-
Notifications
You must be signed in to change notification settings - Fork 205
/
Copy pathlatlon-nvector-ellipsoidal.js
445 lines (356 loc) · 15.8 KB
/
latlon-nvector-ellipsoidal.js
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
/* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */
/* Vector-based ellipsoidal geodetic (latitude/longitude) functions (c) Chris Veness 2015-2021 */
/* MIT Licence */
/* www.movable-type.co.uk/scripts/latlong-vectors.html */
/* www.movable-type.co.uk/scripts/geodesy-library.html#latlon-nvector-ellipsoidal */
/* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */
import LatLonEllipsoidal, { Cartesian, Vector3d, Dms } from './latlon-ellipsoidal.js';
/**
* Tools for working with points on (ellipsoidal models of) the earth’s surface using a vector-based
* approach using ‘n-vectors’ (rather than the more common spherical trigonometry).
*
* Based on Kenneth Gade’s ‘Non-singular Horizontal Position Representation’.
*
* Note that these formulations take x => 0°N,0°E, y => 0°N,90°E, z => 90°N (in order that n-vector
* = cartesian vector at 0°N,0°E); Gade uses x => 90°N, y => 0°N,90°E, z => 0°N,0°E.
*
* @module latlon-nvector-ellipsoidal
*/
/* LatLon_NvectorEllipsoidal - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */
/**
* Latitude/longitude points on an ellipsoidal model earth augmented with methods for calculating
* delta vectors between points, and converting to n-vectors.
*
* @extends LatLonEllipsoidal
*/
class LatLon_NvectorEllipsoidal extends LatLonEllipsoidal {
/**
* Calculates delta from ‘this’ point to supplied point.
*
* The delta is given as a north-east-down NED vector. Note that this is a linear delta,
* unrelated to a geodesic on the ellipsoid.
*
* Points need not be defined on the same datum.
*
* @param {LatLon} point - Point delta is to be determined to.
* @returns {Ned} Delta from ‘this’ point to supplied point in local tangent plane of this point.
* @throws {TypeError} Invalid point.
*
* @example
* const a = new LatLon(49.66618, 3.45063, 99);
* const b = new LatLon(48.88667, 2.37472, 64);
* const delta = a.deltaTo(b); // [N:-86127,E:-78901,D:1104]
* const dist = delta.length; // 116809.178 m
* const brng = delta.bearing; // 222.493°
* const elev = delta.elevation; // -0.5416°
*/
deltaTo(point) {
if (!(point instanceof LatLonEllipsoidal)) throw new TypeError(`invalid point ‘${point}’`);
// get delta in cartesian frame
const c1 = this.toCartesian();
const c2 = point.toCartesian();
const δc = c2.minus(c1);
// get local (n-vector) coordinate frame
const n1 = this.toNvector();
const a = new Vector3d(0, 0, 1); // axis vector pointing to 90°N
const d = n1.negate(); // down (pointing opposite to n-vector)
const e = a.cross(n1).unit(); // east (pointing perpendicular to the plane)
const n = e.cross(d); // north (by right hand rule)
// rotation matrix is built from n-vector coordinate frame axes (using row vectors)
const r = [
[ n.x, n.y, n.z ],
[ e.x, e.y, e.z ],
[ d.x, d.y, d.z ],
];
// apply rotation to δc to get delta in n-vector reference frame
const δn = new Cartesian(
r[0][0]*δc.x + r[0][1]*δc.y + r[0][2]*δc.z,
r[1][0]*δc.x + r[1][1]*δc.y + r[1][2]*δc.z,
r[2][0]*δc.x + r[2][1]*δc.y + r[2][2]*δc.z,
);
return new Ned(δn.x, δn.y, δn.z);
}
/**
* Calculates destination point using supplied delta from ‘this’ point.
*
* The delta is given as a north-east-down NED vector. Note that this is a linear delta,
* unrelated to a geodesic on the ellipsoid.
*
* @param {Ned} delta - Delta from ‘this’ point to supplied point in local tangent plane of this point.
* @returns {LatLon} Destination point.
*
* @example
* const a = new LatLon(49.66618, 3.45063, 99);
* const delta = Ned.fromDistanceBearingElevation(116809.178, 222.493, -0.5416); // [N:-86127,E:-78901,D:1104]
* const b = a.destinationPoint(delta); // 48.8867°N, 002.3747°E
*/
destinationPoint(delta) {
if (!(delta instanceof Ned)) throw new TypeError('delta is not Ned object');
// convert North-East-Down delta to standard x/y/z vector in coordinate frame of n-vector
const δn = new Vector3d(delta.north, delta.east, delta.down);
// get local (n-vector) coordinate frame
const n1 = this.toNvector();
const a = new Vector3d(0, 0, 1); // axis vector pointing to 90°N
const d = n1.negate(); // down (pointing opposite to n-vector)
const e = a.cross(n1).unit(); // east (pointing perpendicular to the plane)
const n = e.cross(d); // north (by right hand rule)
// rotation matrix is built from n-vector coordinate frame axes (using column vectors)
const r = [
[ n.x, e.x, d.x ],
[ n.y, e.y, d.y ],
[ n.z, e.z, d.z ],
];
// apply rotation to δn to get delta in cartesian (ECEF) coordinate reference frame
const δc = new Cartesian(
r[0][0]*δn.x + r[0][1]*δn.y + r[0][2]*δn.z,
r[1][0]*δn.x + r[1][1]*δn.y + r[1][2]*δn.z,
r[2][0]*δn.x + r[2][1]*δn.y + r[2][2]*δn.z,
);
// apply (cartesian) delta to c1 to obtain destination point as cartesian coordinate
const c1 = this.toCartesian(); // convert this LatLon to Cartesian
const v2 = c1.plus(δc); // the plus() gives us a plain vector,..
const c2 = new Cartesian(v2.x, v2.y, v2.z); // ... need to convert it to Cartesian to get LatLon
// return destination cartesian coordinate as latitude/longitude
return c2.toLatLon();
}
/**
* Converts ‘this’ lat/lon point to n-vector (normal to the earth's surface).
*
* @returns {Nvector} N-vector representing lat/lon point.
*
* @example
* const p = new LatLon(45, 45);
* const n = p.toNvector(); // [0.5000,0.5000,0.7071]
*/
toNvector() { // note: replicated in LatLonNvectorSpherical
const φ = this.lat.toRadians();
const λ = this.lon.toRadians();
const sinφ = Math.sin(φ), cosφ = Math.cos(φ);
const sinλ = Math.sin(λ), cosλ = Math.cos(λ);
// right-handed vector: x -> 0°E,0°N; y -> 90°E,0°N, z -> 90°N
const x = cosφ * cosλ;
const y = cosφ * sinλ;
const z = sinφ;
return new NvectorEllipsoidal(x, y, z, this.h, this.datum);
}
/**
* Converts ‘this’ point from (geodetic) latitude/longitude coordinates to (geocentric) cartesian
* (x/y/z) coordinates.
*
* @returns {Cartesian} Cartesian point equivalent to lat/lon point, with x, y, z in metres from
* earth centre.
*/
toCartesian() {
const c = super.toCartesian(); // c is 'Cartesian'
// return Cartesian_Nvector to have toNvector() available as method of exported LatLon
return new Cartesian_Nvector(c.x, c.y, c.z);
}
}
/* Nvector - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */
/**
* An n-vector is a position representation using a (unit) vector normal to the Earth ellipsoid.
* Unlike latitude/longitude points, n-vectors have no singularities or discontinuities.
*
* For many applications, n-vectors are more convenient to work with than other position
* representations such as latitude/longitude, earth-centred earth-fixed (ECEF) vectors, UTM
* coordinates, etc.
*
* @extends Vector3d
*/
class NvectorEllipsoidal extends Vector3d {
// note commonality with latlon-nvector-spherical
/**
* Creates a 3d n-vector normal to the Earth's surface.
*
* @param {number} x - X component of n-vector (towards 0°N, 0°E).
* @param {number} y - Y component of n-vector (towards 0°N, 90°E).
* @param {number} z - Z component of n-vector (towards 90°N).
* @param {number} [h=0] - Height above ellipsoid surface in metres.
* @param {LatLon.datums} [datum=WGS84] - Datum this n-vector is defined within.
*/
constructor(x, y, z, h=0, datum=LatLonEllipsoidal.datums.WGS84) {
const u = new Vector3d(x, y, z).unit(); // n-vectors are always normalised
super(u.x, u.y, u.z);
this.h = Number(h);
this.datum = datum;
}
/**
* Converts ‘this’ n-vector to latitude/longitude point.
*
* @returns {LatLon} Latitude/longitude point equivalent to this n-vector.
*
* @example
* const p = new Nvector(0.500000, 0.500000, 0.707107).toLatLon(); // 45.0000°N, 045.0000°E
*/
toLatLon() {
// tanφ = z / √(x²+y²), tanλ = y / x (same as spherical calculation)
const { x, y, z } = this;
const φ = Math.atan2(z, Math.sqrt(x*x + y*y));
const λ = Math.atan2(y, x);
return new LatLon_NvectorEllipsoidal(φ.toDegrees(), λ.toDegrees(), this.h, this.datum);
}
/**
* Converts ‘this’ n-vector to cartesian coordinate.
*
* qv Gade 2010 ‘A Non-singular Horizontal Position Representation’ eqn 22
*
* @returns {Cartesian} Cartesian coordinate equivalent to this n-vector.
*
* @example
* const c = new Nvector(0.500000, 0.500000, 0.707107).toCartesian(); // [3194419,3194419,4487349]
* const p = c.toLatLon(); // 45.0000°N, 045.0000°E
*/
toCartesian() {
const { b, f } = this.datum.ellipsoid;
const { x, y, z, h } = this;
const m = (1-f) * (1-f); // (1−f)² = b²/a²
const n = b / Math.sqrt(x*x/m + y*y/m + z*z);
const xʹ = n * x / m + x*h;
const yʹ = n * y / m + y*h;
const zʹ = n * z + z*h;
return new Cartesian_Nvector(xʹ, yʹ, zʹ);
}
/**
* Returns a string representation of ‘this’ (unit) n-vector. Height component is only shown if
* dpHeight is specified.
*
* @param {number} [dp=3] - Number of decimal places to display.
* @param {number} [dpHeight=null] - Number of decimal places to use for height; default is no height display.
* @returns {string} Comma-separated x, y, z, h values.
*
* @example
* new Nvector(0.5000, 0.5000, 0.7071).toString(); // [0.500,0.500,0.707]
* new Nvector(0.5000, 0.5000, 0.7071, 1).toString(6, 0); // [0.500002,0.500002,0.707103+1m]
*/
toString(dp=3, dpHeight=null) {
const { x, y, z } = this;
const h = `${this.h>=0 ? '+' : ''}${this.h.toFixed(dpHeight)}m`;
return `[${x.toFixed(dp)},${y.toFixed(dp)},${z.toFixed(dp)}${dpHeight==null ? '' : h}]`;
}
}
/* Cartesian - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */
/**
* Cartesian_Nvector extends Cartesian with method to convert cartesian coordinates to n-vectors.
*
* @extends Cartesian
*/
class Cartesian_Nvector extends Cartesian {
/**
* Converts ‘this’ cartesian coordinate to an n-vector.
*
* qv Gade 2010 ‘A Non-singular Horizontal Position Representation’ eqn 23
*
* @param {LatLon.datums} [datum=WGS84] - Datum to use for conversion.
* @returns {Nvector} N-vector equivalent to this cartesian coordinate.
*
* @example
* const c = new Cartesian(3980581, 97, 4966825);
* const n = c.toNvector(); // { x: 0.6228, y: 0.0000, z: 0.7824, h: 0.0000 }
*/
toNvector(datum=LatLonEllipsoidal.datums.WGS84) {
const { a, f } = datum.ellipsoid;
const { x, y, z } = this;
const e2 = 2*f - f*f; // e² = 1st eccentricity squared ≡ (a²-b²)/a²
const e4 = e2*e2; // e⁴
const p = (x*x + y*y) / (a*a);
const q = z*z * (1-e2) / (a*a);
const r = (p + q - e4) / 6;
const s = (e4*p*q) / (4*r*r*r);
const t = Math.cbrt(1 + s + Math.sqrt(2*s+s*s));
const u = r * (1 + t + 1/t);
const v = Math.sqrt(u*u + e4*q);
const w = e2 * (u + v - q) / (2*v);
const k = Math.sqrt(u + v + w*w) - w;
const d = k * Math.sqrt(x*x + y*y) / (k + e2);
const tmp = 1 / Math.sqrt(d*d + z*z);
const xʹ = tmp * k/(k+e2) * x;
const yʹ = tmp * k/(k+e2) * y;
const zʹ = tmp * z;
const h = (k + e2 - 1)/k * Math.sqrt(d*d + z*z);
const n = new NvectorEllipsoidal(xʹ, yʹ, zʹ, h, datum);
return n;
}
}
/* Ned - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */
/**
* North-east-down (NED), also known as local tangent plane (LTP), is a vector in the local
* coordinate frame of a body.
*/
class Ned {
/**
* Creates North-East-Down vector.
*
* @param {number} north - North component in metres.
* @param {number} east - East component in metres.
* @param {number} down - Down component (normal to the surface of the ellipsoid) in metres.
*
* @example
* import { Ned } from '/js/geodesy/latlon-nvector-ellipsoidal.js';
* const delta = new Ned(110569, 111297, 1936); // [N:110569,E:111297,D:1936]
*/
constructor(north, east, down) {
this.north = north;
this.east = east;
this.down = down;
}
/**
* Length of NED vector.
*
* @returns {number} Length of NED vector in metres.
*/
get length() {
const { north, east, down } = this;
return Math.sqrt(north*north + east*east + down*down);
}
/**
* Bearing of NED vector.
*
* @returns {number} Bearing of NED vector in degrees from north.
*/
get bearing() {
const θ = Math.atan2(this.east, this.north);
return Dms.wrap360(θ.toDegrees()); // normalise to range 0..360°
}
/**
* Elevation of NED vector.
*
* @returns {number} Elevation of NED vector in degrees from horizontal (ie tangent to ellipsoid surface).
*/
get elevation() {
const α = Math.asin(this.down/this.length);
return -α.toDegrees();
}
/**
* Creates North-East-Down vector from distance, bearing, & elevation (in local coordinate system).
*
* @param {number} dist - Length of NED vector in metres.
* @param {number} brng - Bearing (in degrees from north) of NED vector .
* @param {number} elev - Elevation (in degrees from local coordinate frame horizontal) of NED vector.
* @returns {Ned} North-East-Down vector equivalent to distance, bearing, elevation.
*
* @example
* const delta = Ned.fromDistanceBearingElevation(116809.178, 222.493, -0.5416); // [N:-86127,E:-78901,D:1104]
*/
static fromDistanceBearingElevation(dist, brng, elev) {
const θ = Number(brng).toRadians();
const α = Number(elev).toRadians();
dist = Number(dist);
const sinθ = Math.sin(θ), cosθ = Math.cos(θ);
const sinα = Math.sin(α), cosα = Math.cos(α);
const n = cosθ * dist*cosα;
const e = sinθ * dist*cosα;
const d = -sinα * dist;
return new Ned(n, e, d);
}
/**
* Returns a string representation of ‘this’ NED vector.
*
* @param {number} [dp=0] - Number of decimal places to display.
* @returns {string} Comma-separated (labelled) n, e, d values.
*/
toString(dp=0) {
return `[N:${this.north.toFixed(dp)},E:${this.east.toFixed(dp)},D:${this.down.toFixed(dp)}]`;
}
}
/* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */
export { LatLon_NvectorEllipsoidal as default, NvectorEllipsoidal as Nvector, Cartesian_Nvector as Cartesian, Ned, Dms };