Skip to content

Latest commit

 

History

History
96 lines (80 loc) · 4.67 KB

README.MD

File metadata and controls

96 lines (80 loc) · 4.67 KB

Multi-Task Convolutional Neural Networks for Atria Segmentation Challenge

Paper

Please cite our paper if you find it useful for your research.

@InProceedings{10.1007/978-3-030-12029-0_32,
author="Chen, Chen
and Bai, Wenjia
and Rueckert, Daniel",
title="Multi-task Learning for Left Atrial Segmentation on GE-MRI",
booktitle="Statistical Atlases and Computational Models of the Heart. Atrial Segmentation and LV Quantification Challenges",
year="2019",
publisher="Springer International Publishing",
address="Cham",
pages="292--301",
isbn="978-3-030-12029-0"
}

Install and Prepare

Environment

  • Python 3.6
  • Install Anaconda
  • Install CUDA (cuda 9.0), if your machine has a CUDA-enabled GPU.
  • create an Anaconda virtual environment to install all the dependencies packages below.

Dependencies

  • after having activated your virtual enviroment under this project directory (conda activate $your_virtual environment), run pip install -r requirements.txt
    • pandas==0.22.0
    • matplotlib==2.2.2
    • nipy==0.4.2
    • MedPy==0.3.0
    • scipy==1.0.1
    • tqdm==4.23.0
    • numpy==1.14.2
    • SimpleITK==1.1.0
    • scikit-image
    • tensorboardX==1.4
  • and then install an adapted version of torch sample via : pip install git+https://github.com/ozan-oktay/torchsample/

Data

Download all training and testing data.

  • for the testing data, simply unzip the data you download.
  • for the trainining data:
    • create a directory contains 2 sub directories: a train set and a validate set.
    • randomly split the training data into this training set and the validation set with a ratio of 4:1.

Test

  • You can eiter use a single model to predict:

    • open terminal under project dir,
    • type: python predict_nrrd.py --model $model_path$ --input $test_dataset$ --save_name $predicted_result_name$ --force_norm
      • model_path: the path you saved your trained model for predicting.
      • test_dataset: the path where you unzipped the testing data.
        • test_dataset
          • patient_1
          • patient_2
          • patient_XX
      • save_name: the name for the predicted result when saving. The predicted result will be saved under the same directory of the input patient_dir.
      • e.g.python predict_nrrd.py --model 'home/Atria_Seg/atria_mt_model.pkl' --input "home/AtriaSeg_2018_testing/" --save_name "predict.nrrd" --force_norm
    • if use post-process: append '--post' to the tail of the above command. This will do morphological operations for smoothing and keep the largest component in a volume.
      • e.g.python predict_nrrd.py --model 'home/Atria_Seg/atria_mt_model.pkl' --input "home/AtriaSeg_2018_testing/" --save_name "predict.nrrd" --force_norm --post
  • Or use multiple models to get ensembled result with improved robustness.

    • python ensemble.py
      • Before run: please change $test_dir$ and those paths in the $model_dict$ to your test dataset path and your models paths, respectively.

Train

  • python train_atria_seg.py --name '$predictor_path$' -b 6 --root_dir '$your training dataset path$' --csv_path $csv_path$
    • $predictor_path$ is your saved model's abs path.

    • $your training dataset path$: is the training dataset directory which contains train and validate dirs.

      • training dataset path
        • train
          • patient_1
          • patient_2
        • validate
          • patient_1
          • patient_2
    • $csv_path$: specifies an csv file path which contains extra pre/post ablation label for each patient. This file should be download with the training data. Or you can find it under the $data directory.

      • e.g. python train_atria_seg_mt.py --name 'atria_mt_model' --root_dir 'home/AtriaSeg_2018_training/cross_validation_dataset/0' --csv_path 'home/AtriaSeg_2018_training/data/pre post ablation recrods.csv'

Visualization of training and validation loss and iou during training procedure.

  • open a new terminal under your project dir before training.
  • run tensorboard --logdir runs