-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcompute_correlation.py
280 lines (240 loc) · 16.1 KB
/
compute_correlation.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
import warnings
import pandas as pd
import os
import torch
from argparse import ArgumentParser
import time
import warnings
import math
warnings.simplefilter(action='ignore', category=FutureWarning)
import warnings
import math
from scipy.stats import pearsonr
import seaborn as sns
import itertools
# this file is used to collect the results from the different runs of the experiments and save them in a csv file
def parse_args():
"""Parses the command line arguments."""
parser = ArgumentParser()
parser.add_argument(
"--paraphrasing_model",
choices=[
"Chatgpt",
"Mistral",
"Llama",
"Chatgpt_Llama_Mistral",
],
default="Chatgpt",
help="The model used to generate the paraphrases",
)
parser.add_argument(
"--experiment",
choices=[
"compute_correlation",
"collect_all_paraphrasing_models",
],
default="collect_all_paraphrasing_models",
help="The experiment that we want to run. The name collect_all_paraphrasing_models is a bit misleading, but changing it will require modifying all the sh files: It is used to compute the average biases aver the seeds.",
)
parser.add_argument(
"--directory",
default="/content/drive/MyDrive/PhD/reproducibility/CAIRO_github/CAIRO-experiment/",
help="The directory where the files are stored",
)
parser.add_argument("-model", "--model_list", nargs="+", default=[])
parser.add_argument("-prompting", "--prompting_list", nargs="+", default=[])
parser.add_argument("-split", "--group_list", nargs="+", default=[])
parser.add_argument("-group", "--split_list", nargs="+", default=[])
return parser.parse_args()
if __name__ == "__main__":
start_time = time.time()
args = parse_args()
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
if args.experiment == "collect_all_paraphrasing_models":
df = pd.DataFrame()
for prompting in args.prompting_list:
csv_directory = (
args.directory
+ "seed_1"
+ "/output/"
+ "/"
)
file_name = (
csv_directory
+ str(prompting)
+ "_"
+ "everything.csv"
)
print(file_name)
if os.path.exists(file_name):
df_current = pd.read_csv(file_name,lineterminator='\n', error_bad_lines=False)
df=pd.concat([df, df_current], ignore_index=True)
print(df)
sns.set_style("darkgrid")
df["Group"].replace({"nationality": "Nationality", "sexual_orientation": "Sexual-orientation", "gender_and_sex": "Gender", "religion": "Religion", "religious_ideology": "Religion", "race_ethnicity": "Race", "race": "Race","gender": "Gender"}, inplace=True)
sns.set(font_scale = 1.5)
df=df[(df["Model"]==args.model_list[0].replace("/", "_"))& (df["Replacement"]==True) & (df["Paraphrasing model"]==args.paraphrasing_model) & (df["Group"]==args.group_list[0]) & (df["Split"]==args.split_list[0])]
print(df)
df["BOLD bias"]=None
df["Holistic bias"]=None
df["HONEST bias"]=None
df["HONEST hurtfulness"]=None
df.loc[df["Prompting"]=="BOLD","BOLD bias"]=df[df["Prompting"]=="BOLD"]["Bias"]
df.loc[df["Prompting"]=="HONEST","HONEST bias"]=df[df["Prompting"]=="HONEST"]["Bias"]
df.loc[df["Prompting"]=="HONEST","HONEST hurtfulness"]=df[df["Prompting"]=="HONEST"]["Hurtfulness"]
df.loc[df["Prompting"]=="holistic","Holistic bias"]=df[df["Prompting"]=="holistic"]["Bias"]
df["Replacement"].replace({'1.0': True}, inplace=True)
df["Replacement"].replace({'True': True}, inplace=True)
df["Replacement"].replace({'False': False}, inplace=True)
df["Data augmentation"].replace({'1.0': True}, inplace=True)
df_new = pd.DataFrame()
for num, model, replacement, split, paraphrasing_model in itertools.product(df["Num prompts"].unique(), df["Model"].unique(), df["Replacement"].unique(), df["Split"].unique(), df["Paraphrasing model"].unique()):
my_df=df[(df["Num prompts"]==num)&(df["Replacement"]==replacement)&(df["Paraphrasing model"]==paraphrasing_model) &(df["Model"]==model) & (df["Split"]==split)]
for sample_num in my_df["Sample number"].unique():
my_df=df[(df["Sample number"]==sample_num)]
if math.isnan(num):
continue
print({'Num prompts': num,'Model': model,'Group':'Gender','Paraphrasing model':paraphrasing_model,
'Replacement': replacement,'Sample number': sample_num,
'Holistic bias': my_df[my_df["Group"]=="Gender"]["Holistic bias"].mean(),
'HONEST hurtfulness': my_df[my_df["Group"]=="Gender"]["HONEST hurtfulness"].mean(),
'HONEST bias': my_df[my_df["Group"]=="Gender"]["HONEST bias"].mean(),'Split': split,
'BOLD bias': my_df[my_df["Group"]=="Gender"]["BOLD bias"].mean()})
df_new = df_new.append({'Num prompts': num,'Model': model,'Group':'Gender','Paraphrasing model':paraphrasing_model,
'Replacement': replacement,'Sample number': sample_num,
'Holistic bias': my_df[my_df["Group"]=="Gender"]["Holistic bias"].mean(),
'HONEST hurtfulness': my_df[my_df["Group"]=="Gender"]["HONEST hurtfulness"].mean(),
'HONEST bias': my_df[my_df["Group"]=="Gender"]["HONEST bias"].mean(),'Split': split,
'BOLD bias': my_df[my_df["Group"]=="Gender"]["BOLD bias"].mean()}, ignore_index = True)
df_new = df_new.append({'Num prompts': num,'Model': model,'Group':'Religion','Paraphrasing model':paraphrasing_model,
'Replacement': replacement,'Sample number': sample_num,
'Holistic bias': my_df[my_df["Group"]=="Religion"]["Holistic bias"].mean(),
'HONEST hurtfulness': 0,
'HONEST bias': 0 ,'Split': split,
'BOLD bias': my_df[my_df["Group"]=="Religion"]["BOLD bias"].mean()}, ignore_index = True)
df_new = df_new.append({'Num prompts': num,'Model': model,'Group':'Race','Paraphrasing model':paraphrasing_model,
'Replacement': replacement,'Sample number': sample_num,
'Holistic bias': my_df[my_df["Group"]=="Race"]["Holistic bias"].mean(),
'HONEST hurtfulness': 0,
'HONEST bias': 0,'Split': split,
'BOLD bias': my_df[my_df["Group"]=="Race"]["BOLD bias"].mean()}, ignore_index = True)
df_new=df_new.dropna()
print(df_new)
df_new.to_csv(
"./output/"
+ str(args.experiment)
+ "_"
+ str(args.model_list[0].replace("/", "_"))
+ "_"
+ str(args.paraphrasing_model)
+ "_"
+ str(args.group_list[0])
+ "_"
+ str(args.split_list[0])
+ ".csv",
index=False,
)
if args.experiment == "compute_correlation":
df_new = pd.DataFrame()
for split in ["valid", "test"]:
for group in ["Gender", "Religion", "Race"]:
for model in args.model_list:
for paraphrasing_model in ["Chatgpt", "Mistral", "Llama","Chatgpt_Llama_Mistral"]:
print(model, paraphrasing_model)
csv_directory = (
args.directory
+ "seed_1"
+ "/output/"
+ "/"
)
file_name = (
csv_directory
+ "collect_all_paraphrasing_models"
+ "_"
+ str(model.replace("/", "_"))
+ "_"
+ str(paraphrasing_model)
+ "_"
+ str(group)
+ "_"
+ str(split)
+ ".csv"
)
print(file_name)
if os.path.exists(file_name):
df_current = pd.read_csv(file_name,lineterminator='\n', error_bad_lines=False)
df_new=pd.concat([df_new, df_current], ignore_index=True)
df_new.to_csv(
"./output/"
+ "all_models"
+ ".csv",
index=False,
)
df_new=df_new.dropna()
df_new=df_new[df_new["Split"]=="valid"]
df_new=df_new[df_new["Replacement"]==True]
df_corr = pd.DataFrame()
for num, group, paraphrasing_model, replacement in itertools.product(df_new["Num prompts"].unique(), df_new["Group"].unique(), df_new["Paraphrasing model"].unique(), df_new["Replacement"].unique()):
corr_holistic_bold_max, corr_honest_holistic_max, corr_honest_bold_max=[-99,0],[-99,0],[-99,0]
corr_holistic_bold_min, corr_honest_holistic_min, corr_honest_bold_min=[99,0],[99,0],[99,0]
corr_holistic_bold_sum, corr_honest_holistic_sum, corr_honest_bold_sum=0,0,0
num_samples=0
sample_max_corr_holistic_bold,sample_max_corr_honest_holistic,sample_max_corr_honest_bold=-9,-9,-9
df_current=df_new[(df_new["Num prompts"]==num)&(df_new["Group"]==group)&(df_new["Paraphrasing model"]==paraphrasing_model)&(df_new["Replacement"]==replacement)]
print(group, df_current["Group"].unique())
for sample_num in df_current["Sample number"].unique():
df_sample_num=df_current[(df_current["Sample number"]==sample_num)]
if (len(df_sample_num['Holistic bias'])<2) or (len(df_sample_num['BOLD bias'])<2) or (len(df_sample_num['HONEST hurtfulness'])<2) or (len(df_sample_num['HONEST bias'])<2):
continue
num_samples+=1
corr_holistic_bold=pearsonr(df_sample_num['Holistic bias'], df_sample_num['BOLD bias'])
corr_honest_holistic=pearsonr(df_sample_num['HONEST bias'], df_sample_num['Holistic bias'])
corr_honest_bold=pearsonr(df_sample_num['HONEST bias'], df_sample_num['BOLD bias'])
corr_holistic_bold_sum+=corr_holistic_bold[0]
corr_honest_holistic_sum+=corr_honest_holistic[0]
corr_honest_bold_sum+=corr_honest_bold[0]
if corr_holistic_bold[0]>corr_holistic_bold_max[0]:
corr_holistic_bold_max=corr_holistic_bold
sample_max_corr_holistic_bold=sample_num
df_sample_num_best=df_sample_num.copy()
if corr_holistic_bold[0]<corr_holistic_bold_min[0]:
corr_holistic_bold_min=corr_holistic_bold
###########################
if corr_honest_holistic[0]>corr_honest_holistic_max[0]:
corr_honest_holistic_max=corr_honest_holistic
sample_max_corr_honest_holistic=sample_num
df_sample_num_best=df_sample_num.copy()
if corr_honest_holistic[0]<corr_honest_holistic_min[0]:
corr_honest_holistic_min=corr_honest_holistic
# #########################
if corr_honest_bold[0]>corr_honest_bold_max[0]:
corr_honest_bold_max=corr_honest_bold
sample_max_corr_honest_bold=sample_num
df_sample_num_best=df_sample_num.copy()
if corr_honest_bold[0]<corr_honest_bold_min[0]:
corr_honest_bold_min=corr_honest_bold
#########################
if num_samples>0:
print(num_samples, paraphrasing_model, corr_holistic_bold_sum,corr_honest_holistic_sum,corr_honest_bold_sum)
models_list=list(df_sample_num_best.Model)
df_corr = df_corr.append({"Holistic bias":df_sample_num_best["Holistic bias"].mean(),"HONEST bias":df_sample_num_best["HONEST bias"].mean(),"BOLD bias":df_sample_num_best["BOLD bias"].mean(),'Group':group, 'Sample at highest correlation': sample_max_corr_holistic_bold, 'Num prompts': num,'Paraphrasing model': paraphrasing_model,'Replacement': replacement,'Method':'Oracle','Type':'Holistic-BOLD','Correlation': corr_holistic_bold_max[0],'P-value': corr_holistic_bold_max[1]}, ignore_index = True)
df_corr = df_corr.append({"Holistic bias":df_sample_num_best["Holistic bias"].mean(),"HONEST bias":df_sample_num_best["HONEST bias"].mean(),"BOLD bias":df_sample_num_best["BOLD bias"].mean(),'Group':group, 'Sample at highest correlation': sample_max_corr_honest_holistic, 'Num prompts': num,'Paraphrasing model': paraphrasing_model,'Replacement': replacement,'Method':'Oracle','Type':'HONEST-Holistic','Correlation': corr_honest_holistic_max[0],'P-value': corr_honest_holistic_max[1]}, ignore_index = True)
df_corr = df_corr.append({"Holistic bias":df_sample_num_best["Holistic bias"].mean(),"HONEST bias":df_sample_num_best["HONEST bias"].mean(),"BOLD bias":df_sample_num_best["BOLD bias"].mean(),'Group':group, 'Sample at highest correlation': sample_max_corr_honest_bold, 'Num prompts': num,'Paraphrasing model': paraphrasing_model,'Replacement': replacement,'Method':'Oracle','Type':'HONEST-BOLD','Correlation': corr_honest_bold_max[0],'P-value': corr_honest_bold_max[1]}, ignore_index = True)
df_corr = df_corr.append({"Holistic bias":df_sample_num_best["Holistic bias"].mean(),"HONEST bias":df_sample_num_best["HONEST bias"].mean(),"BOLD bias":df_sample_num_best["BOLD bias"].mean(),'Group':group, 'Num prompts': num,'Paraphrasing model': paraphrasing_model,'Replacement': replacement,'Method':'Average','Type':'Holistic-BOLD','Correlation': corr_holistic_bold_sum/num_samples,'P-value': None}, ignore_index = True)
df_corr = df_corr.append({"Holistic bias":df_sample_num_best["Holistic bias"].mean(),"HONEST bias":df_sample_num_best["HONEST bias"].mean(),"BOLD bias":df_sample_num_best["BOLD bias"].mean(),'Group':group, 'Num prompts': num,'Paraphrasing model': paraphrasing_model,'Replacement': replacement,'Method':'Average','Type':'HONEST-Holistic','Correlation': corr_honest_holistic_sum/num_samples,'P-value': None}, ignore_index = True)
df_corr = df_corr.append({"Holistic bias":df_sample_num_best["Holistic bias"].mean(),"HONEST bias":df_sample_num_best["HONEST bias"].mean(),"BOLD bias":df_sample_num_best["BOLD bias"].mean(),'Group':group, 'Num prompts': num,'Paraphrasing model': paraphrasing_model,'Replacement': replacement,'Method':'Average','Type':'HONEST-BOLD','Correlation': corr_honest_bold_sum/num_samples,'P-value':None}, ignore_index = True)
sns.set_theme()
for group in ['Gender', 'Religion']:
if group=='Gender':
my_type='HONEST-Holistic'
if group=='Race':
my_type='Holistic-BOLD'
if group=='Religion':
my_type='Holistic-BOLD'
print(group, my_type)
fg=sns.relplot(
data=df_corr[(df_corr["Paraphrasing model"]=="Chatgpt_Llama_Mistral")&(df_corr["Group"]==group)&(df_corr["Type"]==my_type)], x="Num prompts", y="Correlation", style="Method",
kind="line",legend=True
).set(title= my_type + " correlation for " + group + " bias" )
fg.set(ylim=(-1, 1))
fg.savefig("./output/" + "CAIRO_correlation_" + group + '.pdf')