-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathmi.py
80 lines (54 loc) · 1.8 KB
/
mi.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
import pandas as pd
import os
import numpy as np
import argparse
import warnings
parser = argparse.ArgumentParser('Mutual information for histogram of two variables')
parser.add_argument('file', type=str,
metavar='DF',
help='Location where pkl file saved')
parser.add_argument('--nbins', type=int, default=100)
parser.add_argument('--yvar', type=str, default='model_entropy')
parser.add_argument('--xvar', type=str, default='rank')
parser.add_argument('--xbins', type=float, default=[], nargs='*')
parser.add_argument('--seed', type=int, default=0)
parser.add_argument('--K', type=int, default=10)
parser.set_defaults(show=True)
parser.set_defaults(save=False)
args = parser.parse_args()
np.random.seed(args.seed)
from common import labdict
print('X: %s, Y: %s'%(args.xvar, args.yvar))
df = pd.read_pickle(args.file)
Nsamples = len(df)
K = args.K
N = len(df)
Ix = np.random.permutation(N)
X_ = df[args.xvar]
Y_ = df[args.yvar]
I = []
#for i in range(K):
#n = N//K
#ix = Ix[n*i:n*(i+1)]
#X = np.delete(X_.to_numpy(), ix)
#Y = np.delete(Y_.to_numpy(), ix)
X = X_[Ix]
Y = Y_[Ix]
Nbins = args.nbins
Yc, Ybins = pd.qcut(Y,Nbins,retbins=True, duplicates='drop')
if len(args.xbins)==0:
Xc, Xbins = pd.qcut(X,Nbins,retbins=True,duplicates='drop')
else:
Xc, Xbins = pd.cut(X,args.xbins,retbins=True,duplicates='drop', right=False)
#Yvc = Yc.value_counts(sort=False)
#Xvc = Xc.value_counts(sort=False)
H, xe, ye = np.histogram2d(X, Y, bins=[Xbins, Ybins])
P = H/np.sum(H)
Py = np.sum(P,axis=0,keepdims=True)
Px = np.sum(P,axis=1,keepdims=True)
with warnings.catch_warnings():
warnings.simplefilter('ignore')
integrand = P*(np.log2(P) - np.log2(Px) - np.log2(Py))
integrand[np.isnan(integrand)]=0.
I.append(np.sum(integrand))
print('\nMutual information (bits): %.4g'%np.mean(I))