-
Notifications
You must be signed in to change notification settings - Fork 8
/
gen_psf_interferometer_detect_skyimCJC.py
executable file
·216 lines (190 loc) · 7.65 KB
/
gen_psf_interferometer_detect_skyimCJC.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
#! /usr/bin/python
"""
Interferometer/PSF simulator
Created by: Jack Hickish
Minor Modifications by: Griffin Foster
Added threshold detection option to allow non-circular layouts (i.e. handdrawn) Charles Copley
TODO: add color
TODO: adjust detection paramters
TODO: add freeze/unfreeze command
TODO: add rotation command
"""
import cv2 #for ubuntu 12.04 install see: http://karytech.blogspot.com/2012/05/opencv-24-on-ubuntu-1204.html
import cv
import numpy as np
import time
import sys, optparse
import pdb
import matplotlib.pylab as plt
def cvfast_conv(image,psf):
max_size = np.array([np.max([image.shape[0],psf.shape[0]]),np.max([image.shape[1],psf.shape[1]])])
n = cv.GetOptimalDFTSize(max_size[0]*2)
m = cv.GetOptimalDFTSize(max_size[1]*2)
imagePad=np.zeros((n,m))
imagePad[:image.shape[0],:image.shape[1]]=image
imageDirty=np.fft.irfft2(np.fft.rfft2(imagePad) * np.fft.rfft2(psf, imagePad.shape))
print image.shape, psf.shape, n,m
return imageDirty[psf.shape[0]/2:image.shape[0]+psf.shape[0]/2,psf.shape[1]/2:image.shape[1]+psf.shape[1]/2]
#return imagePad
def cv2array(im):
depth2dtype = {
cv.IPL_DEPTH_8U: 'uint8',
cv.IPL_DEPTH_8S: 'int8',
cv.IPL_DEPTH_16U: 'uint16',
cv.IPL_DEPTH_16S: 'int16',
cv.IPL_DEPTH_32S: 'int32',
cv.IPL_DEPTH_32F: 'float32',
cv.IPL_DEPTH_64F: 'float64',
}
arrdtype=im.depth
a = np.fromstring(
im.tostring(),
dtype=depth2dtype[im.depth],
count=im.width*im.height*im.nChannels)
a.shape = (im.height,im.width,im.nChannels)
return a
def edgeDetect(image):
##function that uses edge detection thresholding to find the locations of the points
# pdb.set_trace()
image=~image ##we need to invert so that the points are turned white.
thresh1 = cv2.Canny(image,70,255) ##first set up the thresholding
contours, hierarchy = cv2.findContours(thresh1,cv2.RETR_TREE,cv2.CHAIN_APPROX_SIMPLE)
pos=[]
old=[]
new=[]
for cnt in range(len(contours)):
peri = cv2.arcLength(contours[cnt], True)
approx = cv2.approxPolyDP(contours[cnt], 0.02 * peri, True)
# cv2.drawContours(thresh1, [approx], -1, (255, 255, 0), 6)
M=cv2.moments(contours[cnt])
try:
cx = int(M['m10']/M['m00'])
cy = int(M['m01']/M['m00'])
cv2.circle(image,(cx,cy),10,(255,255,0),5)
# pdb.set_trace()
new=[cx,cy] #set this up to avoid doubling positions contours
if(old!=new):
pos.append([cx,cy])
old=new
except:
print 'error'
try:
print cnt,cx,cy
except:
print 'error'
cv2.imshow("image",image)
# cv2.waitKey(0)
return [frame,pos]
def array2cv(a):
dtype2depth = {
'uint8': cv.IPL_DEPTH_8U,
'int8': cv.IPL_DEPTH_8S,
'uint16': cv.IPL_DEPTH_16U,
'int16': cv.IPL_DEPTH_16S,
'int32': cv.IPL_DEPTH_32S,
'float32': cv.IPL_DEPTH_32F,
'float64': cv.IPL_DEPTH_64F,
}
try:
nChannels = a.shape[2]
except:
nChannels = 1
cv_im = cv.CreateImageHeader((a.shape[1],a.shape[0]),
dtype2depth[str(a.dtype)], nChannels)
cv.SetData(cv_im, a.tostring(),a.dtype.itemsize*nChannels*a.shape[1])
return cv_im
o = optparse.OptionParser()
o.set_usage('%prog [options]')
o.set_description(__doc__)
o.add_option('-i','--input',dest='input', default=None,
help='Input \'sky\' image, Default: HARDCODED')
o.add_option('-c','--camera',dest='camera', default=1, type='int',
help='Camera device ID in /dev/video*, Default: 1')
o.add_option('-r','--res',dest='res', default=1, type='int',
help='Resolution factor, increase this value to decrease the resolution, Default: 4')
opts, args = o.parse_args(sys.argv[1:])
CAMERA_DEVICE_INDEX=opts.camera #check /dev/, ID is attached to video device (0 is in the internal)
#cv.NamedWindow("Antenna Layout", cv.CV_WINDOW_AUTOSIZE)
#cv.NamedWindow("Target Image", cv.CV_WINDOW_AUTOSIZE)
#cv.NamedWindow("Point Spread", cv.CV_WINDOW_AUTOSIZE)
#cv.NamedWindow("Observed Image", cv.CV_WINDOW_AUTOSIZE)
#cam0 = cv.CaptureFromCAM(CAMERA_DEVICE_INDEX)
if opts.input is None:
target_image = cv2.imread('/home/griffin/Downloads/interactiveInterferometer/astro_test_image.jpg')
else:
target_image=cv2.imread(opts.input)
target_img_grey = cv2.cvtColor(target_image,cv2.cv.CV_BGR2GRAY)
target_img_lying = target_img_grey.copy()
#saturated image
target_img_grey[target_img_grey>100] = 255
target_img_grey[target_img_grey<255] = 0
RESCALE_FACTOR=opts.res #decrease to change the effective resolution
ysize=480
xsize=640
#make a 2D Gaussian to modulate the PSF with
def gauss2d(x0,y0,amp,stdx,stdy):
return lambda x,y: amp*np.exp(-1.*( (((x-x0)**2.)/(2*stdx**2.)) + (((y-y0)**2.)/(2*stdy**2.)) ))
gaussFunc=gauss2d(0.,0.,1.,30.,30.)
xx = np.arange(xsize)-(xsize/2)
yy = np.arange(ysize)-(ysize/2)
xv, yv = np.meshgrid(xx, yy)
gaussGrid=gaussFunc(xv,yv)
while(True):
# pdb.set_trace()
cam0t=cv2.VideoCapture(CAMERA_DEVICE_INDEX)
ret,frame = cam0t.read()
cam0t.release()
layout_img=frame
#ayout_img = cv.QueryFrame(cam0)
# layout_img_grey = cv.CreateImage((layout_img.width,layout_img.height),layout_img.depth,1)
# cv.CvtColor(layout_img,layout_img_grey,cv.CV_BGR2GRAY)
#ayout_img_grey_arr = cv2array(layout_img_grey)
layout_img_grey_arr = cv2.cvtColor(layout_img,cv2.COLOR_BGR2GRAY)
station_locs = np.zeros([ysize/RESCALE_FACTOR,xsize/RESCALE_FACTOR])
#cv2.HoughCircles(image, method, dp, minDist, circles, param1, param2, minRadius, maxRadius)
# image: input webcam image size
# method: only cv.CV_HOUGH_GRADIENT exists
# dp: Inverse ratio of the accumulator resolution to the image resolution. this basically affects the min/max radius
# minDist: Minimum distance between the centers of the detected circles. If the parameter is too small, multiple neighbor circles may be falsely detected in addition to a true one. If it is too large, some circles may be missed.
# circles: set to None
# param1: threshold parameter
# param2: The smaller it is, the more false circles may be detected.
# minRadius: Minimum circle radius
# maxRadius: Maximum circle radius
# circles = cv2.HoughCircles(layout_img_grey_arr, cv.CV_HOUGH_GRADIENT,2,10,None,100,35,5,30)
[layout_img_grey_arr,targets]=edgeDetect(layout_img_grey_arr)
circles=np.array(targets)
if circles is not None:
for cn in range(1,len(circles)):
## pdb.set_trace()
y,x = circles[cn]
print "we have circle at %d,%d"%(x,y)
try:
layout_img_grey_arr[x-5:x+5,y-5:y+5]=255
except:
pass
# pdb.set_trace()
station_locs[x/RESCALE_FACTOR,y/RESCALE_FACTOR]=1
psf = np.fft.fftshift(np.abs(np.fft.fft2(station_locs,s=[ysize,xsize]))**2)
#psf=psf[(ysize/2)-64:(ysize/2)+64,(xsize/2)-64:(xsize/2)+64] #only select the central region of the PSF
psf /= psf.max()
psf=psf*gaussGrid #apply a Gaussian taper to the PSF
psf_img = array2cv(psf)
#target_arr = target_img_grey[:,:]
#dirty_arr = cvfast_conv(target_arr,psf)
dirty_arr = cvfast_conv(target_img_lying,psf)
dirty_arr /= dirty_arr.max()
dirty_img = array2cv(dirty_arr)
# pdb.set_trace()
cv2.imshow("Antenna Layout",layout_img_grey_arr)
cv2.imshow("Target Image",target_img_lying)
# cv2.imshow("Point Spread",psf_img)
# cv2.imshow("Observed Image",dirty_img)
#cv.ShowImage("Antenna Layout",array2cv(layout_img_grey_arr))
#cv.ShowImage("Target Image",array2cv(target_img_lying))
cv.ShowImage("Point Spread",psf_img)
cv.ShowImage("Observed Image",dirty_img)
#v.WaitKey(0)
if cv2.waitKey(50)!=-1:
break
cv.DestroyAllWindows()