diff --git a/docs/src/install-and-run-examples.md b/docs/src/install-and-run-examples.md index 05eb467..d5f2a76 100644 --- a/docs/src/install-and-run-examples.md +++ b/docs/src/install-and-run-examples.md @@ -1,6 +1,7 @@ -# Install package and run examples +## Install and run examples + +## Add registries -## Add registries and package Open a Julia REPL (`$ julia`), type `]` to enter the Pkg REPL, and add the following registries: ```julia pkg> registry add https://github.com/JuliaRegistries/General @@ -9,16 +10,10 @@ Open a Julia REPL (`$ julia`), type `]` to enter the Pkg REPL, and add the follo pkg> registry add https://github.com/ACEsuit/ACEregistry ``` -Then, add PotentialLearning: -```julia - pkg> add PotentialLearning - -``` - -## Clone repository and access an example folder +## Clone repository to access example folders Clone `PotentialLearning.jl` repository in your working directory. ```shell - $ git clone git@github.com:cesmix-mit/PotentialLearning.jl.git + $ git clone https://github.com/cesmix-mit/PotentialLearning.jl.git ``` Access to any folder within `PotentialLearning.jl/examples`. E.g. ```shell diff --git a/examples/ACE-aHfO2/fit-ace-ahfo2.jl b/examples/ACE-aHfO2/fit-ace-ahfo2.jl index caf9053..205058e 100644 --- a/examples/ACE-aHfO2/fit-ace-ahfo2.jl +++ b/examples/ACE-aHfO2/fit-ace-ahfo2.jl @@ -1,6 +1,6 @@ # # Fit a-HfO2 dataset with ACE -# ## a. Load packages, define paths, and create experiment folder. +# ## Setup experiment # Load packages. using AtomsBase, InteratomicPotentials, PotentialLearning @@ -13,24 +13,23 @@ ds_path = "$base_path/examples/data/a-HfO2/a-HfO2-300K-NVT-6000.extxyz" res_path = "$base_path/examples/ACE-aHfO2/results/"; # Load utility functions. - include("$base_path/examples/utils/utils.jl") # Create experiment folder. run(`mkdir -p $res_path`); -# ## b. Load atomistic dataset and split it into training and test. +# ## Load datasets # Load atomistic dataset: atomistic configurations (atom positions, geometry, etc.) + DFT data (energies, forces, etc.) -ds = load_data(ds_path, uparse("eV"), uparse("Å"))[1:1000] # Only the first 1K samples are used in this example. +ds = load_data(ds_path, uparse("eV"), uparse("Å"))[1:1000]; # Load first 1K samples. -# Split atomistic dataset into training and test +# Split atomistic dataset into training and test. n_train, n_test = 50, 50 # Only 50 samples per dataset are used in this example. conf_train, conf_test = split(ds, n_train, n_test) -# ## c. Create ACE basis, compute descriptors and add them to the dataset. +# ## Compute descriptors -# Create ACE basis +# Create and save ACE basis. basis = ACE(species = [:Hf, :O], body_order = 3, polynomial_degree = 4, @@ -49,9 +48,11 @@ f_descr_train = compute_force_descriptors(conf_train, basis; pbar=false) # Update training dataset by adding energy and force descriptors. -ds_train = DataSet(conf_train .+ e_descr_train .+ f_descr_train) +ds_train = DataSet(conf_train .+ e_descr_train .+ f_descr_train); + +# ## Learn coefficients -# ## d. Learn ACE coefficients based on ACE descriptors and DFT data. +# Learn and save ACE coefficients based on ACE descriptors and DFT data. println("Learning energies and forces...") lb = LBasisPotential(basis) ws, int = [1.0, 1.0], false @@ -60,7 +61,7 @@ learn!(lb, ds_train, ws, int) @save_var res_path lb.β0 lb.β, lb.β0 -# ## e. Post-process output: calculate metrics, create plots, and save results. +# ## Post-process results # Compute ACE descriptors for energy and forces based on the atomistic test configurations. println("Computing energy descriptors of test dataset...") @@ -71,9 +72,9 @@ f_descr_test = compute_force_descriptors(conf_test, basis; pbar = false); # Update test dataset by adding energy and force descriptors. -ds_test = DataSet(conf_test .+ e_descr_test .+ f_descr_test) +ds_test = DataSet(conf_test .+ e_descr_test .+ f_descr_test); -# Get true and predicted values for energies and forces. +# Get and save true and predicted values for energies and forces. n_atoms_train = length.(get_system.(ds_train)) n_atoms_test = length.(get_system.(ds_test)) @@ -95,7 +96,7 @@ f_test, f_test_pred = get_all_forces(ds_test), @save_var res_path f_test @save_var res_path f_test_pred; -# Compute training metrics. +# Compute and save training metrics. e_train_metrics = get_metrics(e_train, e_train_pred, metrics = [mae, rmse, rsq], label = "e_train") @@ -106,7 +107,7 @@ train_metrics = merge(e_train_metrics, f_train_metrics) @save_dict res_path train_metrics train_metrics -# Compute test metrics. +# Compute and save test metrics. e_test_metrics = get_metrics(e_test, e_test_pred, metrics = [mae, rmse, rsq], label = "e_test") diff --git a/examples/DPP-ACE-Na/fit-dpp-ace-na.jl b/examples/DPP-ACE-Na/fit-dpp-ace-na.jl index 7b86601..0e8e40d 100644 --- a/examples/DPP-ACE-Na/fit-dpp-ace-na.jl +++ b/examples/DPP-ACE-Na/fit-dpp-ace-na.jl @@ -1,6 +1,6 @@ # # Subsample Na dataset with DPP and fit energies with ACE -# ## a. Load packages and define paths. +# ## Setup experiment # Load packages. using Unitful, UnitfulAtomic @@ -11,7 +11,7 @@ using LinearAlgebra, Plots base_path = haskey(ENV, "BASE_PATH") ? ENV["BASE_PATH"] : "../../" ds_path = "$base_path/examples/data/Na/liquify_sodium.yaml" -# ## b. Load atomistic dataset and split it into training and test. +# ## Load datasets # Load atomistic dataset: atomistic configurations (atom positions, geometry, etc.) + DFT data (energies, forces, etc.). confs, thermo = load_data(ds_path, YAML(:Na, u"eV", u"Å")) @@ -20,7 +20,7 @@ confs, thermo = confs[220:end], thermo[220:end] # Split atomistic dataset into training and test. conf_train, conf_test = confs[1:1000], confs[1001:end] -# ## c. Create ACE basis, compute energy descriptors and add them to the dataset. +# ## Compute descriptors # Create ACE basis. ace = ACE(species = [:Na], # species @@ -29,16 +29,16 @@ ace = ACE(species = [:Na], # species wL = 1.0, # Defaults, See ACE.jl documentation csp = 1.0, # Defaults, See ACE.jl documentation r0 = 1.0, # minimum distance between atoms - rcutoff = 5.0) # cutoff radius + rcutoff = 5.0); # cutoff radius # Update training dataset by adding energy (local) descriptors. println("Computing local descriptors of training dataset") e_descr_train = compute_local_descriptors(conf_train, ace) # JLD.load("data/sodium_empirical_full.jld", "descriptors") # Update training dataset by adding energy and force descriptors. -ds_train = DataSet(conf_train .+ e_descr_train) +ds_train = DataSet(conf_train .+ e_descr_train); -# ## d. Subsampling via DPP. +# ## Subsample dataset # Create DPP subselector. dpp = kDPP(ds_train, GlobalMean(), DotProduct(); batch_size = 200) @@ -46,22 +46,24 @@ dpp = kDPP(ds_train, GlobalMean(), DotProduct(); batch_size = 200) # Subsample trainig dataset. dpp_inds = get_random_subset(dpp) -# ## e. Learn ACE coefficients based on ACE descriptors and DFT data. +# ## e. Learn coefficients + +# Learn ACE coefficients based on ACE descriptors and DFT data. lb = LBasisPotential(ace) α = 1e-8 Σ = learn!(lb, ds_train[dpp_inds], α) -# ## f. Post-process output: calculate metrics, create plots, and save results. +# ## Post-process results # Update test dataset by adding energy descriptors. println("Computing local descriptors of test dataset") e_descr_test = compute_local_descriptors(conf_test, ace) -ds_test = DataSet(conf_test .+ e_descr_test) +ds_test = DataSet(conf_test .+ e_descr_test); # Get true and predicted energy values (assuming that all configurations have the same no. of atoms). n = size(get_system(ds_train[1]))[1] e_train, e_train_pred = get_all_energies(ds_train)/n, get_all_energies(ds_train, lb)/n -e_test, e_test_pred = get_all_energies(ds_test)/n, get_all_energies(ds_test, lb)/n +e_test, e_test_pred = get_all_energies(ds_test)/n, get_all_energies(ds_test, lb)/n; # Compute and print metrics. e_mae, e_rmse, e_rsq = calc_metrics(e_train, e_train_pred) diff --git a/examples/DPP-ACE-Si/fit-dpp-ace-si.jl b/examples/DPP-ACE-Si/fit-dpp-ace-si.jl index 6acd335..4f2532a 100644 --- a/examples/DPP-ACE-Si/fit-dpp-ace-si.jl +++ b/examples/DPP-ACE-Si/fit-dpp-ace-si.jl @@ -1,6 +1,6 @@ # # Subsample Si dataset and fit with ACE -# ## a. Load packages, define paths, and create experiment folder. +# ## Setup experiment # Load packages. using LinearAlgebra, Random, InvertedIndices @@ -10,17 +10,17 @@ using AtomsBase, InteratomicPotentials, PotentialLearning using CSV, JLD, DataFrames # Define atomic type information. -elname, elspec = "Si", [:Si] +elname, elspec = "Si", [:Si]; # Define paths. base_path = haskey(ENV, "BASE_PATH") ? ENV["BASE_PATH"] : "../../" inpath = "$base_path/examples/data/Si-3Body-LAMMPS/" -outpath = "$base_path/examples/DPP-ACE-Si/output/$elname/"; +outpath = "$base_path/examples/DPP-ACE-Si/output/$elname/" # Load utility functions. -include("$base_path/examples/DPP-ACE-Si/subsampling_utils.jl") +include("$base_path/examples/DPP-ACE-Si/subsampling_utils.jl"); -# ## b. Load atomistic datasets. +# ## Load datasets # Load all atomistic datasets: atomistic configurations (atom positions, geometry, etc.) + DFT data (energies, forces, etc.) file_arr = readext(inpath, "xyz") @@ -37,7 +37,7 @@ for k = 1:nfile n += length(confs_arr[k]) end -# ## c. Subsampling by DPP. +# ## Subsample dataset # Create ACE basis. nbody = 4 @@ -48,9 +48,9 @@ ace = ACE(species = elspec, # species wL = 1.0, # Defaults, See ACE.jl documentation csp = 1.0, # Defaults, See ACE.jl documentation r0 = 1.0, # minimum distance between atoms - rcutoff = 10.0) + rcutoff = 10.0); -# Compute ACE descriptors for energies and forces. +# Compute and save ACE descriptors for energies and forces. println("Computing local descriptors") e_descr = compute_local_descriptors(confs, ace; pbar=false) f_descr = compute_force_descriptors(confs, ace; pbar=false) @@ -59,9 +59,11 @@ JLD.save(outpath*"$(elname)_force_descriptors.jld", "f_descr", f_descr) # Update training dataset by adding energy and force descriptors. ds = DataSet(confs .+ e_descr .+ f_descr) -ndata = length(ds) +ndata = length(ds); -# ## d. Compute cross validation error from training dataset. +# ## Post-process results + +# Compute cross validation error from training dataset. batch_size = [80, 40] sel_ind = Dict{Int64, Vector}() cond_num = Dict{Int64, Vector}() @@ -73,6 +75,6 @@ for bs in batch_size end JLD.save(outpath*"$(elname)_ACE-$(nbody)-$(deg)_DPP_indices_and_condnum.jld", - "ind", sel_ind, - "condnum", cond_num) + "ind", sel_ind, + "condnum", cond_num) diff --git a/examples/DPP-ACE-aHfO2-1/fit-dpp-ace-ahfo2.jl b/examples/DPP-ACE-aHfO2-1/fit-dpp-ace-ahfo2.jl index 5c12ac4..41f133e 100644 --- a/examples/DPP-ACE-aHfO2-1/fit-dpp-ace-ahfo2.jl +++ b/examples/DPP-ACE-aHfO2-1/fit-dpp-ace-ahfo2.jl @@ -1,6 +1,6 @@ # # Subsample a-HfO2 dataset and fit with ACE -# ## a. Load packages, define paths, and create experiment folder. +# ## Setup experiment # Load packages. using AtomsBase, InteratomicPotentials, PotentialLearning @@ -13,24 +13,23 @@ ds_path = "$base_path/examples/data/a-HfO2/a-HfO2-300K-NVT-6000.extxyz" res_path = "$base_path/examples/DPP-ACE-aHfO2-1/results/"; # Load utility functions. -include("$base_path/examples/utils/utils.jl") +include("$base_path/examples/utils/utils.jl"); # Create experiment folder. run(`mkdir -p $res_path`); -# ## b. Load atomistic dataset and split it into training and test. +# ## Load datasets # Load atomistic dataset: atomistic configurations (atom positions, geometry, etc.) + DFT data (energies, forces, etc.) -ds = load_data(ds_path, uparse("eV"), uparse("Å")) +ds = load_data(ds_path, uparse("eV"), uparse("Å"))[1:1000]; # Load first 1K samples. # Split atomistic dataset into training and test n_train, n_test = 100, 50 # Few samples per dataset are used in this example. -conf_train, conf_test = split(ds[1:1000], n_train, n_test) +conf_train, conf_test = split(ds, n_train, n_test) +# ## Subsample dataset -# ## c. Subsampling - -# Compute ACE descriptors for energies as subsampling input. +# Compute ACE descriptors for energies to be used as subsampling input. basis = ACE(species = [:Hf, :O], body_order = 2, polynomial_degree = 3, @@ -40,25 +39,25 @@ basis = ACE(species = [:Hf, :O], r0 = 1.0) e_descr = compute_local_descriptors(conf_train, basis, - pbar = false) + pbar = false); -# Update subsampling dataset -conf_train_kDPP = DataSet(conf_train .+ e_descr) +# Update subsampling dataset. +conf_train_kDPP = DataSet(conf_train .+ e_descr); -# Create DPP subselector +# Create DPP subselector. dataset_selector = kDPP( conf_train_kDPP, GlobalMean(), DotProduct(); batch_size = 50) -# Subsample trainig dataset +# Subsample trainig dataset. inds = get_random_subset(dataset_selector) -conf_train = @views conf_train[inds] +conf_train = @views conf_train[inds]; -# ## d. Create ACE basis, compute descriptors and add them to the dataset. +# ## Compute descriptors -# Create ACE basis +# Create ACE basis. basis = ACE(species = [:Hf, :O], body_order = 3, polynomial_degree = 4, @@ -77,9 +76,11 @@ f_descr_train = compute_force_descriptors(conf_train, basis; pbar=false) # Update training dataset by adding energy and force descriptors. -ds_train = DataSet(conf_train .+ e_descr_train .+ f_descr_train) +ds_train = DataSet(conf_train .+ e_descr_train .+ f_descr_train); + +# ## Learn coefficients -# ## e. Learn ACE coefficients based on ACE descriptors and DFT data. +# Learn ACE coefficients based on ACE descriptors and DFT data. println("Learning energies and forces...") lb = LBasisPotential(basis) ws, int = [1.0, 1.0], false @@ -88,7 +89,7 @@ learn!(lb, ds_train, ws, int) @save_var res_path lb.β0 lb.β, lb.β0 -# ## f. Post-process output: calculate metrics, create plots, and save results. +# ## Post-process results # Compute ACE descriptors for energy and forces based on the atomistic test configurations. println("Computing energy descriptors of test dataset...") @@ -99,9 +100,9 @@ f_descr_test = compute_force_descriptors(conf_test, basis; pbar = false); # Update test dataset by adding energy and force descriptors. -ds_test = DataSet(conf_test .+ e_descr_test .+ f_descr_test) +ds_test = DataSet(conf_test .+ e_descr_test .+ f_descr_test); -# Get true and predicted values for energies and forces. +# Get and save true and predicted values for energies and forces. n_atoms_train = length.(get_system.(ds_train)) n_atoms_test = length.(get_system.(ds_test)) @@ -123,7 +124,7 @@ f_test, f_test_pred = get_all_forces(ds_test), @save_var res_path f_test @save_var res_path f_test_pred; -# Compute training metrics. +# Compute and save training metrics. e_train_metrics = get_metrics(e_train, e_train_pred, metrics = [mae, rmse, rsq], label = "e_train") @@ -134,7 +135,7 @@ train_metrics = merge(e_train_metrics, f_train_metrics) @save_dict res_path train_metrics train_metrics -# Compute test metrics. +# Compute and save test metrics. e_test_metrics = get_metrics(e_test, e_test_pred, metrics = [mae, rmse, rsq], label = "e_test") diff --git a/examples/LJ-Ar/lennard-jones-ar.jl b/examples/LJ-Ar/lennard-jones-ar.jl index 580615d..e28b3b8 100644 --- a/examples/LJ-Ar/lennard-jones-ar.jl +++ b/examples/LJ-Ar/lennard-jones-ar.jl @@ -1,6 +1,6 @@ # # Load Ar dataset with energies computed by Lennard-Jones and postprocess -# ## a. Load packages and define paths. +# ## Setup experiment # Load packages. using Unitful, UnitfulAtomic @@ -11,25 +11,25 @@ using LinearAlgebra, Plots, DisplayAs base_path = haskey(ENV, "BASE_PATH") ? ENV["BASE_PATH"] : "../../" ds_path = "$base_path/examples/data/LJ-AR/lj-ar.yaml" -# ## b. Load atomistic dataset. +# ## Load datasets ds, thermo = load_data(ds_path, YAML(:Ar, u"eV", u"Å")) ds = @views ds[2:end] # Filter first configuration (zero energy) -# ## c. Compute distance from origin, extract LJ energies, and define time range. +# ## Compute distances, energies, and time range. # Get atom positions and compute distance from origin. systems = get_system.(ds) n_atoms = length(first(systems)) # Note: in this dataset all systems contain the same no. of atoms positions = position.(systems) -dists_origin = map(x->ustrip.(norm.(x)), positions) +dists_origin = map(x->ustrip.(norm.(x)), positions); # Extract LJ energies from dataset. -energies = get_values.(get_energy.(ds)) +energies = get_values.(get_energy.(ds)); # Define time range. -time_range = 0.5:0.5:5000 +time_range = 0.5:0.5:5000; -# ## d. Post-process data. +# ## Post-process results # Plot distance from origin vs time. p = plot(xlabel = "τ | ps", diff --git a/examples/Opt-ACE-aHfO2/fit-opt-ace-ahfo2.jl b/examples/Opt-ACE-aHfO2/fit-opt-ace-ahfo2.jl index 6f00e41..e06c9f5 100644 --- a/examples/Opt-ACE-aHfO2/fit-opt-ace-ahfo2.jl +++ b/examples/Opt-ACE-aHfO2/fit-opt-ace-ahfo2.jl @@ -1,6 +1,6 @@ # # Optimize ACE hyper-parameters: minimize force time and fitting error. -# ## a. Load packages, define paths, and create experiment folder. +# ## Setup experiment # Load packages. using AtomsBase, InteratomicPotentials, PotentialLearning @@ -14,22 +14,21 @@ ds_path = "$base_path/examples/data/a-HfO2/a-HfO2-300K-NVT-6000.extxyz" res_path = "$base_path/examples/Opt-ACE-aHfO2/results/"; # Load utility functions. -include("$base_path/examples/utils/utils.jl") +include("$base_path/examples/utils/utils.jl"); # Create experiment folder. run(`mkdir -p $res_path`); -# ## b. Load atomistic dataset and split it into training and test. +# ## Load datasets # Load atomistic dataset: atomistic configurations (atom positions, geometry, etc.) + DFT data (energies, forces, etc.) -ds = load_data(ds_path, uparse("eV"), uparse("Å"))[1:1000] +ds = load_data(ds_path, uparse("eV"), uparse("Å"))[1:1000]; # Load first 1K samples. # Split atomistic dataset into training and test n_train, n_test = 50, 50 # Only 50 samples per dataset are used in this example. conf_train, conf_test = split(ds, n_train, n_test) - -# ## c. Hyper-parameter optimization. +# ## Optimize hyper-parameters # Define a custom loss function. Here, we minimize fitting error and force calculation time. # Possible metrics are `e_mae`, `e_rmse`, `e_rsq`, `f_mae`, `f_rmse`, `f_rsq`, and `time_us`. diff --git a/examples/PCA-ACE-aHfO2/fit-pca-ace-ahfo2.jl b/examples/PCA-ACE-aHfO2/fit-pca-ace-ahfo2.jl index f53f1a9..5f63fba 100644 --- a/examples/PCA-ACE-aHfO2/fit-pca-ace-ahfo2.jl +++ b/examples/PCA-ACE-aHfO2/fit-pca-ace-ahfo2.jl @@ -1,6 +1,6 @@ # # Reduce ACE descriptors with PCA and fit a-HfO2 dataset -# ## a. Load packages, define paths, and create experiment folder. +# ## Setup experiment # Load packages. using AtomsBase, InteratomicPotentials, PotentialLearning @@ -13,23 +13,23 @@ ds_path = "$base_path/examples/data/a-HfO2/a-HfO2-300K-NVT-6000.extxyz" res_path = "$base_path/examples/PCA-ACE-aHfO2/results/"; # Load utility functions. -include("$base_path/examples/utils/utils.jl") +include("$base_path/examples/utils/utils.jl"); # Create experiment folder. run(`mkdir -p $res_path`); -# ## b. Load atomistic dataset and split it into training and test. +# ## Load datasets # Load atomistic dataset: atomistic configurations (atom positions, geometry, etc.) + DFT data (energies, forces, etc.) -ds = load_data(ds_path, uparse("eV"), uparse("Å"))[1:1000] # Only first 1K samples are used in this example. +ds = load_data(ds_path, uparse("eV"), uparse("Å"))[1:1000]; # Load first 1K samples. # Split atomistic dataset into training and test. n_train, n_test = 50, 50 # Only 50 samples per dataset are used in this example. conf_train, conf_test = split(ds, n_train, n_test) -# ## c. Create ACE basis, compute descriptors and add them to the dataset. +# ## Compute descriptors -# Create ACE basis. +# Create and save ACE basis. basis = ACE(species = [:Hf, :O], body_order = 3, polynomial_degree = 4, @@ -48,15 +48,19 @@ f_descr_train = compute_force_descriptors(conf_train, basis; pbar=false) # Update training dataset by adding energy and force descriptors. -ds_train = DataSet(conf_train .+ e_descr_train .+ f_descr_train) +ds_train = DataSet(conf_train .+ e_descr_train .+ f_descr_train); -# ## d. Dimension reduction of energy and force descriptors of training dataset. +# ## Reduce descriptor dimension + +# Reduce dimension of energy and force descriptors in the training dataset. n_desc = 20 pca = PCAState(tol = n_desc) fit!(ds_train, pca) transform!(ds_train, pca) -# ## e. Learn ACE coefficients based on ACE descriptors and DFT data. +# ## Learn coefficients + +# Learn ACE coefficients based on ACE descriptors and DFT data. println("Learning energies and forces...") lb = LBasisPotential(basis) ws, int = [1.0, 1.0], true @@ -65,7 +69,7 @@ learn!(lb, ds_train, ws, int) @save_var res_path lb.β0 lb.β, lb.β0 -# ## f. Post-process output: calculate metrics, create plots, and save results. +# ## Post-process results # Compute ACE descriptors for energy and forces based on the atomistic test configurations. println("Computing energy descriptors of test dataset...") @@ -73,15 +77,15 @@ e_descr_test = compute_local_descriptors(conf_test, basis; pbar = false) println("Computing force descriptors of test dataset...") f_descr_test = compute_force_descriptors(conf_test, basis; - pbar = false) + pbar = false); # Update test dataset by adding energy and force descriptors. -ds_test = DataSet(conf_test .+ e_descr_test .+ f_descr_test) +ds_test = DataSet(conf_test .+ e_descr_test .+ f_descr_test); # **Dimension reduction of energy and force descriptors of test dataset.** transform!(ds_test, pca) -# Get true and predicted values for energies and forces. +# Get and save true and predicted values for energies and forces. n_atoms_train = length.(get_system.(ds_train)) n_atoms_test = length.(get_system.(ds_test)) @@ -103,7 +107,7 @@ f_test, f_test_pred = get_all_forces(ds_test), @save_var res_path f_test @save_var res_path f_test_pred; -# Compute training metrics. +# Compute and save training metrics. e_train_metrics = get_metrics(e_train, e_train_pred, metrics = [mae, rmse, rsq], label = "e_train") @@ -114,7 +118,7 @@ train_metrics = merge(e_train_metrics, f_train_metrics) @save_dict res_path train_metrics train_metrics -# Compute test metrics. +# Compute and save test metrics. e_test_metrics = get_metrics(e_test, e_test_pred, metrics = [mae, rmse, rsq], label = "e_test")