-
Notifications
You must be signed in to change notification settings - Fork 23
/
Copy pathINCV.py
212 lines (185 loc) · 9.78 KB
/
INCV.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
# -*- coding: utf-8 -*-
"""
Created on Wed Aug 7 10:25:07 2019
@author: 陈鹏飞
"""
import argparse
parser = argparse.ArgumentParser()
parser.add_argument('--noise_ratio',type=float)
parser.add_argument('--noise_pattern',type=str)
parser.add_argument('--dataset',type=str)
parser.add_argument('--gpu_id',type=int, default=0)
args = parser.parse_args()
import os
os.environ['CUDA_VISIBLE_DEVICES']=str(args.gpu_id)
from keras.models import load_model
from my_model import create_model
from keras.callbacks import ModelCheckpoint, Callback, LearningRateScheduler
from keras import optimizers
from keras.preprocessing.image import ImageDataGenerator
from sklearn.metrics import accuracy_score
import data
import numpy as np
import pandas as pd
import os
""" parameters """
noise_ratio = args.noise_ratio
noise_pattern = args.noise_pattern #'sym' or 'asym'
dataset = args.dataset
batch_size = 128
INCV_epochs = 50
INCV_iter = 4
save_dir = os.path.join('results', dataset, noise_pattern, str(noise_ratio))
if not os.path.isdir(save_dir):
os.makedirs(save_dir)
filepath_INCV = os.path.join(save_dir,'INCV_model.h5')
#################################################################################################################################
""" Data preparation """
if dataset=='cifar10':
x_train, y_train, _, _, x_test, y_test = data.prepare_cifar10_data(data_dir='data/cifar-10-batches-py')
Num_top = 1 #using top k prediction
elif dataset=='cifar100':
x_train, y_train, _, _, x_test, y_test = data.prepare_cifar100_data(data_dir='data/cifar-100-python')
Num_top = 1 #using top k prediction to select samples
y_train_noisy = data.flip_label(y_train, pattern=noise_pattern, ratio=noise_ratio, one_hot=True)
input_shape = list(x_train.shape[1:])
n_classes = y_train.shape[1]
n_train = x_train.shape[0]
clean_index = np.array([(y_train_noisy[i,:]==y_train[i,:]).all() for i in range(n_train)])# For tracking only, unused during training
noisy_index = np.array([not i for i in clean_index])
# Generator for data augmantation
datagen = ImageDataGenerator(width_shift_range=4./32, # randomly shift images horizontally (fraction of total width)
height_shift_range=4./32, # randomly shift images vertically (fraction of total height)
horizontal_flip=True) # randomly flip images
#################################################################################################################################
""" Build model """
# INCV callbacks
class Noisy_acc(Callback):
def on_epoch_end(self, epoch, logs={}):
if First_half:
idx = val2_idx # train on the first half while test on the second half
else:
idx = val1_idx
predict = np.argmax(self.model.predict(x_train[idx,:]),axis=1)
_acc_mix = accuracy_score(np.argmax(y_train_noisy[idx,:],axis=1), predict)
_acc_clean = accuracy_score(np.argmax(y_train_noisy[idx,:][clean_index[idx],:],axis=1), predict[clean_index[idx]])
_acc_noisy = accuracy_score(np.argmax(y_train_noisy[idx,:][noisy_index[idx],:],axis=1), predict[noisy_index[idx]])
print("- acc_mix: %.4f - acc_clean: %.4f - acc_noisy: %.4f\n" % (_acc_mix, _acc_clean, _acc_noisy))
return
noisy_acc = Noisy_acc()
def INCV_lr_schedule(epoch):
# Learning Rate Schedule
lr = 1e-3
if epoch > 40:
lr *= 0.1
elif epoch > 30:
lr *= 0.25
elif epoch > 20:
lr *= 0.5
print('Learning rate: ', lr)
return lr
INCV_lr_callback = LearningRateScheduler(INCV_lr_schedule)
# Define optimizer and compile model
optimizer = optimizers.Adam(lr=INCV_lr_schedule(0), beta_1=0.9, beta_2=0.999, epsilon=1e-08, decay=0.0)
model = create_model(input_shape=input_shape, classes=n_classes, name='INCV_ResNet32', architecture='ResNet32')
model.compile(optimizer=optimizer, loss='categorical_crossentropy', metrics = ['accuracy'])
weights_initial = model.get_weights()
# Print model architecture
print('Architecture of INCV-model:')
model.summary()
##################################################################################################################################
""" INCV iteration """
train_idx = np.array([False for i in range(n_train)])
val_idx = np.array([True for i in range(n_train)])
INCV_save_best = True
for iter in range(1,INCV_iter+1):
print('INCV iteration %d including first half and second half. In total %d iterations.'%(iter,INCV_iter))
val_idx_int = np.array([i for i in range(n_train) if val_idx[i]]) # integer index
np.random.shuffle(val_idx_int)
n_val_half = int(np.sum(val_idx)/2)
val1_idx = val_idx_int[:n_val_half] # integer index
val2_idx = val_idx_int[n_val_half:] # integer index
#Train model on the first half of dataset
First_half = True
print('Iteration ' + str(iter) + ' - first half')
# reset weights
model.set_weights(weights_initial)
results = model.fit_generator(datagen.flow(np.concatenate([x_train[train_idx,:],x_train[val1_idx,:]]),
np.concatenate([y_train_noisy[train_idx,:],y_train_noisy[val1_idx,:]]),
batch_size = batch_size),
epochs = INCV_epochs,
validation_data=(x_train[val2_idx,:], y_train_noisy[val2_idx,:]),
callbacks=[ModelCheckpoint(filepath=filepath_INCV, monitor='val_acc', verbose=1, save_best_only=INCV_save_best),
noisy_acc,
INCV_lr_callback])
# Select samples of 'True' prediction
del model
model = load_model(filepath_INCV)
y_pred = model.predict(x_train[val2_idx,:])
cross_entropy = np.sum(-y_train_noisy[val2_idx,:]*np.log(y_pred+1e-8),axis=1)
top_pred = np.argsort(y_pred, axis=1)[:,-Num_top:]
y_true_noisy = np.argmax(y_train_noisy[val2_idx,:],axis=1)
top_True = [y_true_noisy[i] in top_pred[i,:] for i in range(len(y_true_noisy))]
val2train_idx = val2_idx[top_True]# integer index
# evaluate noisy ratio and compute discard ratio
if iter == 1:
eval_ratio = 0.001
product = np.sum(top_True)/(n_train/2.)
while (1-eval_ratio)*(1-eval_ratio)+eval_ratio*eval_ratio/(n_classes/Num_top-1) > product:
eval_ratio += 0.001
if eval_ratio>=1:
break
print('noisy ratio evaluation: %.4f\n' % eval_ratio)
discard_ratio = min(2, eval_ratio/(1-eval_ratio))
discard_idx = val2_idx[np.argsort(cross_entropy)[-int(discard_ratio*np.sum(top_True)):]] # integer index
else:
discard_idx = np.concatenate([discard_idx, val2_idx[np.argsort(cross_entropy)[-int(discard_ratio*np.sum(top_True)):]]]) # integer index
print('%d samples selected\n' % (np.sum(train_idx)+val2train_idx.shape[0]))
#Train model on the second half of dataset
First_half = False
print('Iteration ' + str(iter) + ' - second half')
# reset weights
model.set_weights(weights_initial)
results = model.fit_generator(datagen.flow(np.concatenate([x_train[train_idx,:],x_train[val2_idx,:]]),
np.concatenate([y_train_noisy[train_idx,:],y_train_noisy[val2_idx,:]]),
batch_size = batch_size),
epochs = INCV_epochs,
validation_data=(x_train[val1_idx,:], y_train_noisy[val1_idx,:]),
callbacks=[ModelCheckpoint(filepath=filepath_INCV, monitor='val_acc', verbose=1, save_best_only=INCV_save_best),
noisy_acc,
INCV_lr_callback])
# Select samples of 'True' prediction
del model
model = load_model(filepath_INCV)
y_pred = model.predict(x_train[val1_idx,:])
cross_entropy = np.sum(-y_train_noisy[val1_idx,:]*np.log(y_pred+1e-8),axis=1)
top_pred = np.argsort(y_pred, axis=1)[:,-Num_top:]
y_true_noisy = np.argmax(y_train_noisy[val1_idx,:],axis=1)
top_True = [y_true_noisy[i] in top_pred[i,:] for i in range(len(y_true_noisy))]
val2train_idx = np.concatenate([val1_idx[top_True],val2train_idx])# integer index
discard_idx = np.concatenate([discard_idx, val1_idx[np.argsort(cross_entropy)[-int(discard_ratio*np.sum(top_True)):]]])
train_idx[val2train_idx]=True
val_idx[val2train_idx]=False
if noise_pattern == 'sym':
val_idx[discard_idx]=False
print('%d samples selected with noisy ratio %.4f\n' % (np.sum(train_idx),
(1-np.sum(clean_index[train_idx])/np.sum(train_idx))))
if noise_pattern == 'asym' or eval_ratio > 0.6:
iter_save_best = 1
elif eval_ratio > 0.3:
iter_save_best = 2
else:
iter_save_best = 4
if iter==iter_save_best:
INCV_save_best = False
##################################################################################################################################
""" Save INCV results """
INCV_results = pd.DataFrame({'y':np.argmax(y_train,axis=1),
'y_noisy':np.argmax(y_train_noisy,axis=1),
'select':train_idx,
'candidate':val_idx,
'eval_ratio':eval_ratio})
INCV_results.to_csv(
os.path.join(save_dir,dataset+'_'+noise_pattern+str(noise_ratio)+'_INCV_results.csv'),
index = False,
columns = ['y','y_noisy','select','candidate','eval_ratio'])