-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathpercentchange.py
87 lines (66 loc) · 1.9 KB
/
percentchange.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
import pandas as pd
import matplotlib as m
m.use('TkAgg')
import matplotlib.pyplot as plt
#import numpy as np
import quandl
#from matplotlib import style
#style.use('ggplot')
import pickle
api_key = 'KToNAgy-U5cEKsqxcKCN'
#df = quandl.get('FMAC/HPI_AK', authtoken = api_key)
#print df.head()
def state_list():
fiddy_states = pd.read_html('https://simple.wikipedia.org/wiki/List_of_U.S._states')
return fiddy_states[0][0][1:]
def grab_initial_state_data():
states = state_list()
main_df = pd.DataFrame()
for abbv in states:
query = "FMAC/HPI_"+str(abbv)
df = quandl.get(query, authtoken=api_key)
df = df.rename(columns = {'Value':abbv})
# df = df.pct_change()
df[abbv] = (df[abbv] -df[abbv][0] / df[abbv][0] * 100.0)
# print df.head()
# print(query)
if main_df.empty:
main_df = df
else:
# main_df = pd.merge(main_df, df, right_index=True, left_index=True)
# main_df = main_df.join(df, lsuffix='_left', rsuffix='_right')
main_df = main_df.join(df)
pickle_out = open('fiddy_states3.pickle','wb')
pickle.dump(main_df, pickle_out)
pickle_out.close()
print df.head()
def HPI_Benchmark():
df = quandl.get("FMAC/HPI_USA", authtoken = api_key)
df["Value"] = (df["Value"] -df["Value"][0] / df["Value"][0] * 100.0)
return df
#grab_initial_state_data()
'''
#benchmark part
fig = plt.figure()
ax1 = plt.subplot2grid((1,1),(0,0))
'''
#benchmark part
HPI_data = pd.read_pickle('fiddy_states3.pickle')
'''
benchmark = HPI_Benchmark()
'''
'''
#did this earlier
HPI_data['TX2'] = HPI_data['TX'] * 2
print(HPI_data[['TX','TX2']].head())
'''
'''
#used for benchmark
HPI_data.plot(ax = ax1)
benchmark.plot(ax=ax1, color='k', linewidth=10)
plt.legend().remove()
plt.show()
'''
HPI_State_Correlation = HPI_data.corr()
print HPI_State_Correlation
print HPI_State_Correlation.describe()