forked from hqucms/weaver
-
Notifications
You must be signed in to change notification settings - Fork 0
/
config.py
231 lines (208 loc) · 10.1 KB
/
config.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
import numpy as np
import yaml
import copy
from ..logger import _logger
from .tools import _get_variable_names
def _as_list(x):
if x is None:
return None
elif isinstance(x, (list, tuple)):
return x
else:
return [x]
def _md5(fname):
'''https://stackoverflow.com/questions/3431825/generating-an-md5-checksum-of-a-file'''
import hashlib
hash_md5 = hashlib.md5()
with open(fname, "rb") as f:
for chunk in iter(lambda: f.read(4096), b""):
hash_md5.update(chunk)
return hash_md5.hexdigest()
class DataConfig(object):
r"""Data loading configuration.
"""
def __init__(self, print_info=True, **kwargs):
opts = {
'treename': None,
'selection': None,
'test_time_selection': None,
'preprocess': {'method': 'manual', 'data_fraction': 0.1, 'params': None},
'new_variables': {},
'inputs': {},
'labels': {},
'observers': [],
'monitor_variables': [],
'weights': None,
}
for k, v in kwargs.items():
if v is not None:
if isinstance(opts[k], dict):
opts[k].update(v)
else:
opts[k] = v
# only information in ``self.options'' will be persisted when exporting to YAML
self.options = opts
if print_info:
_logger.debug(opts)
self.selection = opts['selection']
self.test_time_selection = opts['test_time_selection'] if opts['test_time_selection'] else self.selection
self.var_funcs = opts['new_variables']
# preprocessing config
self.preprocess = opts['preprocess']
self._auto_standardization = opts['preprocess']['method'].lower().startswith('auto')
self._missing_standardization_info = False
self.preprocess_params = opts['preprocess']['params'] if opts['preprocess']['params'] is not None else {}
# inputs
self.input_names = tuple(opts['inputs'].keys())
self.input_dicts = {k: [] for k in self.input_names}
self.input_shapes = {}
for k, o in opts['inputs'].items():
self.input_shapes[k] = (-1, len(o['vars']), o['length'])
for v in o['vars']:
v = _as_list(v)
self.input_dicts[k].append(v[0])
if opts['preprocess']['params'] is None:
def _get(idx, default):
try:
return v[idx]
except IndexError:
return default
params = {'length': o['length'], 'pad_mode': o.get('pad_mode', 'constant').lower(),
'center': _get(1, 'auto' if self._auto_standardization else None),
'scale': _get(2, 1), 'min': _get(3, -5), 'max': _get(4, 5), 'pad_value': _get(5, 0)}
if v[0] in self.preprocess_params and params != self.preprocess_params[v[0]]:
raise RuntimeError('Incompatible info for variable %s, had: \n %s\nnow got:\n %s' % (v[0], str(self.preprocess_params[k]), str(params)))
if params['center'] == 'auto':
self._missing_standardization_info = True
self.preprocess_params[v[0]] = params
# labels
self.label_type = opts['labels']['type']
self.label_value = opts['labels']['value']
if self.label_type == 'simple':
assert(isinstance(self.label_value, list))
self.label_names = ('_label_',)
self.var_funcs['_label_'] = 'np.stack([%s], axis=1).argmax(1)' % (','.join(self.label_value))
else:
self.label_names = tuple(self.label_value.keys())
self.var_funcs.update(self.label_value)
# weights: TODO
self.weight_name = None
if opts['weights'] is not None:
self.weight_name = 'weight_'
self.use_precomputed_weights = opts['weights']['use_precomputed_weights']
if self.use_precomputed_weights:
self.var_funcs[self.weight_name] = '*'.join(opts['weights']['weight_branches'])
else:
self.reweight_method = opts['weights']['reweight_method']
self.reweight_branches = tuple(opts['weights']['reweight_vars'].keys())
self.reweight_bins = tuple(opts['weights']['reweight_vars'].values())
self.reweight_classes = tuple(opts['weights']['reweight_classes'])
self.class_weights = opts['weights'].get('class_weights', None)
if self.class_weights is None:
self.class_weights = np.ones(len(self.reweight_classes))
self.reweight_threshold = opts['weights'].get('reweight_threshold', 10)
self.reweight_discard_under_overflow = opts['weights'].get('reweight_discard_under_overflow', True)
self.reweight_hists = opts['weights'].get('reweight_hists', None)
if self.reweight_hists is not None:
for k, v in self.reweight_hists.items():
self.reweight_hists[k] = np.array(v, dtype='float32')
# observers
self.observer_names = tuple(opts['observers'])
# monitor variables
self.monitor_variables = tuple(opts['monitor_variables'])
# Z variables: returned as `Z` in the dataloader (use monitor_variables for training, observers for eval)
self.z_variables = self.observer_names if len(self.observer_names) > 0 else self.monitor_variables
# remove self mapping from var_funcs
for k, v in self.var_funcs.items():
if k == v:
del self.var_funcs[k]
if print_info:
def _log(msg, *args, **kwargs):
_logger.info(msg, *args, color='lightgray', **kwargs)
_log('preprocess config: %s', str(self.preprocess))
_log('selection: %s', str(self.selection))
_log('test_time_selection: %s', str(self.test_time_selection))
_log('var_funcs:\n - %s', '\n - '.join(str(it) for it in self.var_funcs.items()))
_log('input_names: %s', str(self.input_names))
_log('input_dicts:\n - %s', '\n - '.join(str(it) for it in self.input_dicts.items()))
_log('input_shapes:\n - %s', '\n - '.join(str(it) for it in self.input_shapes.items()))
_log('preprocess_params:\n - %s', '\n - '.join(str(it) for it in self.preprocess_params.items()))
_log('label_names: %s', str(self.label_names))
_log('observer_names: %s', str(self.observer_names))
_log('monitor_variables: %s', str(self.monitor_variables))
if opts['weights'] is not None:
if self.use_precomputed_weights:
_log('weight: %s' % self.var_funcs[self.weight_name])
else:
for k in ['reweight_method', 'reweight_branches', 'reweight_bins', 'reweight_classes', 'class_weights', 'reweight_threshold', 'reweight_discard_under_overflow']:
_log('%s: %s' % (k, getattr(self, k)))
# parse config
self.keep_branches = set()
aux_branches = set()
# selection
if self.selection:
aux_branches.update(_get_variable_names(self.selection))
# test time selection
if self.test_time_selection:
aux_branches.update(_get_variable_names(self.test_time_selection))
# var_funcs
self.keep_branches.update(self.var_funcs.keys())
for expr in self.var_funcs.values():
aux_branches.update(_get_variable_names(expr))
# inputs
for names in self.input_dicts.values():
self.keep_branches.update(names)
# labels
self.keep_branches.update(self.label_names)
# weight
if self.weight_name:
self.keep_branches.add(self.weight_name)
if not self.use_precomputed_weights:
aux_branches.update(self.reweight_branches)
aux_branches.update(self.reweight_classes)
# observers
self.keep_branches.update(self.observer_names)
# monitor variables
self.keep_branches.update(self.monitor_variables)
# keep and drop
self.drop_branches = (aux_branches - self.keep_branches)
self.load_branches = (aux_branches | self.keep_branches) - set(self.var_funcs.keys()) - {self.weight_name, }
if print_info:
_logger.debug('drop_branches:\n %s', ','.join(self.drop_branches))
_logger.debug('load_branches:\n %s', ','.join(self.load_branches))
def __getattr__(self, name):
return self.options[name]
def dump(self, fp):
with open(fp, 'w') as f:
yaml.safe_dump(self.options, f, sort_keys=False)
@classmethod
def load(cls, fp, load_observers=True):
with open(fp) as f:
options = yaml.safe_load(f)
if not load_observers:
options['observers'] = None
return cls(**options)
def copy(self):
return self.__class__(print_info=False, **copy.deepcopy(self.options))
def __copy__(self):
return self.copy()
def __deepcopy__(self, memo):
return self.copy()
def export_json(self, fp):
import json
j = {'output_names':self.label_value, 'input_names':self.input_names}
for k, v in self.input_dicts.items():
j[k] = {'var_names':v, 'var_infos':{}}
for var_name in v:
j[k]['var_length'] = self.preprocess_params[var_name]['length']
info = self.preprocess_params[var_name]
j[k]['var_infos'][var_name] = {
'median': 0 if info['center'] is None else info['center'],
'norm_factor': info['scale'],
'replace_inf_value': 0,
'lower_bound': -1e32 if info['center'] is None else info['min'],
'upper_bound': 1e32 if info['center'] is None else info['max'],
'pad': info['pad_value']
}
with open(fp, 'w') as f:
json.dump(j, f, indent=2)