-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain_caj.py
310 lines (246 loc) · 11.9 KB
/
train_caj.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
# -*- coding: utf-8 -*-
from __future__ import print_function, absolute_import
import argparse
import os.path as osp
import random
import numpy as np
import sys
import collections
import time
from datetime import timedelta
from sklearn.cluster import DBSCAN
import torch
from torch import nn
from torch.backends import cudnn
from torch.utils.data import DataLoader
import torch.nn.functional as F
from caj import datasets
from caj import models
from caj.models.cm import ClusterMemory
from caj.trainers import ClusterContrastTrainer
from caj.evaluators import Evaluator, extract_features
from caj.utils.data import IterLoader
from caj.utils.data import transforms as T
from caj.utils.data.preprocessor import Preprocessor
from caj.utils.logging import Logger
from caj.utils.serialization import load_checkpoint, save_checkpoint
from caj.utils.caj_rerank import compute_jaccard_distance
from caj.utils.data.sampler import RandomMultipleGallerySampler, RandomMultipleGallerySamplerNoCam
start_epoch = best_mAP = 0
def get_data(name, data_dir):
root = osp.join(data_dir, name)
dataset = datasets.create(name, root)
return dataset
def get_train_loader(args, dataset, height, width, batch_size, workers,
num_instances, iters, trainset=None, no_cam=False):
normalizer = T.Normalize(mean=[0.485, 0.456, 0.406],
std=[0.229, 0.224, 0.225])
train_transformer = T.Compose([
T.Resize((height, width), interpolation=3),
T.RandomHorizontalFlip(p=0.5),
T.Pad(10),
T.RandomCrop((height, width)),
T.ToTensor(),
normalizer,
T.RandomErasing(probability=0.5, mean=[0.485, 0.456, 0.406])
])
train_set = sorted(dataset.train) if trainset is None else sorted(trainset)
rmgs_flag = num_instances > 0
if rmgs_flag:
if no_cam:
sampler = RandomMultipleGallerySamplerNoCam(train_set, num_instances)
else:
sampler = RandomMultipleGallerySampler(train_set, num_instances)
else:
sampler = None
train_loader = IterLoader(
DataLoader(Preprocessor(train_set, root=dataset.images_dir, transform=train_transformer),
batch_size=batch_size, num_workers=workers, sampler=sampler,
shuffle=not rmgs_flag, pin_memory=True, drop_last=True), length=iters)
return train_loader
def get_test_loader(dataset, height, width, batch_size, workers, testset=None):
normalizer = T.Normalize(mean=[0.485, 0.456, 0.406],
std=[0.229, 0.224, 0.225])
test_transformer = T.Compose([
T.Resize((height, width), interpolation=3),
T.ToTensor(),
normalizer
])
if testset is None:
testset = list(set(dataset.query) | set(dataset.gallery))
test_loader = DataLoader(
Preprocessor(testset, root=dataset.images_dir, transform=test_transformer),
batch_size=batch_size, num_workers=workers,
shuffle=False, pin_memory=True)
return test_loader
def create_model(args):
model = models.create(args.arch, num_features=args.features, norm=True, dropout=args.dropout,
num_classes=0, pooling_type=args.pooling_type)
# use CUDA
model.cuda()
model = nn.DataParallel(model)
return model
def main():
args = parser.parse_args()
if args.seed is not None:
random.seed(args.seed)
np.random.seed(args.seed)
torch.manual_seed(args.seed)
cudnn.deterministic = True
main_worker(args)
def main_worker(args):
global start_epoch, best_mAP
start_time = time.monotonic()
cudnn.benchmark = True
sys.stdout = Logger(osp.join(args.logs_dir, 'log.txt'))
print("==========\nArgs:{}\n==========".format(args))
# Create datasets
iters = args.iters if (args.iters > 0) else None
print("==> Load unlabeled dataset")
dataset = get_data(args.dataset, args.data_dir)
test_loader = get_test_loader(dataset, args.height, args.width, args.batch_size, args.workers)
# Create model
model = create_model(args)
if args.resume:
checkpoint = load_checkpoint(args.resume)
model.load_state_dict(checkpoint['state_dict'])
# Evaluator
evaluator = Evaluator(model)
# Optimizer
params = [{"params": [value]} for _, value in model.named_parameters() if value.requires_grad]
optimizer = torch.optim.Adam(params, lr=args.lr, weight_decay=args.weight_decay)
lr_scheduler = torch.optim.lr_scheduler.StepLR(optimizer, step_size=args.step_size, gamma=0.1)
# generate camera labels
if args.dataset == 'msmt17':
cam_labels = np.array([cid - 1 for _, _, cid in sorted(dataset.train)])
else:
cam_labels = np.array([cid for _, _, cid in sorted(dataset.train)])
# Trainer
trainer = ClusterContrastTrainer(model)
for epoch in range(args.epochs):
with torch.no_grad():
print('==> Create pseudo labels for unlabeled data')
cluster_loader = get_test_loader(dataset, args.height, args.width,
args.batch_size, args.workers, testset=sorted(dataset.train))
features, _ = extract_features(model, cluster_loader, print_freq=50)
features = torch.cat([features[f].unsqueeze(0) for f, _, _ in sorted(dataset.train)], 0)
rerank_dist = compute_jaccard_distance(features, cam_labels=cam_labels, epoch=epoch, args=args)
if epoch == 0:
# DBSCAN cluster
eps = args.eps
print('Clustering criterion: eps: {:.3f}'.format(eps))
cluster = DBSCAN(eps=eps, min_samples=4, metric='precomputed', n_jobs=-1)
# select & cluster images as training set of this epochs
pseudo_labels = cluster.fit_predict(rerank_dist)
num_cluster = len(set(pseudo_labels)) - (1 if -1 in pseudo_labels else 0)
# generate new dataset and calculate cluster centers
@torch.no_grad()
def generate_cluster_features(labels, features):
centers = collections.defaultdict(list)
for i, label in enumerate(labels):
if label == -1:
continue
centers[labels[i]].append(features[i])
centers = [
torch.stack(centers[idx], dim=0).mean(0) for idx in sorted(centers.keys())
]
centers = torch.stack(centers, dim=0)
return centers
cluster_features = generate_cluster_features(pseudo_labels, features)
del cluster_loader, features
# Create hybrid memory
memory = ClusterMemory(model.module.num_features, num_cluster, temp=args.temp,
momentum=args.momentum).cuda()
memory.features = F.normalize(cluster_features, dim=1).cuda()
trainer.memory = memory
pseudo_labeled_dataset = []
for i, ((fname, _, cid), label) in enumerate(zip(sorted(dataset.train), pseudo_labels)):
if label != -1:
pseudo_labeled_dataset.append((fname, label.item(), cid))
num_outlier = len(dataset.train) - len(pseudo_labeled_dataset)
print(
'==> Statistics for epoch {}: {} clusters, {} un-cluster instances'.format(epoch, num_cluster, num_outlier))
train_loader = get_train_loader(args, dataset, args.height, args.width,
args.batch_size, args.workers, args.num_instances, iters,
trainset=pseudo_labeled_dataset, no_cam=args.no_cam)
train_loader.new_epoch()
trainer.train(epoch, train_loader, optimizer,
print_freq=args.print_freq, train_iters=len(train_loader))
if (epoch + 1) % args.eval_step == 0 or (epoch == args.epochs - 1) or (epoch >= 40):
mAP = evaluator.evaluate(test_loader, dataset.query, dataset.gallery, cmc_flag=False)
is_best = (mAP > best_mAP)
best_mAP = max(mAP, best_mAP)
save_checkpoint({
'state_dict': model.state_dict(),
'epoch': epoch + 1,
'best_mAP': best_mAP,
}, is_best, fpath=osp.join(args.logs_dir, 'checkpoint.pth.tar'))
print('\n * Finished epoch {:3d} model mAP: {:5.1%} best: {:5.1%}{}\n'.
format(epoch, mAP, best_mAP, ' *' if is_best else ''))
lr_scheduler.step()
print('==> Test with the best model:')
checkpoint = load_checkpoint(osp.join(args.logs_dir, 'model_best.pth.tar'))
model.load_state_dict(checkpoint['state_dict'])
evaluator.evaluate(test_loader, dataset.query, dataset.gallery, cmc_flag=True)
end_time = time.monotonic()
print('Total running time: ', timedelta(seconds=end_time - start_time))
if __name__ == '__main__':
parser = argparse.ArgumentParser(description="CA-Jaccard: Camera-aware Jaccard Distance for Person Re-identification")
# data
parser.add_argument('-d', '--dataset', type=str, default='market1501',
choices=datasets.names())
parser.add_argument('-b', '--batch-size', type=int, default=256)
parser.add_argument('-j', '--workers', type=int, default=4)
parser.add_argument('--height', type=int, default=256, help="input height")
parser.add_argument('--width', type=int, default=128, help="input width")
parser.add_argument('--num-instances', type=int, default=16,
help="each minibatch consist of "
"(batch_size // num_instances) identities, and "
"each identity has num_instances instances, "
"default: 0 (NOT USE)")
# model
parser.add_argument('-a', '--arch', type=str, default='resnet50',
choices=models.names())
parser.add_argument('--features', type=int, default=0)
parser.add_argument('--dropout', type=float, default=0)
parser.add_argument('--momentum', type=float, default=0.1,
help="update momentum for the hybrid memory")
parser.add_argument('--resume', type=str, default='')
# optimizer
parser.add_argument('--lr', type=float, default=0.00035,
help="learning rate")
parser.add_argument('--weight-decay', type=float, default=5e-4)
parser.add_argument('--epochs', type=int, default=50)
parser.add_argument('--iters', type=int, default=200)
parser.add_argument('--step-size', type=int, default=20)
# training configs
parser.add_argument('--seed', type=int, default=1)
parser.add_argument('--print-freq', type=int, default=10)
parser.add_argument('--eval-step', type=int, default=4)
parser.add_argument('--temp', type=float, default=0.05,
help="temperature for scaling contrastive loss")
# path
working_dir = osp.dirname(osp.abspath(__file__))
parser.add_argument('--data-dir', type=str, metavar='PATH',
default=osp.join(working_dir, 'data'))
parser.add_argument('--logs-dir', type=str, metavar='PATH',
default=osp.join(working_dir, 'logs'))
parser.add_argument('--pooling-type', type=str, default='avg')
parser.add_argument('--no-cam', action="store_true")
# cluster
parser.add_argument('--eps', type=float, default=0.6,
help="max neighbor distance for DBSCAN")
# Jaccard
parser.add_argument('--k1', type=int, default=30,
help="hyperparameter for jaccard distance")
parser.add_argument('--k2', type=int, default=6,
help="hyperparameter for jaccard distance")
# CKRNNs
parser.add_argument('--ckrnns', action='store_true')
parser.add_argument('--k1-intra', type=int, default=5)
parser.add_argument('--k1-inter', type=int, default=20)
# CLQE
parser.add_argument('--clqe', action='store_true')
parser.add_argument('--k2-intra', type=int, default=3)
parser.add_argument('--k2-inter', type=int, default=3)
main()