forked from amueller/kaggle_insults
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
222 lines (188 loc) · 7.66 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
import numpy as np
import matplotlib as mpl
mpl.use('Agg')
from sklearn.cross_validation import train_test_split, ShuffleSplit
from sklearn.base import BaseEstimator, clone
from sklearn.grid_search import GridSearchCV
from sklearn.linear_model import LogisticRegression
from features import TextFeatureTransformer
from sklearn.metrics import roc_auc_score as auc_score
import matplotlib.pyplot as plt
from models import build_base_model
from models import build_elasticnet_model
from models import build_stacked_model
from models import build_nltk_model
#from sklearn.feature_selection import SelectPercentile, chi2
from util import load_data, load_extended_data, write_test, load_test
from IPython.core.debugger import Tracer
tracer = Tracer()
class BaggingClassifier(BaseEstimator):
def __init__(self, estimator, n_estimators=10):
self.estimator = estimator
self.n_estimators = n_estimators
def fit(self, X, y):
self.estimators = []
cv = ShuffleSplit(X.shape[0], n_iterations=self.n_estimators,
test_size=0.3, indices=True)
for train, test in cv:
est = clone(self.estimator)
est.fit(X[train], y[train])
self.estimators.append(est)
return self
def predict(self, X):
return np.argmax(self.predict_proba(X), axis=1)
def predict_proba(self, X):
probs = np.zeros((X.shape[0], 2))
for est in self.estimators:
probs += est.predict_proba(X)
return probs / self.n_estimators
def apply_models():
comments, labels = load_extended_data()
comments_test = load_test("impermium_verification_set_.csv")
clf1 = build_base_model()
clf2 = build_elasticnet_model()
clf3 = build_stacked_model()
clf4 = build_nltk_model()
models = [clf1, clf2, clf3, clf4]
probs_common = np.zeros((len(comments_test), 2))
for i, clf in enumerate(models):
clf.fit(comments, labels)
probs = clf.predict_proba(comments_test)
#print("score: %f" % auc_score(labels_test, probs[:, 1]))
probs_common += probs
write_test(probs[:, 1], "test_prediction_model_%d.csv" % i,
ds="impermium_verification_set_.csv")
probs_common /= 4.
#score = auc_score(labels_test, probs_common[:, 1])
#print("combined score: %f" % score)
write_test(probs_common[:, 1], "test_prediction_combined.csv",
ds="impermium_verification_set_.csv")
def eval_model():
comments, labels = load_extended_data()
clf1 = build_base_model()
clf2 = build_elasticnet_model()
clf3 = build_stacked_model()
clf4 = build_nltk_model()
models = [clf1, clf2, clf3, clf4]
#models = [clf1]
cv = ShuffleSplit(len(comments), n_iterations=5, test_size=0.2,
indices=True)
scores = []
for train, test in cv:
probs_common = np.zeros((len(test), 2))
for clf in models:
X_train, y_train = comments[train], labels[train]
X_test, y_test = comments[test], labels[test]
clf.fit(X_train, y_train)
probs = clf.predict_proba(X_test)
print("score: %f" % auc_score(y_test, probs[:, 1]))
probs_common += probs
probs_common /= 4.
scores.append(auc_score(y_test, probs_common[:, 1]))
print("combined score: %f" % scores[-1])
print(np.mean(scores), np.std(scores))
def grid_search():
comments, labels = load_data()
param_grid = dict(logr__C=np.arange(1, 20, 5))
clf = build_nltk_model()
cv = ShuffleSplit(len(comments), n_iterations=10, test_size=0.2)
grid = GridSearchCV(clf, cv=cv, param_grid=param_grid, verbose=4,
n_jobs=12, score_func=auc_score)
grid.fit(comments, labels)
print(grid.best_score_)
print(grid.best_params_)
tracer()
cv_scores = grid.scores_
for param in cv_scores.params:
means, errors = cv_scores.accumulated(param, 'max')
plt.errorbar(cv_scores.values[param], means, yerr=errors)
plt.xlabel(param)
plt.ylim((0.85, 0.93))
plt.savefig("grid_plot_%s.png" % param)
plt.close()
comments_test, dates_test = load_test()
prob_pred = grid.best_estimator_.predict_proba(comments_test)
write_test(prob_pred[:, 1])
def analyze_output():
comments, labels = load_data()
y_train, y_test, comments_train, comments_test = \
train_test_split(labels, comments, random_state=1)
#from sklearn.tree import DecisionTreeClassifier
#bad = BadWordCounter()
#custom = bad.transform(comments_train)
clf = LogisticRegression(tol=1e-8, penalty='l2', C=1.5)
#clf = DecisionTreeClassifier(compute_importances=True,min_samples_leaf=10)
ft = TextFeatureTransformer().fit(comments_train, y_train)
X_train = ft.transform(comments_train)
#select = SelectPercentile(score_func=chi2, percentile=7)
#X_train_s = select.fit_transform(X_train, y_train)
X_test = ft.transform(comments_test)
clf.fit(X_train, y_train)
#from sklearn.tree import export_graphviz
#export_graphviz(clf, "tree3.dot", ft.get_feature_names())
#tracer()
#X_test_s = select.transform(X_test)
probs = clf.predict_proba(X_test)
pred = clf.predict(X_test)
pred_train = clf.predict(X_train)
probs_train = clf.predict_proba(X_train)
print("auc: %f" % auc_score(y_test, probs[:, 1]))
print("auc train: %f" % auc_score(y_train, probs_train[:, 1]))
fp_train = np.where(pred_train > y_train)[0]
fn_train = np.where(pred_train < y_train)[0]
fn_comments_train = comments_train[fn_train]
fp_comments_train = comments_train[fp_train]
n_bad_train = X_train[:, -22].toarray().ravel()
fn_comments_train = np.vstack([fn_train, n_bad_train[fn_train],
probs_train[fn_train][:, 1], fn_comments_train]).T
fp_comments_train = np.vstack([fp_train, n_bad_train[fp_train],
probs_train[fp_train][:, 1], fp_comments_train]).T
fp = np.where(pred > y_test)[0]
fn = np.where(pred < y_test)[0]
fn_comments = comments_test[fn]
fp_comments = comments_test[fp]
n_bad = X_test[:, -2].toarray().ravel()
fn_comments = np.vstack([fn, n_bad[fn], probs[fn][:, 1], fn_comments]).T
fp_comments = np.vstack([fp, n_bad[fp], probs[fp][:, 1], fp_comments]).T
# visualize important features
#important = np.abs(clf.coef_.ravel()) > 0.001
#coef_ = select.inverse_transform(clf.coef_)
coef_ = clf.coef_
important = np.argsort(np.abs(coef_.ravel()))[-100:]
feature_names = ft.get_feature_names()
f_imp = feature_names[important]
coef = coef_.ravel()[important]
inds = np.argsort(coef)
f_imp = f_imp[inds]
coef = coef[inds]
plt.plot(coef, label="l1")
ax = plt.gca()
ax.set_xticks(np.arange(len(coef)))
labels = ax.set_xticklabels(f_imp)
for label in labels:
label.set_rotation(90)
plt.savefig("ana.png", bbox_inches="tight")
plt.show()
def about(comment_num):
print(comments_test[comment_num])
inds = np.where(X_test[comment_num].toarray())[1]
coef_com = coef_.ravel()[inds]
feat_entries = X_test[comment_num, inds].toarray().ravel()
sorting = np.argsort(coef_com * feat_entries)
blub = np.vstack([feature_names[inds][sorting], feat_entries[sorting],
coef_com[sorting]]).T
print(blub)
tracer()
def explore_features():
comments, labels = load_extended_data()
ft = TextFeatureTransformer()
features, flat_words_lower, filtered_words, comments_filtered = \
ft._preprocess(comments)
asdf = [" ".join(w) for w in filtered_words]
np.savetxt("filtered.txt", asdf, fmt="%s")
if __name__ == "__main__":
#grid_search()
#eval_model()
#analyze_output()
#explore_features()
apply_models()