forked from minivision-ai/photo2cartoon
-
Notifications
You must be signed in to change notification settings - Fork 0
/
dataset.py
108 lines (80 loc) · 3.5 KB
/
dataset.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
import torch.utils.data as data
from PIL import Image
import os
import os.path
def has_file_allowed_extension(filename, extensions):
"""Checks if a file is an allowed extension.
Args:
filename (string): path to a file
Returns:
bool: True if the filename ends with a known image extension
"""
filename_lower = filename.lower()
return any(filename_lower.endswith(ext) for ext in extensions)
def find_classes(dir):
classes = [d for d in os.listdir(dir) if os.path.isdir(os.path.join(dir, d))]
classes.sort()
class_to_idx = {classes[i]: i for i in range(len(classes))}
return classes, class_to_idx
def make_dataset(dir, extensions):
images = []
for root, _, fnames in sorted(os.walk(dir)):
for fname in sorted(fnames):
if has_file_allowed_extension(fname, extensions):
path = os.path.join(root, fname)
item = (path, 0)
images.append(item)
return images
class DatasetFolder(data.Dataset):
def __init__(self, root, loader, extensions, transform=None, target_transform=None):
# classes, class_to_idx = find_classes(root)
samples = make_dataset(root, extensions)
if len(samples) == 0:
raise(RuntimeError("Found 0 files in subfolders of: " + root + "\n"
"Supported extensions are: " + ",".join(extensions)))
self.root = root
self.loader = loader
self.extensions = extensions
self.samples = samples
self.transform = transform
self.target_transform = target_transform
def __getitem__(self, index):
"""
Args:
index (int): Index
Returns:
tuple: (sample, target) where target is class_index of the target class.
"""
path, target = self.samples[index]
sample = self.loader(path)
if self.transform is not None:
sample = self.transform(sample)
if self.target_transform is not None:
target = self.target_transform(target)
return sample, target
def __len__(self):
return len(self.samples)
def __repr__(self):
fmt_str = 'Dataset ' + self.__class__.__name__ + '\n'
fmt_str += ' Number of datapoints: {}\n'.format(self.__len__())
fmt_str += ' Root Location: {}\n'.format(self.root)
tmp = ' Transforms (if any): '
fmt_str += '{0}{1}\n'.format(tmp, self.transform.__repr__().replace('\n', '\n' + ' ' * len(tmp)))
tmp = ' Target Transforms (if any): '
fmt_str += '{0}{1}'.format(tmp, self.target_transform.__repr__().replace('\n', '\n' + ' ' * len(tmp)))
return fmt_str
IMG_EXTENSIONS = ['.jpg', '.jpeg', '.png', '.ppm', '.bmp', '.pgm', '.tif']
def pil_loader(path):
# open path as file to avoid ResourceWarning (https://github.com/python-pillow/Pillow/issues/835)
with open(path, 'rb') as f:
img = Image.open(f)
return img.convert('RGB')
def default_loader(path):
return pil_loader(path)
class ImageFolder(DatasetFolder):
def __init__(self, root, transform=None, target_transform=None,
loader=default_loader):
super(ImageFolder, self).__init__(root, loader, IMG_EXTENSIONS,
transform=transform,
target_transform=target_transform)
self.imgs = self.samples