-
Notifications
You must be signed in to change notification settings - Fork 43
/
test.py
360 lines (303 loc) · 16.3 KB
/
test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
import os
import datetime
import random
import time
import cv2
import numpy as np
import logging
import argparse
import math
from visdom import Visdom
import os.path as osp
import torch
import torch.backends.cudnn as cudnn
import torch.nn as nn
import torch.nn.functional as F
import torch.nn.parallel
import torch.optim
import torch.utils.data
import torch.multiprocessing as mp
import torch.distributed as dist
from torch.utils.data.distributed import DistributedSampler
from tensorboardX import SummaryWriter
from model import BAM
from util import dataset
from util import transform, transform_tri, config
from util.util import AverageMeter, poly_learning_rate, intersectionAndUnionGPU, get_model_para_number, setup_seed, get_logger, get_save_path, \
is_same_model, fix_bn, sum_list, check_makedirs
cv2.ocl.setUseOpenCL(False)
cv2.setNumThreads(0)
# os.environ["CUDA_VISIBLE_DEVICES"] = '1'
val_manual_seed = 123
val_num = 5
setup_seed(val_manual_seed, False)
seed_array = np.random.randint(0,1000,val_num) # seed->[0,999]
def get_parser():
parser = argparse.ArgumentParser(description='PyTorch Few-Shot Semantic Segmentation')
parser.add_argument('--arch', type=str, default='BAM')
parser.add_argument('--viz', action='store_true', default=False)
parser.add_argument('--config', type=str, default='config/coco/coco_split3_resnet50.yaml', help='config file') # coco/coco_split0_resnet50.yaml
parser.add_argument('--opts', help='see config/ade20k/ade20k_pspnet50.yaml for all options', default=None, nargs=argparse.REMAINDER)
args = parser.parse_args()
assert args.config is not None
cfg = config.load_cfg_from_cfg_file(args.config)
cfg = config.merge_cfg_from_args(cfg, args)
if args.opts is not None:
cfg = config.merge_cfg_from_list(cfg, args.opts)
return cfg
def get_model(args):
model = eval(args.arch).OneModel(args, cls_type='Base')
optimizer = model.get_optim(model, args, LR=args.base_lr)
model = model.cuda()
# Resume
get_save_path(args)
check_makedirs(args.snapshot_path)
check_makedirs(args.result_path)
if args.weight:
weight_path = osp.join(args.snapshot_path, args.weight)
if os.path.isfile(weight_path):
logger.info("=> loading checkpoint '{}'".format(weight_path))
checkpoint = torch.load(weight_path, map_location=torch.device('cpu'))
args.start_epoch = checkpoint['epoch']
new_param = checkpoint['state_dict']
try:
model.load_state_dict(new_param)
except RuntimeError: # 1GPU loads mGPU model
for key in list(new_param.keys()):
new_param[key[7:]] = new_param.pop(key)
model.load_state_dict(new_param)
optimizer.load_state_dict(checkpoint['optimizer'])
logger.info("=> loaded checkpoint '{}' (epoch {})".format(weight_path, checkpoint['epoch']))
else:
logger.info("=> no checkpoint found at '{}'".format(weight_path))
# Get model para.
total_number, learnable_number = get_model_para_number(model)
print('Number of Parameters: %d' % (total_number))
print('Number of Learnable Parameters: %d' % (learnable_number))
time.sleep(5)
return model, optimizer
def main():
global args, logger, writer
args = get_parser()
logger = get_logger()
args.distributed = True if torch.cuda.device_count() > 1 else False
print(args)
if args.manual_seed is not None:
setup_seed(args.manual_seed, args.seed_deterministic)
assert args.classes > 1
assert args.zoom_factor in [1, 2, 4, 8]
assert (args.train_h - 1) % 8 == 0 and (args.train_w - 1) % 8 == 0
logger.info("=> creating model ...")
model, optimizer = get_model(args)
logger.info(model)
# ---------------------- DATASET ----------------------
value_scale = 255
mean = [0.485, 0.456, 0.406]
mean = [item * value_scale for item in mean]
std = [0.229, 0.224, 0.225]
std = [item * value_scale for item in std]
# Val
if args.evaluate:
if args.resized_val:
val_transform = transform.Compose([
transform.Resize(size=args.val_size),
transform.ToTensor(),
transform.Normalize(mean=mean, std=std)])
val_transform_tri = transform_tri.Compose([
transform_tri.Resize(size=args.val_size),
transform_tri.ToTensor(),
transform_tri.Normalize(mean=mean, std=std)])
else:
val_transform = transform.Compose([
transform.test_Resize(size=args.val_size),
transform.ToTensor(),
transform.Normalize(mean=mean, std=std)])
val_transform_tri = transform_tri.Compose([
transform_tri.test_Resize(size=args.val_size),
transform_tri.ToTensor(),
transform_tri.Normalize(mean=mean, std=std)])
if args.data_set == 'pascal' or args.data_set == 'coco':
val_data = dataset.SemData(split=args.split, shot=args.shot, data_root=args.data_root, base_data_root=args.base_data_root, data_list=args.val_list, \
transform=val_transform, transform_tri=val_transform_tri, mode='val', \
data_set=args.data_set, use_split_coco=args.use_split_coco)
val_loader = torch.utils.data.DataLoader(val_data, batch_size=args.batch_size_val, shuffle=False, num_workers=args.workers, pin_memory=False, sampler=None)
# ---------------------- VAL ----------------------
start_time = time.time()
FBIoU_array = np.zeros(val_num)
FBIoU_array_m = np.zeros(val_num)
mIoU_array = np.zeros(val_num)
mIoU_array_m = np.zeros(val_num)
pIoU_array = np.zeros(val_num)
for val_id in range(val_num):
val_seed = seed_array[val_id]
print('Val: [{}/{}] \t Seed: {}'.format(val_id+1, val_num, val_seed))
fb_iou, fb_iou_m, miou, miou_m, miou_b, piou= validate(val_loader, model, val_seed)
FBIoU_array[val_id], FBIoU_array_m[val_id], mIoU_array[val_id], mIoU_array_m[val_id], pIoU_array[val_id] = \
fb_iou, fb_iou_m, miou, miou_m, piou
total_time = time.time() - start_time
t_m, t_s = divmod(total_time, 60)
t_h, t_m = divmod(t_m, 60)
total_time = '{:02d}h {:02d}m {:02d}s'.format(int(t_h), int(t_m), int(t_s))
print('\nTotal running time: {}'.format(total_time))
print('Seed0: {}'.format(val_manual_seed))
print('Seed: {}'.format(seed_array))
print('mIoU: {}'.format(np.round(mIoU_array, 4)))
print('mIoU_m: {}'.format(np.round(mIoU_array_m, 4)))
print('FBIoU: {}'.format(np.round(FBIoU_array, 4)))
print('FBIoU_m: {}'.format(np.round(FBIoU_array_m, 4)))
print('pIoU: {}'.format(np.round(pIoU_array, 4)))
print('-'*43)
print('Best_Seed_m: {} \t Best_Seed_F: {} \t Best_Seed_p: {}'.format(seed_array[mIoU_array.argmax()], seed_array[FBIoU_array.argmax()], seed_array[pIoU_array.argmax()]))
print('Best_mIoU: {:.4f} \t Best_mIoU_m: {:.4f} \t Best_FBIoU: {:.4f} \t Best_FBIoU_m: {:.4f} \t Best_pIoU: {:.4f}'.format(mIoU_array.max(), mIoU_array_m.max(), FBIoU_array.max(), FBIoU_array_m.max(), pIoU_array.max()))
print('Mean_mIoU: {:.4f} \t Mean_mIoU_m: {:.4f} \t Mean_FBIoU: {:.4f} \t Mean_FBIoU_m: {:.4f} \t Mean_pIoU: {:.4f}'.format(mIoU_array.mean(), mIoU_array_m.mean(), FBIoU_array.mean(), FBIoU_array_m.mean(), pIoU_array.mean()))
def validate(val_loader, model, val_seed):
logger.info('>>>>>>>>>>>>>>>> Start Evaluation >>>>>>>>>>>>>>>>')
batch_time = AverageMeter()
model_time = AverageMeter()
data_time = AverageMeter()
loss_meter = AverageMeter()
intersection_meter = AverageMeter() # final
union_meter = AverageMeter()
target_meter = AverageMeter()
intersection_meter_m = AverageMeter() # meta
union_meter_m = AverageMeter()
target_meter_m = AverageMeter()
if args.data_set == 'pascal':
test_num = 1000
split_gap = 5
elif args.data_set == 'coco':
test_num = 1000
split_gap = 20
class_intersection_meter = [0]*split_gap
class_union_meter = [0]*split_gap
class_intersection_meter_m = [0]*split_gap
class_union_meter_m = [0]*split_gap
class_intersection_meter_b = [0]*split_gap*3
class_union_meter_b = [0]*split_gap*3
class_target_meter_b = [0]*split_gap*3
setup_seed(val_seed, args.seed_deterministic)
criterion = nn.CrossEntropyLoss(ignore_index=args.ignore_label)
model.eval()
end = time.time()
val_start = end
assert test_num % args.batch_size_val == 0
db_epoch = math.ceil(test_num/(len(val_loader)-args.batch_size_val))
iter_num = 0
for e in range(db_epoch):
for i, (input, target, target_b, s_input, s_mask, subcls, ori_label, ori_label_b) in enumerate(val_loader):
if iter_num * args.batch_size_val >= test_num:
break
iter_num += 1
data_time.update(time.time() - end)
s_input = s_input.cuda(non_blocking=True)
s_mask = s_mask.cuda(non_blocking=True)
input = input.cuda(non_blocking=True)
target = target.cuda(non_blocking=True)
target_b = target_b.cuda(non_blocking=True)
ori_label = ori_label.cuda(non_blocking=True)
ori_label_b = ori_label_b.cuda(non_blocking=True)
start_time = time.time()
output, meta_out, base_out = model(s_x=s_input, s_y=s_mask, x=input, y_m=target, y_b=target_b, cat_idx=subcls)
model_time.update(time.time() - start_time)
if args.ori_resize:
longerside = max(ori_label.size(1), ori_label.size(2))
backmask = torch.ones(ori_label.size(0), longerside, longerside, device='cuda')*255
backmask_b = torch.ones(ori_label.size(0), longerside, longerside, device='cuda')*255
backmask[0, :ori_label.size(1), :ori_label.size(2)] = ori_label
backmask_b[0, :ori_label.size(1), :ori_label.size(2)] = ori_label_b
target = backmask.clone().long()
target_b = backmask_b.clone().long()
output = F.interpolate(output, size=target.size()[1:], mode='bilinear', align_corners=True)
meta_out = F.interpolate(meta_out, size=target.size()[1:], mode='bilinear', align_corners=True)
base_out = F.interpolate(base_out, size=target.size()[1:], mode='bilinear', align_corners=True)
loss = criterion(output, target)
output = output.max(1)[1]
meta_out = meta_out.max(1)[1]
base_out = base_out.max(1)[1]
subcls = subcls[0].cpu().numpy()[0]
intersection, union, new_target = intersectionAndUnionGPU(output, target, args.classes, args.ignore_label)
intersection, union, new_target = intersection.cpu().numpy(), union.cpu().numpy(), new_target.cpu().numpy()
intersection_meter.update(intersection), union_meter.update(union), target_meter.update(new_target)
class_intersection_meter[subcls] += intersection[1]
class_union_meter[subcls] += union[1]
intersection, union, new_target = intersectionAndUnionGPU(meta_out, target, args.classes, args.ignore_label)
intersection, union, new_target = intersection.cpu().numpy(), union.cpu().numpy(), new_target.cpu().numpy()
intersection_meter_m.update(intersection), union_meter_m.update(union), target_meter_m.update(new_target)
class_intersection_meter_m[subcls] += intersection[1]
class_union_meter_m[subcls] += union[1]
intersection, union, new_target = intersectionAndUnionGPU(base_out, target_b, split_gap*3+1, args.ignore_label)
intersection, union, new_target = intersection.cpu().numpy(), union.cpu().numpy(), new_target.cpu().numpy()
for idx in range(1,len(intersection)):
class_intersection_meter_b[idx-1] += intersection[idx]
class_union_meter_b[idx-1] += union[idx]
class_target_meter_b[idx-1] += new_target[idx]
accuracy = sum(intersection_meter.val) / (sum(target_meter.val) + 1e-10)
loss_meter.update(loss.item(), input.size(0))
batch_time.update(time.time() - end)
end = time.time()
remain_iter = test_num/args.batch_size_val - iter_num
remain_time = remain_iter * batch_time.avg
t_m, t_s = divmod(remain_time, 60)
t_h, t_m = divmod(t_m, 60)
remain_time = '{:02d}:{:02d}:{:02d}'.format(int(t_h), int(t_m), int(t_s))
if ((i + 1) % round((test_num/100)) == 0):
logger.info('Test: [{}/{}] '
'Data {data_time.val:.3f} ({data_time.avg:.3f}) '
'Batch {batch_time.val:.3f} ({batch_time.avg:.3f}) '
'Remain {remain_time} '
'Loss {loss_meter.val:.4f} ({loss_meter.avg:.4f}) '
'Accuracy {accuracy:.4f}.'.format(iter_num* args.batch_size_val, test_num,
data_time=data_time,
batch_time=batch_time,
remain_time=remain_time,
loss_meter=loss_meter,
accuracy=accuracy))
val_time = time.time()-val_start
iou_class = intersection_meter.sum / (union_meter.sum + 1e-10)
iou_class_m = intersection_meter_m.sum / (union_meter_m.sum + 1e-10)
mIoU = np.mean(iou_class)
mIoU_m = np.mean(iou_class_m)
class_iou_class = []
class_iou_class_m = []
class_iou_class_b = []
class_miou = 0
class_miou_m = 0
class_miou_b = 0
for i in range(len(class_intersection_meter)):
class_iou = class_intersection_meter[i]/(class_union_meter[i]+ 1e-10)
class_iou_class.append(class_iou)
class_miou += class_iou
class_iou = class_intersection_meter_m[i]/(class_union_meter_m[i]+ 1e-10)
class_iou_class_m.append(class_iou)
class_miou_m += class_iou
for i in range(len(class_intersection_meter_b)):
class_iou = class_intersection_meter_b[i]/(class_union_meter_b[i]+ 1e-10)
class_iou_class_b.append(class_iou)
class_miou_b += class_iou
target_b = np.array(class_target_meter_b)
class_miou = class_miou*1.0 / len(class_intersection_meter)
class_miou_m = class_miou_m*1.0 / len(class_intersection_meter)
class_miou_b = class_miou_b*1.0 / (len(class_intersection_meter_b) - len(target_b[target_b==0])) # filter the results with GT mIoU=0
logger.info('meanIoU---Val result: mIoU_f {:.4f}.'.format(class_miou)) # final
logger.info('meanIoU---Val result: mIoU_m {:.4f}.'.format(class_miou_m)) # meta
logger.info('meanIoU---Val result: mIoU_b {:.4f}.'.format(class_miou_b)) # base
logger.info('<<<<<<< Novel Results <<<<<<<')
for i in range(split_gap):
logger.info('Class_{} Result: iou_f {:.4f}.'.format(i+1, class_iou_class[i]))
logger.info('Class_{} Result: iou_m {:.4f}.'.format(i+1, class_iou_class_m[i]))
logger.info('<<<<<<< Base Results <<<<<<<')
for i in range(split_gap*3):
if class_target_meter_b[i] == 0:
logger.info('Class_{} Result: iou_b None.'.format(i+1+split_gap))
else:
logger.info('Class_{} Result: iou_b {:.4f}.'.format(i+1+split_gap, class_iou_class_b[i]))
logger.info('FBIoU---Val result: FBIoU_f {:.4f}.'.format(mIoU))
logger.info('FBIoU---Val result: FBIoU_m {:.4f}.'.format(mIoU_m))
for i in range(args.classes):
logger.info('Class_{} Result: iou_f {:.4f}.'.format(i, iou_class[i]))
logger.info('Class_{} Result: iou_m {:.4f}.'.format(i, iou_class_m[i]))
logger.info('<<<<<<<<<<<<<<<<< End Evaluation <<<<<<<<<<<<<<<<<')
print('total time: {:.4f}, avg inference time: {:.4f}, count: {}'.format(val_time, model_time.avg, test_num))
return mIoU, mIoU_m, class_miou, class_miou_m, class_miou_b, iou_class[1]
if __name__ == '__main__':
main()