-
Notifications
You must be signed in to change notification settings - Fork 0
/
saida.txt
475 lines (456 loc) · 8.63 KB
/
saida.txt
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
Metodo de euler
y( 0.0 ) = 0.0
h = 0.1
0 0.0
1 0.1
2 0.23
3 0.402
4 0.6328
5 0.9459200000000001
6 1.3742880000000002
7 1.9640032000000003
8 2.7796044800000006
9 3.911446272000001
10 5.486024780800001
11 7.680434693120002
12 10.742608570368002
13 15.019651998515204
14 20.99751279792129
15 29.356517917089803
16 41.04912508392572
17 57.40877511749601
18 80.30228516449442
19 112.34319923029219
20 157.19047892240906
Metodo de euler inverso
y( 0.0 ) = 0.0
h = 0.1
0 0.0
1 0.13
2 0.31880000000000003
3 0.5993280000000001
4 1.0229516800000003
5 1.6698046208000004
6 2.6648952084480007
7 4.203236525178881
8 6.589048979279054
9 10.296916407675326
10 16.06718959597351
11 25.054815769718676
12 39.061512600761134
13 60.89795965718737
14 94.9488170652123
15 148.0541546217312
16 230.88448120990066
17 360.085790687445
18 561.6258334724142
19 876.0143002169661
20 1366.4463083384671
Metodo de euler aprimorado
y( 0.0 ) = 0.0
h = 0.1
0 0.0
1 0.11499999999999999
2 0.2732
3 0.495336
4 0.8120972800000001
5 1.2689039744000001
6 1.9329778821120003
7 2.9038072655257605
8 4.328634752978125
9 6.425379434407626
10 9.516561562923286
11 14.079511113126465
12 20.820676447427168
13 30.78560114219221
14 45.521689690444475
15 67.31910074185782
16 99.56726909794958
17 147.28255826496536
18 217.88918623214875
19 322.37499562358016
20 477.00199352289866
Metodo de Runge-Kutta
y( 0.0 ) = 0.0
h = 0.1
0 0.0
1 0.11720000000000001
2 0.27973781333333336
3 0.5099075540764445
4 0.8409660953343014
5 1.322523823280022
6 2.028586204647585
7 3.0695496610129576
8 4.61009621432173
9 6.895887526110868
10 10.29338528561712
11 15.349252610064578
12 22.878965093520332
13 34.09899486217407
14 50.823993935733796
15 75.76093922039863
16 112.94791839970932
17 168.40868147412638
18 251.12905711100348
19 374.51350546105425
20 558.5579065464366
Metodo de Adam-Bashforth
y( 0.0 ) = 0.0
h = 0.1
0 0.0
1 0.1
2 0.23
3 0.402
4 0.6328
5 1.0000693333333337
6 1.561434112592593
7 2.371478955576955
8 3.5562897568102554
9 5.322112152811021
10 7.9480714350972015
11 11.842879470037941
12 17.634844565043313
13 26.263236003240255
14 39.1161985890128
15 58.26318065137904
16 86.79727381134622
17 129.32922559745674
18 192.72852344551754
19 287.2380752505458
20 428.1320989639957
Metodo de Adam-Bashforth por Euler
y( 0.0 ) = 0.0
h = 0.1
0 0.0
1 0.1
2 0.23
3 0.402
4 0.6328
5 0.9459200000000001
6 1.4503504
7 2.2369193168888897
8 3.358441744426052
9 4.996950834981482
10 7.481986396679563
11 11.180288833358992
12 16.624920205036048
13 24.750058130421603
14 36.913899790025475
15 55.006224132263085
16 81.93204430281415
17 122.13841135433535
18 182.12506888649392
19 271.5127191821949
20 404.8197598488207
Metodo de Adam-Bashforth por Euler Inverso
y( 0.0 ) = 0.0
h = 0.1
0 0.0
1 0.13
2 0.31880000000000003
3 0.5993280000000001
4 1.0229516800000003
5 1.6698046208000004
6 2.5666957037226674
7 3.8351793259402913
8 5.760861808339608
9 8.649737844496507
10 12.882727090398287
11 19.176216262218144
12 28.622431363397315
13 42.68267074275497
14 63.57155794218719
15 94.75900710179582
16 141.3232887354071
17 210.69586797430568
18 314.1162509000865
19 468.44535675120824
20 698.6313848849245
Metodo de Adam-Bashforth por Euler Aprimorado
y( 0.0 ) = 0.0
h = 0.1
0 0.0
1 0.11499999999999999
2 0.2732
3 0.495336
4 0.8120972800000001
5 1.2689039744000001
6 1.9456653358079998
7 2.950345550541227
8 4.430330733618685
9 6.62178245644458
10 9.886678943910466
11 14.744965826995497
12 21.96943623536663
13 32.73516478160922
14 48.789660186960745
15 72.71728424412105
16 108.38614825552158
17 161.58444762054373
18 240.9243942843869
19 359.23897662227506
20 535.69606313874
Metodo de Adam-Bashforth por Runge-Kutta ( ordem = 6 )
y( 0.0 ) = 0.0
h = 0.1
0 0.0
1 0.11720000000000001
2 0.27973781333333336
3 0.5099075540764445
4 0.8409660953343014
5 1.322523823280022
6 2.0283613404798513
7 3.0687222083470225
8 4.608280207362133
9 6.892365150866892
10 10.286722882121998
11 15.337228379453155
12 22.858123524780787
13 34.06348461117281
14 50.764240868303375
15 75.66185037267206
16 112.78540154709049
17 168.14409639982503
18 250.70125222195327
19 373.8262077743362
20 557.4593489350084
Metodo de Adam-Multon
y( 0.0 ) = 0.0
h = 0.1
0 0.0
1 0.1
2 0.23
3 0.402
4 0.6328
5 1.0074673703703705
6 1.5630957188210166
7 2.3733490457175477
8 3.5709469373860565
9 5.346397991985718
10 7.981948063881971
11 11.901086991828366
12 17.735278553118533
13 26.426020693663276
14 39.3779759558053
15 58.68657518170906
16 87.47758576350354
17 130.41382912212777
18 194.45100762076297
19 289.9651769129141
20 432.43465503419094
Metodo de Adam-Multon por Euler
y( 0.0 ) = 0.0
h = 0.1
0 0.0
1 0.1
2 0.23
3 0.402
4 0.6328
5 1.0074673703703705
6 1.5630957188210166
7 2.3733490457175477
8 3.5709469373860565
9 5.346397991985718
10 7.981948063881971
11 11.901086991828366
12 17.735278553118533
13 26.426020693663276
14 39.3779759558053
15 58.68657518170906
16 87.47758576350354
17 130.41382912212777
18 194.45100762076297
19 289.9651769129141
20 432.43465503419094
Metodo de Adam-Multon por Euler Inverso
y( 0.0 ) = 0.0
h = 0.1
0 0.0
1 0.13
2 0.31880000000000003
3 0.5993280000000001
4 1.0229516800000003
5 1.5989243877925932
6 2.436116403905207
7 3.679336895689463
8 5.5204112397802705
9 8.253172973694504
10 12.318113096597486
11 18.369753674473017
12 27.38472127204052
13 40.820393326687544
14 60.85058669669476
15 90.71800588253527
16 135.25996647446482
17 201.69245223676904
18 300.77978235309945
19 448.57946698687084
20 669.045047629504
Metodo de Adam-Multon por Euler Aprimorado
y( 0.0 ) = 0.0
h = 0.1
0 0.0
1 0.11499999999999999
2 0.2732
3 0.495336
4 0.8120972800000001
5 1.2787559325333335
6 1.9639887067642603
7 2.972916009608574
8 4.46585254625301
9 6.680816603214219
10 9.972561760422874
11 14.870660635689626
12 22.165055928546607
13 33.03405870679873
14 49.2354259765063
15 73.39127180290514
16 109.41308494843275
17 163.13576871403308
18 243.26345079796496
19 362.7803771654124
20 541.055593984162
Metodo de Adam-Multon por Runge-Kutta ( ordem = 6 )
y( 0.0 ) = 0.0
h = 0.1
0 0.0
1 0.11720000000000001
2 0.27973781333333336
3 0.5099075540764445
4 0.8409660953343014
5 1.322524746308495
6 2.028589120877274
7 3.069556186046568
8 4.610109221160269
9 6.895911833962058
10 10.293428849871406
11 15.3493284895615
12 22.87909453864048
13 34.09921220445275
14 50.824354318526055
15 75.76153076591264
16 112.94888130770241
17 168.41023793052966
18 251.13155801827648
19 374.51750330159007
20 558.5642687809204
Metodo Formula Inversa de Diferenciacao
y( 0.0 ) = 0.0
h = 0.1
0 0.0
1 0.1
2 0.23
3 0.402
4 0.6328
5 0.9835157956204381
6 1.5227904779611772
7 2.3238921551873335
8 3.499651666542304
9 5.23609512123104
10 7.816419603919156
11 11.657129495629942
12 17.375086669031496
13 25.892037130141137
14 38.58584761127412
15 57.51242201179804
16 85.73781175748577
17 127.8358446761185
18 190.63078445029024
19 284.30437451084055
20 424.0470408366995
Metodo Formula Inversa de Diferenciacao por Euler
y( 0.0 ) = 0.0
h = 0.1
0 0.0
1 0.1
2 0.23
3 0.402
4 0.6328
5 0.9835157956204381
6 1.5227904779611772
7 2.3238921551873335
8 3.499651666542304
9 5.23609512123104
10 7.816419603919156
11 11.657129495629942
12 17.375086669031496
13 25.892037130141137
14 38.58584761127412
15 57.51242201179804
16 85.73781175748577
17 127.8358446761185
18 190.63078445029024
19 284.30437451084055
20 424.0470408366995
Metodo Formula Inversa de Diferenciacao por Euler Inverso
y( 0.0 ) = 0.0
h = 0.1
0 0.0
1 0.13
2 0.31880000000000003
3 0.5993280000000001
4 1.0229516800000003
5 1.6251145397255478
6 2.481220062581904
7 3.736038316843307
8 5.6032199218882415
9 8.38270146472529
10 12.515328601892667
11 18.665012746164074
12 27.82733029121071
13 41.486270188745095
14 61.852936382785245
15 92.22581645839153
16 137.5273300753779
17 205.10200453408902
18 305.90697343902684
19 456.2891306198907
20 680.6370258977987
Metodo Formula Inversa de Diferenciacao por Euler Aprimorado
y( 0.0 ) = 0.0
h = 0.1
0 0.0
1 0.11499999999999999
2 0.2732
3 0.495336
4 0.8120972800000001
5 1.275128464163504
6 1.9580624244114804
7 2.9660956300940935
8 4.45661678983006
9 6.667207388689822
10 9.953256336824527
11 14.84405520267812
12 22.12854422431406
13 32.98398071131777
14 49.16717942374021
15 73.29923463158121
16 109.29045634761682
17 162.9746856339403
18 243.05569370213914
19 362.5189984224432
20 540.7381311810027
Metodo Formula Inversa de Diferenciacao por Runge-Kutta ( ordem = 6 )
y( 0.0 ) = 0.0
h = 0.1
0 0.0
1 0.11720000000000001
2 0.27973781333333336
3 0.5099075540764445
4 0.8409660953343014
5 1.3226323758448637
6 2.029024942526143
7 3.0706429776162256
8 4.612351405842409
9 6.90016575868818
10 10.301141322815084
11 15.36288453387699
12 22.902375630429496
13 34.13849913628434
14 50.889758144743226
15 75.86924071522684
16 113.1246929477725
17 168.69508500001356
18 251.59016525820624
19 375.25188832487873
20 559.734768471146