100 258 5
some/directory-4 98 234 2
some/directory-5 0 295 3
some/directory-6 50 121 3
Args:
ann_file (str): Path to the annotation file.
pipeline (list[dict | callable]): A sequence of data transforms.
data_prefix (str | None): Path to a directory where videos are held.
Default: None.
test_mode (bool): Store True when building test or validation dataset.
Default: False.
filename_tmpl (str): Template for each filename.
Default: 'img_{:05}.jpg'.
with_offset (bool): Determines whether the offset information is in
ann_file. Default: False.
multi_class (bool): Determines whether it is a multi-class
recognition dataset. Default: False.
num_classes (int | None): Number of classes in the dataset.
Default: None.
modality (str): Modality of data. Support 'RGB', 'Flow'.
Default: 'RGB'.
sample_by_class (bool): Sampling by class, should be set `True` when
performing inter-class data balancing. Only compatible with
`multi_class == False`. Only applies for training. Default: False.
power (float): We support sampling data with the probability
proportional to the power of its label frequency (freq ^ power)
when sampling data. `power == 1` indicates uniformly sampling all
data; `power == 0` indicates uniformly sampling all classes.
Default: 0.
dynamic_length (bool): If the dataset length is dynamic (used by
ClassSpecificDistributedSampler). Default: False.
"""
def __init__(self,
ann_file,
pipeline,
data_prefix=None,
test_mode=False,
filename_tmpl='img_{:05}.jpg',
with_offset=False,
multi_class=False,
num_classes=None,
start_index=1,
modality='RGB',
sample_by_class=False,
power=0.,
dynamic_length=False,
**kwargs):
self.filename_tmpl = filename_tmpl
self.with_offset = with_offset
super().__init__(
ann_file,
pipeline,
data_prefix,
test_mode,
multi_class,
num_classes,
start_index,
modality,
sample_by_class=sample_by_class,
power=power,
dynamic_length=dynamic_length)
self.short_cycle_factors = kwargs.get('short_cycle_factors',
[0.5, 0.7071])
self.default_s = kwargs.get('default_s', (224, 224))
def load_annotations(self):
"""Load annotation file to get video information."""
if self.ann_file.endswith('.json'):
return self.load_json_annotations()
video_infos = []
with open(self.ann_file, 'r') as fin:
for line in fin:
line_split = line.strip().split()
video_info = {}
idx = 0
# idx for frame_dir
frame_dir = line_split[idx]
if self.data_prefix is not None:
frame_dir = osp.join(self.data_prefix, frame_dir)
video_info['frame_dir'] = frame_dir
idx += 1
if self.with_offset:
# idx for offset and total_frames
video_info['offset'] = int(line_split[idx])
video_info['total_frames'] = int(line_split[idx + 1])
idx += 2
else:
# idx for total_frames
video_info['total_frames'] = int(line_split[idx])
idx += 1
# idx for label[s]
label = [int(x) for x in line_split[idx:]]
assert label, f'missing label in line: {line}'
if self.multi_class:
assert self.num_classes is not None
video_info['label'] = label
else:
assert len(label) == 1
video_info['label'] = label[0]
video_infos.append(video_info)
return video_infos
def prepare_train_frames(self, idx):
"""Prepare the frames for training given the index."""
def pipeline_for_a_sample(idx):
results = copy.deepcopy(self.video_infos[idx])
results['filename_tmpl'] = self.filename_tmpl
results['modality'] = self.modality
results['start_index'] = self.start_index
# prepare tensor in getitem
if self.multi_class:
onehot = torch.zeros(self.num_classes)
onehot[results['label']] = 1.
results['label'] = onehot
return self.pipeline(results)
if isinstance(idx, tuple):
index, short_cycle_idx = idx
last_resize = None
for trans in self.pipeline.transforms:
if isinstance(trans, Resize):
last_resize = trans
origin_scale = self.default_s
long_cycle_scale = last_resize.scale
if short_cycle_idx in [0, 1]:
# 0 and 1 is hard-coded as PySlowFast
scale_ratio = self.short_cycle_factors[short_cycle_idx]
target_scale = tuple(
[int(round(scale_ratio * s)) for s in origin_scale])
last_resize.scale = target_scale
res = pipeline_for_a_sample(index)
last_resize.scale = long_cycle_scale
return res
else:
return pipeline_for_a_sample(idx)
def prepare_test_frames(self, idx):
"""Prepare the frames for testing given the index."""
results = copy.deepcopy(self.video_infos[idx])
results['filename_tmpl'] = self.filename_tmpl
results['modality'] = self.modality
results['start_index'] = self.start_index
# prepare tensor in getitem
if self.multi_class:
onehot = torch.zeros(self.num_classes)
onehot[results['label']] = 1.
results['label'] = onehot
return self.pipeline(results)